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Abstract
In this paper, we establish two existence theorems of rotating-periodic solutions for
nonlinear second order vector differential equations via the Leray–Schauder degree
theory and the lower and upper solutions method. The concept “rotating-periodicity”
is a kind of symmetry, which is a general version of periodicity, anti-periodicity,
harmonic-periodicity, and it is also a special kind of quasi-periodicity. We also include
several examples to illustrate the validity and applicability of our results.
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1 Introduction
Periodicity is a very important property in the study of differential equations. Since
Poincaré established the existence of periodic solutions to the three-body problems, there
has been a rich literature body on the periodic solutions of ordinary differential equations
(see for example [9, 16, 18] and the references therein). However, some differential equa-
tions often exhibit certain symmetries rather than periodicity, such as anti-periodicity,
harmonic-periodicity, and quasi-periodicity. Recently, the existence of affine-periodic so-
lutions and rotating-periodic solutions for nonlinear differential equations, which was
firstly introduced in [24], has become a very interesting topic. Especially, Chang and Li
[4, 5] studied the existence of rotating-periodic solutions for second order dynamical sys-
tems by using the coincidence degree theory. In [21, 23], the existence of affine-periodic
solutions for nonlinear systems is obtained based on the existence of lower and upper so-
lutions. One can also see [13–15] for the existence and multiplicity of rotating-periodic
solutions of second order Hamiltonian systems.

This paper is devoted to investigating the existence of rotating-periodic solutions for
the following second order vector differential equation:

x′′ + f
(
t, x, x′) = 0, (1)
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where f : R1 ×R
n ×R

n → R
n is Lipschitz continuous. Assume, moreover, that there exist

some T > 0 and Q ∈ O(n) such that

f (t + T , x, y) = Qf
(
t, Q–1x, Q–1y

)
, ∀t ∈R

1, x, y ∈R
n. (2)

System (1)–(2) is called a (Q, T)-rotating-periodic system. A natural problem is seeking
for a solution which can keep the rotating-symmetry of f , that is, the space variable x has
a rotation Q as the time variable walks a period T , which leads to the following definition.

Definition 1 A function x : R1 → R
n is called a (Q, T)-rotating-periodic solution of sys-

tem (1)–(2) if it is a solution of (1) on R
1 and satisfies

x(t + T) = Qx(t), ∀t ∈R
1.

There are some natural phenomena presenting rotating-periodicity, such as spiral waves
which execute compound rotation (see [3, 20] for example), spiral line in geometry, or the
orbit of the earth going around the sun.

Remark 1 The cases of Q = I (the identical matrix) and Q = –I correspond to the ones of
T-periodic and T-anti-periodic solutions, respectively. If there exists some positive inte-
ger N such that QN = I , then (Q, T)-rotating-periodic solutions are just harmonic solu-
tions, i.e., x(t + NT) ≡ x(t), ∀t ∈ R

1. In particular, when Q = diag(eiθ1 , . . . , eiθn ) ∈ O(n), our
solutions are actually the usual quasi-periodic ones with the frequency (θ1, . . . , θn).

In this paper, we shall investigate the existence of rotating-periodic solutions. The idea
has largely been motivated by the work of Fabry and Habets [8] in which the existence
of solutions was studied for the Picard boundary value problem. Topological methods, in
particular the degree theory, some fixed point theorems, and lower and upper solutions
method, are the most relevant tools in proving the existence of solutions for boundary
value problems. Some remarkable works of this area can be found in [1, 2, 6, 7, 11, 12, 19]
and the references therein.

The rest of this paper is organized as follows: In Sect. 2, we mainly review some pre-
liminary lemmas which will be needed for the proof of our existence theorems. In Sect. 3,
we prove the first existence theorem of rotating-periodic solutions based on the Leray–
Schauder degree theory and a Bernstein–Nagumo type condition. In Sect. 4, by using the
lower and upper solutions and a Kamke type condition, we establish another existence
theorem of rotating-periodic solutions. To illustrate our results, Sect. 5 contains some
examples which show the validity and applicability of the existence theorems.

2 Preliminaries
In this section, we present some preliminary lemmas in the form we need for the proof of
the existence theorems.

The following lemma shows that the problem of finding rotating-periodic solutions can
be reduced to the corresponding boundary value problem.
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Lemma 1 x(t) is a (Q, T)-rotating-periodic solution of system (1)–(2) if and only if x(t) is
a solution of (1) and satisfies the following (Q, T)-rotating-periodic boundary conditions:

x(T) = Qx(0), x′(T) = Qx′(0). (3)

In the following, we show that the boundary value problem (1)–(3) can be transformed
into a fixed point problem.

In fact, if I – Q ∈ GL(n), integrating (1) twice over [0, t] and taking into account the
boundary conditions (3), we get the following integral equation:

x(t) = (I – Q)–2
∫ T

0

(
(t – s)(I – Q) – TQ

)
f
(
s, x(s), x′(s)

)
ds

–
∫ t

0
(t – s)f

(
s, x(s), x′(s)

)
ds

� (T1x)(t). (4)

On the other hand, if x(t) is a solution of (4), then differentiating (4) with respect to t twice,
we have x′′(t) = –f (t, x(t), x′(t)). Substituting t = 0 and t = T into (4) and its derivative, we
get x(T) = Qx(0) and x′(T) = Qx′(0).

If I – Q /∈ GL(n), we can choose a constant a > 0 such that I – eaT Q ∈ GL(n) and I –
e–aT Q ∈ GL(n) hold. Consider the following equation:

x′′ – a2x = –
(
a2x + f

(
t, x, x′)),

which is equivalent to (1). From the theory of linear differential equations, we know that
its solution x(t) satisfies

x(t) = c1eat + c2e–at +
1

2a

∫ t

0

(
e–a(t–s) – ea(t–s))(a2x(s) + f

(
s, x(s), x′(s)

))
ds.

By the boundary conditions (3), we have

c1 =
1

2a
(
I – e–aT Q

)–1
∫ T

0
e–as(a2x(s) + f

(
s, x(s), x′(s)

))
ds,

c2 = –
1

2a
(
I – eaT Q

)–1
∫ T

0
eas(a2x(s) + f

(
s, x(s), x′(s)

))
ds.

Then (1)–(3) is equivalent to the following integral equation:

x(t) =
1

2a
(
I – e–aT Q

)–1
∫ T

0
ea(t–s)(a2x(s) + f

(
s, x(s), x′(s)

))
ds

–
1

2a
(
I – eaT Q

)–1
∫ T

0
e–a(t–s)(a2x(s) + f

(
s, x(s), x′(s)

))
ds

+
1

2a

∫ t

0

(
e–a(t–s) – ea(t–s))(a2x(s) + f

(
s, x(s), x′(s)

))
ds

� (T2x)(t).
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Hence, finding a solution of boundary value problem (1)–(3) is equivalent to finding a
fixed point for operator T : C1([0, T];Rn) → C1([0, T];Rn) defined by

(T x)(t) =

⎧
⎨

⎩
(T1x)(t) if I – Q ∈ GL(n),

(T2x)(t) if I – Q /∈ GL(n),
(5)

where C1([0, T];Rn) is the Banach space of C1 functions x : [0, T] →R
n with the norm

‖x‖1 = max
{

max
t∈[0,T]

∣
∣x(t)

∣
∣, max

t∈[0,T]

∣
∣x′(t)

∣
∣
}

.

Throughout the paper, it is convenient to employ |x| as the notation for the Euclidean
norm in R

n and 〈x, y〉 for the scalar product of two vectors x, y ∈R
n.

The existence of a fixed point for operator T will be based on the following lemma given
in [8].

Lemma 2 Let X be a Banach space, A : X → X be a compact operator such that A has a
unique fixed point x0, and Ω be an open bounded set such that x0 ∈ Ω . Then the compact
operator T : Ω̄ → X has a fixed point in Ω̄ if, for any λ ∈ (0, 1), the following equation

x = λT x + (1 – λ)Ax (6)

has no solution x on the boundary ∂Ω of Ω .

In this paper, we use the following Bernstein–Nagumo type lemma (see [8]), which is an
immediate application of results given by Mawhin [17], from which a priori bound for the
possible solutions can be obtained.

Lemma 3 Let x : [0, T] → R
n be an absolutely continuous function with an absolutely

continuous derivative. Assume that, for almost every t ∈ [0, T], we have |〈x′(t), x′′(t)〉| ≤
h(|x′(t)|)|x′(t)|, where h : R+ →R

+ \ {0} is continuous and satisfies

∫ +∞

0

s2 ds
h(s)

= +∞. (7)

Then |x′(t)| ≤ g(
∫ T

0 |x′(t)|2 dt), where g is defined by

∫ g(u)

√
u/T

s2

h(s)
ds = u.

3 The existence theorem via Leray–Schauder degree theory
In this section, we prove the existence theorem about rotating-periodic solutions by means
of the Leray–Schauder degree theory. As it is pointed out in Sect. 2, we only need to prove
the existence of fixed points of operator T defined by (5).

Since f : R1 × R
n × R

n → R
n is continuous, the operator T is compact. We want to

show that under appropriate conditions on f , one can build a suitable operator A and a



Zhang and Yang Journal of Inequalities and Applications         (2020) 2020:22 Page 5 of 14

set Ω such that Lemma 2 can be applied. To this purpose, in the following theorem, let
the compact operator A : C1([0, T];Rn) → C1([0, T];Rn) be defined as follows:

(Ax)(t) =

⎧
⎨

⎩
(A1x)(t) if I – Q ∈ GL(n),

(A2x)(t) if I – Q /∈ GL(n),
(8)

where

(A1x)(t) = (I – Q)–2
∫ T

0

(
TQ – (t – s)(I – Q)

)
k2x(s) ds +

∫ t

0
(t – s)k2x(s) ds,

(A2x)(t) =
1

2a
(
I – e–aT Q

)–1
∫ T

0
ea(t–s)(a2 – k2)x(s) ds

–
1

2a
(
I – eaT Q

)–1
∫ T

0
e–a(t–s)(a2 – k2)x(s) ds

+
1

2a

∫ t

0

(
e–a(t–s) – ea(t–s))(a2 – k2)x(s) ds

for k > 0, and let the open bounded set Ω be defined as follows:

Ω =
{

x ∈ C1([0, T];Rn) | ∣∣x(t)
∣∣ < φ(t),

∣∣x′(t)
∣∣ < ρ,∀t ∈ [0, T]

}
, (9)

where φ : [0, T] → R
+ \ {0} is some strictly positive C2 function and ρ > 0. Then we have

the following existence result.

Theorem 1 Suppose that there exists a C2 function φ : [0, T] →R
+ \ {0} with φ(0) = φ(T),

φ′(0) = φ′(T) such that, for any t ∈ [0, T], |x| = φ(t), and 〈x, y〉 = |x|φ′(t), we have

〈
x, f (t, x, y)

〉 ≤ |y|2 – φ(t)φ′′(t) – φ′(t)2. (10)

Assume, moreover, that there exist constants α,β ≥ 0, 0 ≤ γ < 1, and δ > 0 such that, for
all t ∈ [0, T], |x| ≤ φ(t), and y ∈R

n, we have

〈
x, f (t, x, y)

〉 ≤ α|x|2 + β|x||y| + γ |y|2 + δ, (11)
∣∣〈y, f (t, x, y)

〉∣∣ ≤ h0
(|y|)|y|, (12)

where h0 : R+ →R
+ \ {0} is increasing, continuous and satisfies (7).

Then the operator T has at least one fixed point x∗ such that |x∗(t)| ≤ φ(t), ∀t ∈ [0, T],
that is, (Q, T)-rotating-periodic system (1)–(2) has at least one (Q, T)-rotating-periodic
solution x∗(t).

Proof Let A be defined by (8) and Ω by (9). We suppose that T defined by (5) has no fixed
point on ∂Ω ; otherwise, Theorem 1 has been proven.

According to Lemma 2, we firstly prove that A has a unique fixed point in Ω . By similar
arguments in Sect. 2, we know that Ax = x is equivalent to the following boundary value
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problem:

x′′ = k2x,

x(T) = Qx(0), x′(T) = Qx′(0).
(13)

The solution of (13) can be explicitly written as x(t) = h1ekt + h2e–kt , where h1 and h2 satisfy
(Q – ekT I)h1 = 0, (Q – e–kT I)h2 = 0. We can choose sufficiently large k such that ekT and
e–kT are not the eigenvalues of Q, then h1 = h2 = 0. It follows that the unique solution of
(13) is x0 = 0, and thus operator A has a unique fixed point x0 ∈ Ω .

Secondly, it suffices to show that if ρ and k are chosen large enough, there is no solution
of (6) on ∂Ω for λ ∈ (0, 1). Consider the following homotopy:

H(x,λ) =: λT x + (1 – λ)Ax, (x,λ) ∈ Ω̄ × [0, 1].

Since there is no fixed point of H(·, 1) = T on ∂Ω , it follows from the compactness of H
that there exists λ0 ∈ (0, 1) such that the operator H(·,λ) has no fixed point on ∂Ω for
λ ∈ [λ0, 1]. Thus, it suffices to show that there is no solution of (6) on ∂Ω for λ ∈ (0,λ0).

If, on the other hand, there exists a solution x ∈ ∂Ω of (6), then the following situations
hold: either there exists ξ ∈ [0, T] such that |x(t)|2 – φ2(t) reaches the maximum value 0
at t = ξ , or there exists η ∈ [0, T] such that |x′(η)| = ρ . In what follows we will prove that
none of these two statements hold for sufficiently large ρ .

Assume that |x(t)|2 – φ2(t) reaches the maximum value 0 at t = ξ ∈ [0, T]. If ξ ∈ (0, T),
then we have

∣∣x(ξ )
∣∣ = φ(ξ ),

〈
x(ξ ), x′(ξ )

〉
– φ(ξ )φ′(ξ ) = 0.

Hence

〈
x(ξ ), x′′(ξ )

〉
+

∣
∣x′(ξ )

∣
∣2 – φ(ξ )φ′′(ξ ) – φ′(ξ )2 ≤ 0. (14)

Since x is a solution of (6), it follows that

x′′(t) = –λf
(
t, x(t), x′(t)

)
+ (1 – λ)k2x(t).

Using this equation together with (10), we have that

〈
x(ξ ), x′′(ξ )

〉
+

∣∣x′(ξ )
∣∣2 – φ(ξ )φ′′(ξ ) – φ′(ξ )2

= –λ
〈
x(ξ ), f

(
ξ , x(ξ ), x′(ξ )

)〉
+ (1 – λ)k2∣∣x(ξ )

∣∣2 +
∣∣x′(ξ )

∣∣2 – φ(ξ )φ′′(ξ ) – φ′(ξ )2

≥ (1 – λ)
(
k2φ(ξ )2 +

∣
∣x′(ξ )

∣
∣2 – φ(ξ )φ′′(ξ ) – φ′(ξ )2) > 0

holds for all λ ∈ (0,λ0) and sufficiently large k. This contradicts (14). If ξ = 0, that is,
|x(t)|2 – φ2(t) reaches the maximum value 0 at t = 0, then from (3) and the orthogonal-
ity of Q, we have

∣∣x(T)
∣∣2 – φ2(T) =

∣∣x(0)
∣∣2 – φ2(0) = 0,
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which implies that |x(t)|2 – φ2(t) reaches the maximum value 0 at t = T , and vice versa.
Hence,

〈
x(0), x′(0)

〉
– φ(0)φ′(0) ≤ 0,

〈
x(T), x′(T)

〉
– φ(T)φ′(T) ≥ 0.

From (3), the orthogonality of Q, and the conditions of φ, we conclude that

〈
x(T), x′(T)

〉
– φ(T)φ′(T) =

〈
x(0), x′(0)

〉
– φ(0)φ′(0) = 0.

Then it follows that
〈
x(0), x′′(0)

〉
+

∣
∣x′(0)

∣
∣2 – φ(0)φ′′(0) – φ′(0)2 ≤ 0,

〈
x(T), x′′(T)

〉
+

∣
∣x′(T)

∣
∣2 – φ(T)φ′′(T) – φ′(T)2 ≤ 0.

Hence, we can also deduce a contradiction.
Next, we will prove that, for any solution x of (6) satisfying the condition |x(t)| ≤ φ(t),

|x′(t)| is necessarily bounded, regardless of the choice of λ ∈ (0,λ0). Integrating the follow-
ing equality over [0, T]

〈
x(t), x′′(t)

〉
= –λ

〈
x(t), f

(
t, x(t), x′(t)

)〉
+ (1 – λ)k2∣∣x(t)

∣∣2

and taking into account (3) and the orthogonality of Q, we have

∫ T

0

∣
∣x′(t)

∣
∣2 dt = λ

∫ T

0

〈
x(t), f

(
t, x(t), x′(t)

)〉
dt – (1 – λ)k2

∫ T

0

∣
∣x(t)

∣
∣2 dt.

It follows from (11) that, if |x(t)| ≤ φ(t), then

∫ T

0

∣∣x′(t)
∣∣2 dt

≤ λ

(
α

∫ T

0

∣
∣x(t)

∣
∣2 dt + β

∫ T

0

∣
∣x(t)

∣
∣
∣
∣x′(t)

∣
∣dt + γ

∫ T

0

∣
∣x′(t)

∣
∣2 dt + δT

)

– (1 – λ)k2
∫ T

0

∣∣x(t)
∣∣2 dt

≤ [
λ(α + β/2ε) – (1 – λ)k2]

∫ T

0

∣∣x(t)
∣∣2 dt + λ(γ + εβ/2)

∫ T

0

∣∣x′(t)
∣∣2 dt + λδT ,

where ε is a positive number provided γ + εβ/2 < 1. Take k large enough such that (1 –
λ0)k2 ≥ α + β/2ε, then for all λ ∈ (0,λ0), we have

∫ T

0

∣∣x′(t)
∣∣2 dt ≤ δT

1 – (γ + εβ/2)
� K .

Using (12), we have

∣∣〈x′(t), x′′(t)
〉∣∣ ≤ λ

∣∣〈x′(t), f
(
t, x(t), x′(t)

)〉∣∣ + (1 – λ)k2∣∣x(t)
∣∣∣∣x′(t)

∣∣

≤ λh0
(∣∣x′(t)

∣∣)∣∣x′(t)
∣∣ + (1 – λ)k2M

∣∣x′(t)
∣∣

≤ (
h0

(∣∣x′(t)
∣∣) + k2M

)∣∣x′(t)
∣∣� h

(∣∣x′(t)
∣∣)∣∣x′(t)

∣∣,
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where M is an upper bound of φ(t) on [0, T]. Since h0 is increasing and satisfies (7), it is
true for h as well. Then it follows from Lemma 3 that an upper bound for |x′(t)| is found:

∣
∣x′(t)

∣
∣ ≤ g

(∫ T

0

∣
∣x′(t)

∣
∣2 dt

)
≤ g(K), ∀t ∈ [0, T].

Hence, we can take ρ > g(K) in the definition of Ω in (9) such that there is no solution of
(6) on ∂Ω for λ ∈ (0, 1). Thereby the existence of a solution x∗ ∈ Ω̄ is easily obtained from
Lemma 2. �

4 The existence theorem via lower and upper solutions
Using the lower and upper solutions method, we shall establish another existence theorem
about rotating-periodic solutions. The main idea is that if we can find a lower solution
which is smaller than an upper one, there is a solution wedged between these two.

To obtain the existence result for vector differential equations, we need the partial orders
in R

n. The positive cone in R
n is the set of all n tuples with nonnegative coordinates, which

gives rise to a partial order on R
n in the following way:

x ≤ y ⇔ xi ≤ yi for i = 1, . . . , n,

x < y ⇔ xi < yi for i = 1, . . . , n,

where x, y ∈R
n, xi and yi are the ith components of x and y, respectively.

Before proceeding to the existence theorem, we also need to introduce the following
definition of lower and upper solutions.

Definition 2 The C2 functions ϕ and ψ :R1 →R
n are said to be lower and upper solutions

of (1), respectively, if for all t ∈R
1, ϕ(t) ≤ ψ(t) and

ϕ′′(t) + f
(
t,ϕ(t),ϕ′(t)

) ≥ 0, ψ ′′(t) + f
(
t,ψ(t),ψ ′(t)

) ≤ 0.

Furthermore, the following Kamke type condition is needed in the proof of the existence
theorem, whose general form can be found in [10].

(K) For any t ∈R
1 and i = 1, . . . , n,

ϕ′′
i (t) + fi

(
t, x̂(t), ŷ(t)

) ≥ 0, ψ ′′
i (t) + fi

(
t, x̃(t), ỹ(t)

) ≤ 0, (15)

where ϕ(t) ≤ x̂(t), x̃(t) ≤ ψ(t) with the ith components of x̂(t), x̃(t), ŷ(t), and ỹ(t) are ϕi(t),
ψi(t), ϕ′

i(t), and ψ ′
i (t), respectively.

Now we are in a position to state the following existence result about rotating-periodic
solutions for system (1)–(2).

Theorem 2 Suppose that the following conditions hold:
(i) There exist C2 lower and upper solutions ϕ(t) < ψ(t) of (1) which are T-periodic and

satisfy the Kamke type condition (K);
(ii) There exist some c > 0 and a C2 function σ : R1 → R

n which is
(Q, T)-rotating-periodic such that

ϕ(t) ≤ σ (t) – (c, . . . , c)T < σ (t) < σ (t) + (c, . . . , c)T ≤ ψ(t), ∀t ∈ R
1; (16)
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(iii) There exist constants α,β ≥ 0, 0 ≤ γ < 1, and δ > 0 such that, for any t ∈R
1,

ϕ(t) ≤ x ≤ ψ(t), and y ∈ R
n, we have

〈
x, f (t, x, y)

〉 ≤ α|x|2 + β|x||y| + γ |y|2 + δ, (17)
∣∣〈y, f (t, x, y)

〉∣∣ ≤ h0
(|y|)|y|, (18)

where h0 : R+ →R
+ \ {0} is increasing, continuous and satisfies (7).

Then (Q, T)-rotating-periodic system (1)–(2) has at least one (Q, T)-rotating-periodic
solution x∗(t) satisfying ϕ(t) ≤ x∗(t) ≤ ψ(t), ∀t ∈R

1.

Proof As in Theorem 1, the result follows immediately if one applies Lemma 2 to a suitable
operator A and an open set Ω . Let X be the Banach space defined by

X =
{

x ∈ C1(
R

1;Rn) | x(t + T) = Qx(t),∀t ∈ R
1}

with the norm ‖ · ‖1. Then, from the orthogonality of Q, we have that

Ω =
{

x ∈ X | ϕ(t) < x(t) < ψ(t),
∣
∣x′(t)

∣
∣ < ρ,∀t ∈R

1}

is a nonempty open and bounded set in X. Define

(Ax)(t) =

⎧
⎨

⎩
(A1x)(t) if I – Q ∈ GL(n),

(A2x)(t) if I – Q /∈ GL(n),
(19)

where

(A1x)(t) = (I – Q)–2
∫ T

0

(
TQ – (t – s)(I – Q)

)(
k2x(s) + σ ′′(s) – k2σ (s)

)
ds

+
∫ t

0
(t – s)

(
k2x(s) + σ ′′(s) – k2σ (s)

)
ds,

(A2x)(t) =
1

2a
(
I – e–aT Q

)–1
∫ T

0
ea(t–s)((a2 – k2)x(s) – σ ′′(s) + k2σ (s)

)
ds

–
1

2a
(
I – eaT Q

)–1
∫ T

0
e–a(t–s)((a2 – k2)x(s) – σ ′′(s) + k2σ (s)

)
ds

+
1

2a

∫ t

0

(
e–a(t–s) – ea(t–s))((a2 – k2)x(s) – σ ′′(s) + k2σ (s)

)
ds.

Then the operator T defined by (5) and the operator A defined by (19) are both compact
operators from X to X. As in Sect. 2, we know that Ax = x is equivalent to the following
boundary value problem:

x′′ – k2x = σ ′′ – k2σ ,

x(T) = Qx(0), x′(T) = Qx′(0).
(20)

Similarly, we can prove that the unique solution of (20) is x0(t) = σ (t) for sufficiently large
k. It means that x0 is the unique fixed point of A and x0 ∈ Ω .
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Furthermore, it suffices to show that there is no solution of (6) on ∂Ω for λ ∈ (0,λ0)
with λ0 ∈ (0, 1). Let x ∈ ∂Ω be a solution of (6). Then ϕ(t) ≤ x(t) ≤ ψ(t) for all t ∈R

1, and
either there exist ξ ∈ R

1 and i ∈ {1, . . . , n} such that xi(t) – ψi(t) (or ϕi(t) – xi(t)) reaches
the maximum value 0 at t = ξ , or there exists η ∈R

1 such that |x′(η)| = ρ .
Without loss of generality, assume that xi(t) – ψi(t) reaches the maximum value 0 at

t = ξ ∈R
1. Then the following relations hold:

xi(ξ ) = ψi(ξ ), x′
i(ξ ) = ψ ′

i (ξ ), x′′
i (ξ ) ≤ ψ ′′

i (ξ ).

Since x is a solution of (6), we have

x′′
i (t) = –λfi

(
t, x(t), x′(t)

)
+ (1 – λ)

(
k2xi(t) + σ ′′

i (t) – k2σi(t)
)
.

Taking k large enough such that ck2 > maxt∈R1 |ψ ′′(t) – σ ′′(t)|, by (15) and (16), we have

x′′
i (ξ ) = –λfi

(
ξ , x(ξ ), x′(ξ )

)
+ (1 – λ)

(
k2ψi(ξ ) + σ ′′

i (ξ ) – k2σi(ξ )
)

> λψ ′′
i (ξ ) + (1 – λ)ψ ′′

i (ξ ) = ψ ′′
i (ξ ),

which is a contradiction.
Next, we will show that, for any solution x of (6) with the condition ϕ(t) ≤ x(t) ≤ ψ(t),

there is a certain number K > 0 such that the estimate |x′(t)| < K holds, regardless of the
choice of λ ∈ (0,λ0). Since x is a solution of (6), we have

〈
x(t), x′′(t)

〉
= –λ

〈
x(t), f

(
t, x(t), x′(t)

)〉
+ (1 – λ)

〈
x(t), k2x(t) + σ ′′(t) – k2σ (t)

〉
.

It follows from (3) and (17) that, if ϕ(t) ≤ x(t) ≤ ψ(t),

∫ T

0

∣
∣x′(t)

∣
∣2 dt

= λ

∫ T

0

〈
x(t), f

(
t, x(t), x′(t)

)〉
dt – (1 – λ)

∫ T

0

〈
x(t), k2x(t) + σ ′′(t) – k2σ (t)

〉
dt

≤ [
λ(α + β/2ε) – (1 – λ)k2]

∫ T

0

∣∣x(t)
∣∣2 dt + λ(γ + εβ/2)

∫ T

0

∣∣x′(t)
∣∣2 dt

+ λδT + (1 – λ)
∫ T

0

〈
x(t), k2σ (t) – σ ′′(t)

〉
dt,

where ε is a positive number provided γ + εβ/2 < 1. Then, for sufficiently large k and all
λ ∈ (0,λ0), we have

∫ T

0

∣
∣x′(t)

∣
∣2 dt ≤ (δ + M)T

1 – (γ + εβ/2)
,

where M is an upper bound of |〈ϕ(t), k2σ (t) – σ ′′(t)〉| and |〈ψ(t), k2σ (t) – σ ′′(t)〉| on [0, T].
Then, using Lemma 3, an upper bound for |x′(t)| on [0, T] can be found. Furthermore,
using the rotating-periodicity of x and the orthogonality of Q, we can obtain an upper
bound for |x′(t)| on R

1. This completes the proof. �
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5 Some applications
In this section, we apply the techniques described in the preceding sections to study the
existence of rotating-periodic solutions for some special types of equations under the cor-
responding rotating-periodic conditions. We need the following partial orders in R

n×n:

A ≤ B ⇔ aij ≤ bij for i, j = 1, . . . , n,

A < B ⇔ aij < bij for i, j = 1, . . . , n,

where A, B ∈R
n×n, aij and bij are the (i, j)th components of A and B, respectively. Assume,

moreover, that the norm is denoted by ‖A‖ for A ∈R
n×n.

Example 1 Consider the following second order equation:

x′′ – a(t)|x|2νx = e(t), (21)

where ν > 0 is a constant, a : R1 →R
+ \ {0} and e : R1 →R

n are continuous functions, and
there exist some T > 0 and Q ∈ O(n) such that

a(t + T) = a(t), e(t + T) = Qe(t), ∀t ∈ R
1. (22)

Then (Q, T)-rotating-periodic system (21)–(22) has at least one (Q, T)-rotating-periodic
solution.

Proof Let φ(t) = C, where C > 0 is a constant. Then φ is a strictly positive C2 function with
φ(0) = φ(T), φ′(0) = φ′(T). Moreover, for any t ∈ [0, T], |x| = C, we have

〈
x, –a(t)|x|2νx – e(t)

〉
= –a(t)|x|2(ν+1) –

〈
x, e(t)

〉 ≤ 0

for C ≥ max{1, Me/ma}, where ma = mint∈[0,T] a(t), Me = maxt∈[0,T] |e(t)|. Furthermore, for
any t ∈ [0, T], |x| ≤ C, and y ∈ R

n, we have

〈
x, –a(t)|x|2νx – e(t)

〉 ≤ MeC,
∣∣〈y, –a(t)|x|2νx – e(t)

〉∣∣ ≤ (
MaC2ν+1 + Me

)|y|,

where Ma = maxt∈[0,T] a(t). Denote h0(s) = MaC2ν+1 + Me, which is increasing, continuous
and satisfies (7). This means that conditions (10), (11), and (12) in Theorem 1 hold. Then
there exists a (Q, T)-rotating-periodic solution. �

Example 2 Consider the following second order equation:

x′′ + f (t, x) = 0, (23)

where f : R1 ×R
n →R

n is a C1 function. Equation (23) describes the motion of some inter-
esting problems in applications such as the Brillouin focusing system, where the equation
is a singular perturbation of the Mathieu equation [22]. The so-called Ermakov–Pinney
equation and Hill equation are special cases of (23).
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Suppose that there exist some T > 0 and Q ∈ O(n) such that

f (t + T , x) = Qf
(
t, Q–1x

)
, ∀t ∈R

1, x ∈R
n, (24)

and the following condition holds:

fx(t, x) ≤ –κI, ∀t ∈ R
1, x ∈R

n,

where fx is the Hessian matrix of f , κ > 0 is a constant. Then (Q, T)-rotating-periodic sys-
tem (23)–(24) has at least one (Q, T)-rotating-periodic solution.

Proof Let φ(t) = C for some C > 0. For any t ∈ [0, T], |x| = C, we have

〈
x, f (t, x)

〉
=

〈
x, f (t, 0) + fx

(
t, ξ (t)

)
x
〉 ≤ 〈

x, f (t, 0)
〉
– κ|x|2 ≤ 0

for C ≥ M0/κ , where M0 = maxt∈[0,T] |f (t, 0)|. Furthermore, for any t ∈ [0, T], |x| ≤ C, and
y ∈ R

n, we have

〈
x, f (t, x)

〉 ≤ –κ|x|2 + M0C,
∣
∣〈y, f (t, x)

〉∣∣ ≤ Mf |y|,

where Mf is an upper bound of |f (t, x)| for t ∈ [0, T] and |x| ≤ C. Then, according to The-
orem 1, there exists a (Q, T)-rotating-periodic solution. �

Example 3 Consider the following second order equation:

x′′ + A(t, x)x′ + B(t)x = e(t), (25)

where A = diag(a11, . . . , ann) : R1 × R
n → R

n×n is a C1 function, B = (bij)n×n : R1 → R
n×n

and e : R1 →R
n are continuous functions.

Suppose that there exist some T > 0 and Q ∈ O(n) such that

A(t + T , x) = QA
(
t, Q–1x

)
Q–1, ∀t ∈R

1, x ∈R
n,

B(t + T) = QB(t)Q–1, e(t + T) = Qe(t), ∀t ∈ R
1,

(26)

and the following condition holds: for all i = 1, . . . , n,

–bii(t) >
∑

j �=i

∣∣bij(t)
∣∣ +

∣∣ei(t)
∣∣, ∀t ∈R

1.

Then (Q, T)-rotating-periodic system (25)–(26) has at least one (Q, T)-rotating-periodic
solution.

Proof Let σ : R1 → R
n be a C2 function which is (Q, T)-rotating-periodic. Then |σ (t)| is

bounded on R
1 with an upper bound Mσ . Let ϕ(t) = (–C, . . . , –C)T and ψ(t) = (C, . . . , C)T ,

where C = Mσ + 1. Then ϕ(t) < ψ(t) are lower and upper solutions of (25). It is easy to
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see that ϕ(t) and ψ(t) satisfy the Kamke type condition (K) and condition (16) with c = 1.
Furthermore, for any t ∈R

1, ϕ(t) ≤ x ≤ ψ(t) and y ∈R
n, we have

〈
x, A(t, x)y + B(t)x – e(t)

〉 ≤ MA|x||y| + MB|x|2 + nMeC,
∣∣〈y, A(t, x)y + B(t)x – e(t)

〉∣∣ ≤ hA
(|y|)|y|,

where MA is an upper bound of ‖A(t, x)‖ on {(t, x)|ϕ(t) ≤ x ≤ ψ(t), t ∈ R
1}, MB and Me

are upper bounds of ‖B(t)‖ and |e(t)| on t ∈ R
1, respectively, hA(s) = MAs + nMBC + Me

satisfies (7). Hence conditions (17) and (18) in Theorem 2 hold. Then there exists a (Q, T)-
rotating-periodic solution. �
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