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Abstract
We establish several criteria for the existence of positive periodic solutions of the
multi-parameter differential systems

{
u′(t) + a1(t)g1(u(t))u(t) = λb1(t)f (u(t – τ1(t)), v(t – ζ1(t))),
v′(t) + a2(t)g2(v(t))v(t) =μb2(t)g(u(t – τ2(t)), v(t – ζ2(t))),

where the functions g1,g2 : [0,∞) → [0,∞) are assumed to be unbounded. The
analysis in the paper relies on the classical fixed point index theory. Our main findings
improve and complement some existing results in the literature.
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1 Introduction
Let ω > 0 be a constant. In this article we shall seek some criterion to guarantee that the
multiparameter system

{
u′(t) = a1(t)g1(u(t))u(t) – λb1(t)f (u(t – τ1(t)), v(t – ζ1(t))),
v′(t) = a2(t)g2(v(t))v(t) – μb2(t)g(u(t – τ2(t)), v(t – ζ2(t)))

(1.1)

admits a positive ω-periodic solution, where the functions ai, bi, τi, ζi ∈ C(R,R) are ω-
periodic, and gi ∈ C([0,∞), [0,∞)) are unbounded, i = 1, 2. In addition, we assume that
the nonlinear terms f , g ∈ C([0,∞) × [0,∞), [0,∞)) and λ, μ are positive parameters.

Here a positive periodic solution of (1.1) means a solution (u, v) ∈ E := X2 of (1.1) satis-
fying u > 0, v > 0 on [0,ω], where

X =
{

x ∈ C(R,R) : x(t + ω) = x(t)
}
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is a Banach space, and the norm of x ∈ X is

‖x‖ = max
t∈[0,ω]

∣∣x(t)
∣∣.

Moreover, for (x, y) ∈ E, we denote ‖(x, y)‖ = ‖x‖ + ‖y‖, and write (x, y) ≥ (0, 0) if (x, y) ∈ E
fulfills x(t) ≥ 0, y(t) ≥ 0, t ∈ [0,ω].

Obviously, the first equation of (1.1) reduces in some special circumstances to

u′(t) = a(t)g
(
u(t)

)
u(t) – λb(t)f

(
u
(
t – τ (t)

))
, (1.2)

and when λ = 0, g(u) ≡ 1, Eq. (1.2) becomes u′(t) = a(t)u(t), which is famous in Malthu-
sian population dynamics. In recent decades, (1.2) has also been extensively applied to
describe various physiological processes emerging in practical applications, for instance,
the production of blood cells, respiration, cardiac arrhythmias, etc. One may refer to [1–
6] and references therein. Nevertheless, the research work in the above mentioned papers
is mainly dependent on the condition that g(u) is positive and bounded, that is, there are
constants L > l > 0 such that 0 < l ≤ g(u) ≤ L, u ∈ [0,∞). Jin and Wang [7] have recently
studied the spectral problem

u′(t) = a(t)eu(t)u(t) – λb(t)f
(
u
(
t – τ (t)

))
,

and they obtained some existence results on positive periodic solutions by means of the
fixed point theory. It is worth noting the function eu is unbounded on [0,∞). Since then,
Eq. (1.2) has been extensively investigated under the more general case that g(u) is un-
bounded on [0,∞), by applying the lower and upper solutions method, fixed point theory,
and so on. See, for example, [7–10].

Besides, researchers have focused on the differential systems associated to (1.2), namely,

u′
i(t) = ai(t)gi

(
ui(t)

)
ui(t) – λbi(t)fi

(
u1(t), u2(t), . . . , un(t)

)
, i = 1, 2, . . . , n. (1.3)

One can see [11–14] for some related results. However, in [11–13], the authors have only
dealt with the special case gi(ui) ≡ 1, i = 1, 2, . . . , n. Indeed in that case, the Green’s function
corresponding to u′

i(t) = ai(t)ui(t) is simple, and some suitable cones could be easily con-
structed. Furthermore, system (1.3) investigated in above papers includes only one posi-
tive parameter λ. Hence, it will be interesting to study the multiparameter systems (1.1)
with gi (i = 1, 2) being unbounded. On the other hand, what is worth mentioning is that
Zhang et al. [14] considered system (1.1) for the special case gi ≡ 1, i = 1, 2, where nonlin-
earities f (u, v) and g(u, v) were assumed to be nondecreasing, and only the case f (0, 0) > 0,
g(0, 0) > 0 was treated. Therefore, we want to know whether or not (1.1) has a positive
periodic solution under more relaxed assumption f (0, 0) = 0, g(0, 0) = 0. In view of above
reasons, we shall concentrate on the existence of positive periodic solutions for system
(1.1) in the current paper, to further improve and generalize tho results in the literature.
For this purpose, we assume

(C1) ai, bi, τi, ζi ∈ C(R, [0,∞)) are ω-periodic with
∫ ω

0 ai(t) dt > 0,
∫ ω

0 bi(t) dt > 0, i = 1, 2.
(C2) There is li > 0 such that 0 < li ≤ gi(s) < ∞, s ∈ [0,∞).
(C3) f , g ∈ C([0,∞) × [0,∞), [0,∞)) with f (u, v) > 0, g(u, v) > 0 for (u, v) 
= (0, 0).
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Remark 1.1 For other research work on periodic solutions of functional differential equa-
tions and systems, we refer the readers to [15–17] and references therein.

The remainder of the paper is arranged as follows. In Sect. 2, we introduce some prelim-
inaries needed in our proof. Section 3 is devoted to stating and proving our main findings.
Meanwhile, some related results and remarks will be given.

2 Preliminaries
Recall that E = X2 is the Banach space defined as in Sect. 1. We first give the following
lemma.

Lemma 2.1 Assume (C1)–(C3). If (u, v) ∈ E is a solution of (1.1), then

u(t) = λ

∫ t+ω

t
G1(t, s)b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds,

v(t) = μ

∫ t+ω

t
G2(t, s)b2(s)g

(
u
(
s – τ2(s)

)
, v

(
s – ζ2(s)

))
ds,

where

G1(t, s) =
e–

∫ s
t a1(θ )g1(u(θ )) dθ

1 – e–
∫ ω

0 a1(θ )g1(u(θ )) dθ
, G2(t, s) =

e–
∫ s

t a2(θ )g2(v(θ )) dθ

1 – e–
∫ ω

0 a2(θ )g2(v(θ )) dθ
, t ≤ s ≤ t + ω.

Proof Multiplying the both sides of the first equation of (1.1) with e–
∫ t

0 a1(s)g1(u(s)) ds, we can
obtain

(
u(t)e–

∫ t
0 a1(s)g1(u(s)) ds)′ = –λb1(t)f

(
u
(
t – τ1(t)

)
, v

(
t – ζ1(t)

)) · e–
∫ t

0 a1(s)g1(u(s)) ds.

Integrating above equation from t to t + ω and by elementary calculation, we can easily
get

u(t) = λ

∫ t+ω

t
G1(t, s)b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds.

Similar evaluation shows

v(t) = μ

∫ t+ω

t
G2(t, s)b2(s)g

(
u
(
s – τ2(s)

)
, v

(
s – ζ2(s)

))
ds. �

Let q > 0 be a fixed constant. Then we can establish a series of lemmas required in the
subsequent discussion.

Lemma 2.2 Assume (C1)–(C3). Let σi = e–
∫ ω

0 ai(θ ) dθ , i = 1, 2. Then for any (u, v) ∈ E satis-
fying (u, v) ≥ (0, 0) and ‖(u, v)‖ ≤ q,

0 <
σ

g∗
i (q)

i

1 – σ
g∗

i (q)
i

≤ Gi(t, s) ≤ 1
1 – σ

gi∗(q)
i

, i = 1, 2, (2.1)
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where

g∗
i (q) = max

0≤s≤q
gi(s), gi∗(q) = min

0≤s≤q
gi(s), i = 1, 2.

Proof Clearly, for (u, v) ∈ E with (u, v) ≥ (0, 0) and ‖(u, v)‖ ≤ q, we have 0 ≤ u ≤ ‖u‖ ≤ q.
Thus,

g1∗(q) ≤ g1(u) ≤ g∗
1 (q),

and then simple estimation shows (2.1) holds for i = 1. The case i = 2 is similar. �

Defining for i = 1, 2,

mi(q) =
σ

g∗
i (q)

i

1 – σ
g∗

i (q)
i

, Mi(q) =
1

1 – σ
gi∗(q)
i

, ηi(q) =
mi(q)
Mi(q)

.

Then it is not hard to verify ηi(q) ∈ (0, 1), and accordingly,

η(q) := min
{
η1(q),η2(q)

} ∈ (0, 1).

Set

P =
{

(u, v) ∈ E : u(t) ≥ 0, v(t) ≥ 0, t ∈ [0,ω]
}

,

Kq =
{

(u, v) ∈ P : u(t) + v(t) ≥ η(q)
∥∥(u, v)

∥∥, t ∈ [0,ω]
}

,

and for r > 0,

Ωr =
{

(u, v) ∈ Kq :
∥∥(u, v)

∥∥ < r
}

, ∂Ωr =
{

(u, v) ∈ Kq :
∥∥(u, v)

∥∥ = r
}

.

Then P and Kq are cones in E.

Lemma 2.3 Assume (C1)–(C3). Let 0 < r ≤ q. Then for any (u, v) ∈ Ω̄r ,

σ
g∗

i (q)
i

1 – σ
g∗

i (q)
i

≤ σ
g∗

i (r)
i

1 – σ
g∗

i (r)
i

≤ Gi(t, s) ≤ 1
1 – σ

gi∗(r)
i

≤ 1
1 – σ

gi∗(q)
i

, i = 1, 2. (2.2)

Proof Similar to the proof of Lemma 2.2, we obtain for t ≤ s ≤ t + ω,

σ
g∗

i (r)
i

1 – σ
g∗

i (r)
i

≤ Gi(t, s) ≤ 1
1 – σ

gi∗(r)
i

, i = 1, 2.

Moreover, since ϕ(t) := σ t
i

1–σ t
i

and ψ(t) := 1
1–σ t

i
are strictly decreasing on [0,∞), one can

easily see that (2.2) holds true. �

Define, for given (u, v) ∈ E,

Tλ,μ(u, v)(t) =
(
Aλ(u, v)(t), Bμ(u, v)(t)

)
,
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where

Aλ(u, v)(t) = λ

∫ t+ω

t
G1(t, s)b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds

and

Bμ(u, v)(t) = μ

∫ t+ω

t
G2(t, s)b2(s)g

(
u
(
s – τ2(s)

)
, v

(
s – ζ2(s)

))
ds.

Then we have

Lemma 2.4 Assume (C1)–(C3) and 0 < r ≤ q. Then Tλ,μ(Ω̄r) ⊆ Kq and Tλ,μ : Ω̄r → Kq is
completely continuous.

Proof For (u, v) ∈ Ω̄r , we can deduce from Lemma 2.3 that

Aλ(u, v)(t) = λ

∫ t+ω

t
G1(t, s)b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds

≤ λ
1

1 – σ
g1∗(r)
1

∫ ω

0
b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds,

which yields

∥∥Aλ(u, v)
∥∥ ≤ λ

1
1 – σ

g1∗(r)
1

∫ ω

0
b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds.

Meanwhile, (2.2) implies

Aλ(u, v)(t) ≥ λ
σ

g∗
1 (r)

1

1 – σ
g∗

1 (r)
1

∫ ω

0
b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds

= λ
σ

g∗
1 (r)

1 (1 – σ
g1∗(r)
1 )

1 – σ
g∗

1 (r)
1

· 1
1 – σ

g1∗(r)
1

∫ ω

0
b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds

≥ σ
g∗

1 (r)
1 (1 – σ

g1∗(r)
1 )

1 – σ
g∗

1 (r)
1

∥∥A(u, v)
∥∥

≥ η1(q)
∥∥Aλ(u, v)

∥∥
≥ η(q)

∥∥Aλ(u, v)
∥∥. (2.3)

In an analogous manner, we get

Bμ(u, v)(t) ≥ η(q)
∥∥Bμ(u, v)

∥∥, (u, v) ∈ Ω̄r .

Hence Tλ,μ(Ω̄r) ⊆ Kq. The completely continuity of Tλ,μ is obvious. �

It is obvious that if (u, v) is a fixed point of the completely continuous operator Tλ,μ in
Kq, then (u, v) is a positive periodic solution of (1.1). We conclude this section by giving
the main tool employed in proving our main results.
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Lemma 2.5 ([18, 19]) Assume E is a Banach space and K ⊆ E is a cone. For r > 0, let
Kr = {u ∈ K : ‖u‖ < r} and ∂Kr = {u ∈ K : ‖u‖ = r}. Suppose T : K̄r → K is a completely
continuous operator satisfying Tu 
= u, u ∈ ∂Kr . Then

(i) If ‖Tu‖ < ‖u‖, u ∈ ∂Kr , then i(T , K̄r , K) = 1;
(ii) If ‖Tu‖ > ‖u‖, u ∈ ∂Kr , then i(T , K̄r , K) = 0.

3 Main results
Let

f0 = lim
(u,v)→0

f (u, v)
u + v

, g0 = lim
(u,v)→0

g(u, v)
u + v

.

Theorem 3.1 Assume (C1)–(C3) hold and f0 = 0 = g0. Then for every q > 0, there is a con-
stant γq > 0 such that for all λ,μ > γq, system (1.1) admits a positive periodic solution (u, v)
satisfying ‖(u, v)‖ ≤ q.

Proof Choose r1 = q and define

ψf (q) = min
{

f (u, v) : η(q)q ≤ u + v ≤ q
}

,

ψg(q) = min
{

g(u, v) : η(q)q ≤ u + v ≤ q
}

.

Take

γq = q · max

{
1

2ψf (q)m1(q)
∫ ω

0 b1(s) ds
,

1
2ψg(q)m2(q)

∫ ω

0 b2(s) ds

}
.

By Lemma 2.4, we know Tλ,μ(Ω̄q) ⊆ Kq and Tλ,μ : Ω̄q → Kq is completely continuous. Fix
λ,μ > γq. Then for (u, v) ∈ ∂Ωq, we have η(q)q ≤ u + v ≤ q, and so

Aλ(u, v)(t) ≥ λm1(q)
∫ ω

0
b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds

= λm1(q)ψf (q) ·
∫ ω

0
b1(s) ds

>
q
2

=
‖(u, v)‖

2
,

which implies

∥∥Aλ(u, v)
∥∥ >

‖(u, v)‖
2

, (u, v) ∈ ∂Ωq.

Similarly,

∥∥Bμ(u, v)
∥∥ >

‖(u, v)‖
2

, (u, v) ∈ ∂Ωq.

Hence ‖Tλ,μ(u, v)‖ > ‖(u, v)‖ on ∂Ωq, and then Lemma 2.5 gives i(Tλ,μ, Ω̄q, Kq) = 0.
On the other hand, since f0 = g0 = 0, there exists a constant r2 with 0 < r2 < q, such that

for (u, v) satisfying 0 < u + v ≤ r2,

f (u, v) ≤ ε(u + v), g(u, v) ≤ ε(u + v),
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where ε > 0 is a constant satisfying

2λε
∫ ω

0 b1(s) ds

1 – σ
g∗

1 (q)
1

< 1,
2με

∫ ω

0 b2(s) ds

1 – σ
g∗

2 (q)
2

< 1. (3.1)

For (u, v) ∈ ∂Ωr2 , we can deduce by (2.2) and (3.1) that

Aλ(u, v)(t) ≤ λ
1

1 – σ
g1∗(r2)
1

∫ t+ω

t
b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds

≤ λε

1 – σ
g1∗(q)
1

·
∫ ω

0
b1(s) ds · ∥∥(u, v)

∥∥

<
‖(u, v)‖

2
,

and hence

∥∥Aλ(u, v)
∥∥ <

‖(u, v)‖
2

, (u, v) ∈ ∂Ωr2 .

In an analogous way, we get

∥∥Bμ(u, v)
∥∥ <

‖(u, v)‖
2

, (u, v) ∈ ∂Ωr2 .

Thus ‖Tλ,μ(u, v)‖ < ‖(u, v)‖ on ∂Ωr2 . Lemma 2.5 ensures i(Tλ,μ, Ω̄r2 , Kq) = 1.
Consequently, i(Tλ,μ, Ω̄q \ Ωr2 , Kq) = –1. Therefore, Tλ,μ possesses a fixed point (u, v) in

Ω̄q \ Ωr2 , and system (1.1) has a positive periodic solution (u, v) with ‖(u, v)‖ ≤ q. �

Theorem 3.2 Assume (C1)–(C3) hold and f0 = ∞. Then for every q > 0, there is a con-
stant γq > 0 such that for all λ,μ < γq, system (1.1) admits a positive periodic solution (u, v)
satisfying ‖(u, v)‖ ≤ q.

Proof Fix r1 = q and set

Ψf (q) = max
{

f (u, v) : η(q)q ≤ u + v ≤ q
}

,

Ψg(q) = max
{

g(u, v) : η(q)q ≤ u + v ≤ q
}

.

Define

γq = q · min

{
1

2Ψf (q)M1(q)
∫ ω

0 b1(s) ds
,

1
2Ψg(q)M2(q)

∫ ω

0 b2(s) ds

}
.

By Lemma 2.4, Tλ,μ(Ω̄q) ⊆ Kq and Tλ,μ : Ω̄q → Kq is completely continuous. Thus, for
fixed λ,μ < γq and (u, v) ∈ ∂Ωq,

Aλ(u, v)(t) ≤ λM1(q)
∫ ω

0
b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds

= λM1(q)ψf (q) ·
∫ ω

0
b1(s) ds

<
q
2

=
‖(u, v)‖

2
,
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and then

∥∥Aλ(u, v)
∥∥ <

‖(u, v)‖
2

, (u, v) ∈ ∂Ωq.

By a similar argument, we can also obtain

∥∥Bμ(u, v)
∥∥ <

‖(u, v)‖
2

, (u, v) ∈ ∂Ωq.

Therefore, ‖Tλ,μ(u, v)‖ < ‖(u, v)‖ for (u, v) ∈ ∂Ωq. Using Lemma 2.5 again, we can easily
get i(Tλ,μ, Ω̄q, Kq) = 1.

By the assumption f0 = ∞, there exists a constant r2 ∈ (0, q), such that for (u, v) satisfying
0 < u + v ≤ r2,

f (u, v) ≥ Υ (u + v),

where Υ > 0 satisfies

λΥ η(q)
σ

g∗
1 (q)

1

1 – σ
g∗

1 (q)
1

∫ ω

0
b1(s) ds > 1. (3.2)

Thus for (u, v) ∈ ∂Ωr2 , we get by (2.2) and (3.2) that

Aλ(u, v)(t) ≥ λ
σ

g∗
1 (r2)

1

1 – σ
g∗

1 (r2)
1

∫ ω

0
b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds

≥ λΥ η(q)
σ

g∗
1 (q)

1

1 – σ
g∗

1 (q)
1

∫ ω

0
b1(s) ds · ∥∥(u, v)

∥∥

>
∥∥(u, v)

∥∥,

which means ‖Aλ(u, v)‖ > ‖(u, v)‖ on ∂Ωr2 . Hence

∥∥Tλ,μ(u, v)
∥∥ ≥ ∥∥Aλ(u, v)

∥∥ >
∥∥(u, v)

∥∥, (u, v) ∈ ∂Ωr2 ,

and Lemma 2.5 again implies i(Tλ,μ, Ω̄r2 , Kq) = 0.
Consequently, i(Tλ,μ, Ω̄q \ Ωr2 , Kq) = 1. Thus, Tλ,μ has a fixed point (u, v) in Ω̄q \ Ωr2 ,

and (1.1) has a positive periodic solution (u, v) with ‖(u, v)‖ ≤ q. �

Similarly to Theorems 3.1 and 3.2, we can prove the following

Theorem 3.3 Assume (C1)–(C3) and g0 = ∞. Then for every q > 0, there is a constant γq >
0 such that for all λ,μ < γq, system (1.1) admits a positive periodic solution (u, v) satisfying
‖(u, v)‖ ≤ q.

Remark 3.1 Clearly, the results of Theorems 3.1–3.3 generalize and complement the cor-
responding ones in [7, 9, 12–14].
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To illustrate our main findings, we may choose ω = 2π and τi ≡ 0, ζi ≡ 0 (i = 1, 2) in the
subsequent discussion. Let

a1(t) = sin t + 1, a2(t) = sin t + 2, t ∈ [0, 2π ],

b1(t) = cos t + 2, b2(t) = cos t + 1, t ∈ [0, 2π ].

Then it is not hard to check that (C1) is satisfied. Moreover, define

g1(s) = es, g2(s) = 2es, s ∈ [0,∞),

then there are constants l1 = 1 and l2 = 2 such that

0 < 1 = l1 ≤ g1(s) < ∞, 0 < 2 = l2 ≤ g2(s) < ∞, s ∈ [0,∞).

Hence (C2) is also satisfied.

Example 3.1 For (u, v) ∈ [0,∞) × [0,∞), let

f (u, v) = 3(u + v)2(u2 + v2 + 1
)2, g(u, v) = 2(u + v)4(u2 + v2 + 5

)2.

Then f , g ∈ C([0,∞)× [0,∞), [0,∞)) with f (u, v) > 0, g(u, v) > 0 for (u, v) 
= (0, 0). Thus (C3)
holds true. Furthermore, simple calculation gives f0 = 0 = g0. Consequently, the results of
Theorem 3.1 are valid.

Example 3.2 We shall follow the same notations and definitions as before. Let us redefine

f (u, v) =
√

u + v · (u2 + v2 + 1
)2, (u, v) ∈ [0,∞) × [0,∞).

Clearly, f verifies (C3). Moreover, it is not difficult to see f0 = ∞, and accordingly the results
of Theorem 3.2 are also valid.

At the end of the section, we list some related results and remarks.
Let us consider the multiparameter differential systems

{
u′(t) = –a1(t)g1(u(t))u(t) + λb1(t)f (u(t – τ1(t)), v(t – ζ1(t))),
v′(t) = –a2(t)g2(v(t))v(t) + μb2(t)g(u(t – τ2(t)), v(t – ζ2(t))),

(3.3)

where λ,μ > 0 are parameters. Under the same assumptions as before, one can check that
system (3.3) is equivalent to

u(t) = λ

∫ t+ω

t
G1(t, s)b1(s)f

(
u
(
s – τ1(s)

)
, v

(
s – ζ1(s)

))
ds,

v(t) = μ

∫ t+ω

t
G2(t, s)b2(s)g

(
u
(
s – τ2(s)

)
, v

(
s – ζ2(s)

))
ds,

where

G1(t, s) =
e
∫ s

t a1(θ )g1(u(θ )) dθ

e
∫ ω

0 a1(θ )g1(u(θ )) dθ – 1
, G2(t, s) =

e
∫ s

t a2(θ )g2(v(θ )) dθ

e
∫ ω

0 a2(θ )g2(v(θ )) dθ – 1
, t ≤ s ≤ t + ω.
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Furthermore, by a similar argument as above, it is not difficult to see that the results of
Theorems 3.1–3.3 remain true for system (3.3).

Remark 3.2 It is worth remarking that, under some reasonable assumptions, the results
of the paper are still valid for the more general coupled systems

u′
i(t) + ai(t)gi

(
ui(t)

)
ui(t) = λibi(t)fi

(
u1

(
t – τi1(t)

)
, . . . , un

(
t – τin(t)

))
, i = 1, 2, . . . , n

and

u′
i(t) = ai(t)gi

(
ui(t)

)
ui(t) – λibi(t)fi

(
u1

(
t – τi1(t)

)
, . . . , un

(
t – τin(t)

))
, i = 1, 2, . . . , n.
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