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1 Definitions and preliminaries
Let � be an open bounded set in R

N . We define the family of kernels (kδ)δ>0 as a set of
radial positive functions fulfilling the following properties:

(1)

1
CN

∫
B(0,δ)

kδ

(|s|)ds = 1,

where

CN =
1

meas(SN–1)

∫
SN–1

|σ · e|p dHN–1(σ ),

HN–1 stands for the (N – 1)-dimensional Hausdorff measure on the unit sphere
SN–1, e is any unit vector in R

N , p > 1, and B(x, δ) is the ball with center x and radius
δ.

(2) supp kδ ⊂ B(0, δ).
We define the nonlocal operator Bh in Lp(�) × Lp(�) by

Bh(u, u) =
∫

�

∫
�

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣u(
x′) – u(x)

∣∣p dx′ dx,

where H(x′, x) = h(x′)+h(x)
2 , h ∈H,

H .=
{

h : � →R | h(x) ∈ [hmin, hmax] a.e. x ∈ �, h = 0 in R
N \ �

}
,

and 0 < hmin < hmax are given constants.
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For h = 1, the following compactness result is well known (see, e.g., [4] and [9, proof of
Theorem 1.2, p. 12]).

Theorem 1 Let (uδ)δ be a sequence uniformly bounded in Lp(�), and let C be a positive
constant such that

∫
�

∫
�

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx ≤ C (1.1)

for any δ. Then from (uδ)δ we can extract a subsequence, still denoted by (uδ)δ , and we can
find u ∈ W 1,p(�) such that uδ → u strongly in Lp(�) as δ → 0 and

lim
δ→0

∫
�

∫
�

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx ≥
∫

�

∣∣∇u(x)
∣∣p dx. (1.2)

Even though several authors are involved in the proof, we refer to estimate (1.2) as
Ponce’s inequality.

1.1 The objective
Our goal is to prove the following extension of (1.2):

lim
δ→0

∫
�

∫
�

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx ≥
∫

�

h(x)
∣∣∇u(x)

∣∣p dx, (1.3)

where � is an open bounded set, H(x′, x) = h(x′)+h(x)
2 , and h ∈H.

As we will see, inequality (1.3) is equivalent to (1.2) for measurable sets, that is,

lim
δ→0

∫
E

∫
E

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx ≥
∫

E

∣∣∇u(x)
∣∣p dx (1.4)

for all measurable sets E in �.

1.2 Motivation and organization of the paper
The context in which we locate the present paper is the study of the nonlocal p-Laplacian
problem. Before proceeding, we make precise some notation. We define the spaces

Lp
0(�δ) =

{
u ∈ Lp(�δ) : u = 0 in R

N \ �
}

and

X =
{

u ∈ Lp
0(�δ) : B(u, u) < ∞}

,

where

�δ = � ∪
( ⋃

x∈∂�

B(x, δ)
)

,

B = B1, and Bh is the operator defined in X × X by

Bh(u, v) =
∫

�δ

∫
�δ

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣u(
x′)–u(x)

∣∣p–2(u
(
x′)–u(x)

)(
v
(
x′)–v(x)

)
dx′ dx.
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We define now the following nonlocal variational problem: given f ∈ Lp′ (�), where p′ = p
p–1

and p > 1, find u ∈ X such that

Bh(u, w) = (f , w)Lp′ (�)×Lp(�) in X. (1.5)

Note that (1.5) is equivalent to

∫
�δ

∫
�δ

H
(
x′, x

)
kδ

(∣∣x′ – x
∣∣) |u(x′) – u(x)|p–2(u(x′) – u(x))(w(x′) – w(x))

|x′ – x|p dx′ dx

=
∫

�δ

fw dx (1.6)

for all w ∈ X. Since the existence and uniqueness of solution for this problem is a well-
known fact, for h fixed and any δ, there exists a solution uδ . The aim is to check whether
the sequence of solutions (uδ)δ converges to the solution of the corresponding local p-
Laplacian equation. This convergence (or G-convergence) clearly entails the study of the
minimization principle

min
w∈X

{
1
p
Bh(w, w) –

∫
�

f (x)w(x) dx
}

,

and, consequently, this task inevitably leads us to the study of the problem posed above;
[1–3, 5] are some references where this type of convergence is analyzed.

The paper is organized by means of three sections containing different proofs of (1.3)
and (1.4).

2 First proof
Our essential tool in to generalize (1.3) is a convenient Vitali covering of the set � (see
[11, Chap. 4, Sect. 3, p. 109.] for details or [6, Chap. 2, Sect. 2, p. 26] for an elegant proof
in the case of Lebesgue-measurable sets). Recall that the family {Vi}i∈I is a Vitali covering
for � ⊂ R

N if with any x ∈ � we can associate a number α > 0, a sequence of Vi, and
a sequence of balls B(x, εi) such that Vi ⊂ B(x, εi) and |Vi| ≥ α|B(x, εi)|, where εi → 0 as
i → ∞.

Theorem 2 (Vitali covering theorem) Let A = {Vi}k∈K be a Vitali covering of closed subsets
of RN for �. There is a sequence of (ij)j ∈ K such that |� \ ⋃

j Vij | = 0 and the sets (Vij )j are
pairwise disjoint.

A particular and useful version of this chief result is the following:

Proposition 1 Let � ⊂ R
N be an open bounded set, let K be a compact set included in

�, and let ξ be a nonnegative function in L1(� × �). Then there is a sequence of pairwise
disjoint closed balls (Bi) ⊂ � such that |K \ ⋃∞

i=1 Bi| = 0 and

∫∫
K×K

ξ
(
x′, x

)
dx′ dx ≥

∞∑
i=1

∫∫
Bi×Bi

ξ
(
x′, x

)
dx′ dx.
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Proof Since K is a compact inside � and � is open, we have d .= dist(K ,RN \�) > 0. In par-
ticular, any closed ball Bi = B(x, r) ⊂ � for any r < d. Moreover, the family F = {B(x, s) : x ∈
K , s < r/2} is a Vitali covering of K , because every point of K is contained in an arbitrarily
small ball belonging to F . Consequently, there are disjoint balls Bi such that |K \⋃∞

i=1 Bi| =
0. This covering also serves to approximate K ×K because |(K ×K)\ (

⋃∞
i,j=1(Bi ×Bj))| = 0,

and therefore

∫∫
K×K

ξ
(
x′, x

)
dx′ dx =

∞∑
i,j=1

∫∫
Bi×Bj

ξ
(
x′, x

)
dx′ dx ≥

∞∑
i=1

∫∫
Bi×Bi

ξ
(
x′, x

)
dx′ dx.

�

In a first step, we assume that h is continuous a.e. in �. We adapt [7, Lemma 7.9, p. 129]
to prove our key result.

Proposition 2 Let � ⊂ R
N be an open bounded set such that |∂�| = 0, and let f be a

positive a.e. continuous function on �. Let rk : � \ N → R
+ be a sequence of functions,

where N is the set of discontinuity points of f . There exist a set of points {aki}i ⊂ � \ N and
positive numbers {εki}i such that for each k, εki ≤ rk(aki),

{aki + εki�} are pairwise disjoint,

� =
⋃

i

{aki + εki�} ∪ Nk , where |Nk| = 0,

and
∫

�

f (x)ξ (x) dx =
∑

i

f (aki)
∫

aki+εki�
ξ (x) dx + o(1) as k → +∞ (2.1)

for all ξ ∈ L1(�).

Proof Let C = � \ N be the set of points of continuity of f . We define the families

Fk =
{

a + ε� ⊂ � : a ∈ C, ε ≤ rk(a),
∣∣f (x) – f (a)

∣∣ ≤ 1
k

for any x ∈ a + ε�

}
.

For each fixed k > 0, the family Fk covers C (and �) in the sense of Vitali. Thus, Theorem 2
allows us to choose a numerable sequence of disjoints sets {akj + εkj�}j ∈ Fk such that
|� \⋃

j{akj + εkj�}| = 0. Since f is continuous at akj, the sequence εkj can be chosen so that

∣∣f (x) – f (akj)
∣∣ ≤ 1

k
for any x ∈ akj + εkj� and any j.

Consequently,

∣∣∣∣
∫

�

ξ (x)f (x) dx –
∑

j

f (akj)
∫

akj+εkj�
ξ (x) dx

∣∣∣∣

=
∣∣∣∣
∑

j

∫
akj+εkj�

(
f (x) – f (akj)

)
ξ (x) dx

∣∣∣∣
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≤
∑

j

∫
akj+εkj�

∣∣(f (x) – f (akj)
)∣∣∣∣ξ (x)

∣∣dx

≤ 1
k

∑
j

∫
akj+εkj�

∣∣ξ (x)
∣∣dx

=
1
k
‖ξ‖L1(�). �

2.1 Application
We apply the previous analysis to the integral

I =
∫

�

∫
�

H
(
x′, x

)
ξδ

(
x′, x

)
dx′ dx,

where

ξδ

(
x′, x

)
=

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣. (2.2)

We consider � × � instead of �, and now f (x′, x) is the symmetric function H(x′, x) =
h(x′)+h(x)

2 with h ∈H. We assume that h is continuous, and we take
⋃

i,j(aki + εki�) × (akj +
εkj�), the union of a family of pairwise of disjoint sets covering � × �. Then, according
to the previous discussion, we trivially deduce

I =
∑

i,j

H(aki, akj)
∫

aki+εki�

∫
akj+εkj�

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx + o(1)

≥
∑

i

H(aki, aki)
∫

aki+εki�

∫
aki+εki�

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx + o(1)

=
∑

i

h(aki)
∫

aki+εki�

∫
aki+εki�

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx + o(1).

We pass to the limit as δ → 0 in I : we use (1.1), Fatou’s lemma and (1.2) for open sets to
derive

lim inf
δ→0

I ≥ lim inf
δ→0

∑
i

h(aki)
∫

aki+εki�

∫
aki+εki�

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx + o(1)

≥
∑

i

h(aki)
(

lim inf
δ→0

∫
aki+εki�

∫
aki+εki�

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx
)

+ o(1)

≥
∑

i

h(aki)
(∫

aki+εki�

∣∣∇u(x)
∣∣p dx

)
+ o(1).

If we take limits as k → +∞, then this estimate gives

lim inf
δ→0

I ≥ lim
k→+∞

∑
i

h(aki)
∫

aki+εki�

∣∣∇u(x)
∣∣p dx.

By using again Proposition 2 the last inequality clearly provides inequality (1.3).
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Remark 1 The analysis and conclusion we have just arrived at remain valid if we consider
any open set O ⊂ � such that |∂O| = 0. We can go a step further: we have

lim inf
δ→0

∫
O

∫
O

F
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx ≥
∫

O
F(x, x)

∣∣∇u(x)
∣∣p dx (2.3)

for any symmetric nonnegative continuous function F ∈ L∞(O × O).

2.2 Extension to the case of measurable functions
Let now h be just measurable; without loss of generality, supp H ⊂ �×� and H = 0 other-
wise. By Luzin’s theorem (see [10, Theorem 2.24, p. 62]), given arbitrary ε > 0, there exists a
continuous function G ∈ Cc(�×�) such that sup G(x, y) ≤ sup H(x, y) and G(x, y) = H(x, y)
for any (x, y) ∈ (�×�) \ E , where E is a measurable set such that |E | < ε2. Since H is sym-
metric, we can assume that (� × �) \ E =(� \ E) × (� \ E), where E ⊂ � is a measurable
set such that |E| < ε.

At this stage, we consider any compact set K ⊂ � \ E ⊂ �. Since � is open, we can use
Proposition 1: there is a number r > 0 such that the family F = {B(x, s) : x ∈ K , s < r/2} is a
Vitali covering of K , and therefore there exists a sequence of pairwise disjoint closed balls
(Bi)∞i=1 ⊂F such that |K \ ⋃∞

i=1 Bi|, Bi ⊂ �, and

∫
�

∫
�

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx

≥
∫

�\E

∫
�\E

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx

≥
∫∫

(�\E)×(�\E)
G

(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx

≥
∫∫

K×K
G

(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx

≥
∑

i

∫∫
Bi×Bi

G
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx.

We take the limits as δ → 0 to get

lim inf
δ→0

∫
�

∫
�

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx

≥ lim inf
δ→0

∑
i

∫∫
Bi×Bi

G
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx

≥
∑

i

∫
Bi

G(x, x)
∣∣∇u(x)

∣∣p dx

=
∫

K
G(x, x)

∣∣∇u(x)
∣∣p dx,

where the second inequality is true because of (2.3) and Fatou’s lemma. Then, since K is
any compact set in � \ E, we obtain

lim inf
δ→0

∫
�

∫
�

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx
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≥
∫

�\E
G(x, x)

∣∣∇u(x)
∣∣p dx

=
∫

�\E
H(x, x)

∣∣∇u(x)
∣∣p dx

=
∫

�

h(x)
∣∣∇u(x)

∣∣p dx –
∫

E
h(x)

∣∣∇u(x)
∣∣p dx.

By letting ε ↓ 0 and using |E| ≤ ε, we obtain (1.3), that is,

lim inf
δ→0

∫
�

∫
�

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx ≥
∫

�

H(x, x)
∣∣∇u(x)

∣∣p dx. (2.4)

Finally, to circumvent the assumption |∂�| = 0, the procedure we follow is identical to
that just employed. Take any compact set K included in �. Since � is assumed to be open,
thanks to Proposition 1, K can be exhaustively covered by the union of a numerable se-
quence of pairwise disjoint closed balls Bi ∈ F = {B(x, s) : x ∈ K , s < r/2} ⊂ �, i = 1, 2, . . . .
Then we realize that

∫
�

∫
�

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx

≥
∑

i

∫
Bi

∫
Bi

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx. (2.5)

By taking into account that |∂Bi| = 0 we can apply (2.3) and Fatou’s lemma in (2.5) to obtain

lim inf
δ→0

∫
�

∫
�

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx ≥
∫

K
H(x, x)

∣∣∇u(x)
∣∣p dx.

Since K ⊂ � is arbitrary, we arrive at (2.4) for any open set �,

lim inf
δ→0

∫
�

∫
�

H
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx

≥
∫

�

H(x, x)
∣∣∇u(x)

∣∣p dx. (2.6)

2.3 Corollary
We apply (2.4) to the case F(x′, x) = IG×G(x′, x), where G is any measurable set included in
�: on the one hand, (2.6) guarantees

lim inf
δ→0

∫
�

∫
�

F
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx

≥
∫

�

F(x, x)
∣∣∇u(x)

∣∣p dx

=
∫

G
IG(x)

∣∣∇u(x)
∣∣p dx =

∫
G

∣∣∇u(x)
∣∣p dx,

and, on the other hand, it is obvious that

∫
�

∫
�

F
(
x′, x

)kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx
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=
∫

G

∫
G

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx.

Consequently, (1.4) is proved for any measurable set G ⊂ �.

3 A second proof
We firstly prove (1.4) and then (1.3). By having a look at the work done in the previous
section we will be able to provide a straightforward proof of (1.4). Indeed, if E is a measur-
able set included in �, then we can find a compact set K ⊂ E such that |E \K | is arbitrarily
small. Proposition 1 ensures the existence of a numerable sequence of pairwise disjoint
balls Bi ∈F such that |K \ ⋃∞

i=1 Bi| = 0, Bi ⊂ � for any i and

∫
E

∫
E

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx

≥
∫

K

∫
K

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx

≥
∑

i

∫
Bi

∫
Bi

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx.

We apply (1.2) for open sets and Fatou’s lemma in the last chain of inequalities to derive

lim inf
δ→0

∫
E

∫
E

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx ≥
∑

i

∫
Bi

∣∣∇u(x)
∣∣p dx =

∫
K

∣∣∇u(x)
∣∣p dx.

Since K ⊂ E is arbitrary, we arrive at (1.4), that is,

lim inf
δ→0

∫
E

∫
E

kδ(|x′ – x|)
|x′ – x|p

∣∣uδ

(
x′) – uδ(x)

∣∣p dx′ dx ≥
∫

E

∣∣∇u(x)
∣∣p dx. (3.1)

3.1 Corollary
We prove (1.3). Let h be a given simple function defined in �. Then h can be written as
h(x) =

∑m
i=1 hiIBi (x), where {Bi} is a finite covering of disjoint measurable subsets of �, and

(hi)i is a set of numbers such that hmin ≤ hi ≤ hmax. Consequently, we can easily check that

I .=
∫

�

∫
�

H
(
x′, x

)
kδ

(∣∣x′ – x
∣∣) |uδ(x′) – uδ(x)|p

|x′ – x|p dx′ dx

≥
m∑

i=1

hi

∫
Bi

∫
Bi

kδ

(∣∣x′ – x
∣∣) |uδ(x′) – uδ(x)|p

|x′ – x|p dx′ dx.

Using inequality (1.4) for measurable sets that we have just proved, we straightforwardly
infer

lim inf
δ→0

I ≥
m∑

i=1

hi

∫
Bi

∣∣∇u(x)
∣∣p dx =

∫
�

h(x)
∣∣∇u(x)

∣∣p dx.

Let h be a measurable function. By recalling that any measurable function h can be point-
wise approximated by an increasing sequence (sn)n of simple functions we can write

lim inf
δ→0

∫
�

∫
�

H
(
x′, x

)
kδ

(∣∣x′ – x
∣∣) |uδ(x′) – uδ(x)|p

|x′ – x|p dx′ dx
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= lim inf
δ→0

∫
�

h(x)
∫

�

kδ

(∣∣x′ – x
∣∣) |uδ(x′) – uδ(x)|p

|x′ – x|p dx′ dx

≥ lim inf
δ→0

∫
�

sn(x)
∫

�δ

kδ

(∣∣x′ – x
∣∣) |uδ(x′) – uδ(x)|p

|x′ – x|p dx′ dx

≥
∫

�

sn(x)
∣∣∇u(x)

∣∣p dx.

It suffices to take the limits in n and apply the monotone convergence theorem to establish
(1.3).

4 A third proof
The idea is reproducing the arguments from [9]. In a first step, we assume that h : � →
[hmin, hmax] is a continuous function. Moreover, without loss of generality, we suppose that
h is a continuous function in the set �s = � ∪ {⋃p∈∂� B(p, s)}, where s is a fixed positive
number.

Now, for the proof of (1.3), the key idea is extending the Stein inequality (see [8, Lemma 4,
p. 245]) in the following sense: by using Jensen’s inequality and performing a change of
variables we deduce the inequality

∫
�

∫
�

Hr
(
x′, x

)
kδ

(∣∣x′ – x
∣∣) |uδ(x′) – uδ(x)|p

|x′ – x|p dx′ dx

≥
∫

�–r

∫
�–r

H
(
x′, x

)
kδ

(∣∣x′ – x
∣∣) |ur,δ(x′) – ur,δ(x)|p

|x′ – x|p dx′ dx

for any δ < r, where ur,δ = ηr ∗uδ , ηr(x) = 1
rN η( x

r ), x ∈R
N , η is a nonnegative radial function

from C∞
c (B(0, 1)) such that

∫
η(x) dx = 1,

Hr
(
x′, x

)
=

(ηr ∗ h)(x′) + (ηr ∗ h)(x)
2

,

and �–r = {x ∈ � : dist(x, ∂�) > r}. By the continuity of H in �s × �s we know that
Hr(x′, x) → H(x′, x) uniformly on compact sets of �s × �s, whereby, for any ε > 0, we can
choose r0 > 0 such that

∣∣∣∣
∫

�

∫
�

(
H

(
x′, x

)
– Hr

(
x′, x

))
kδ

(∣∣x′ – x
∣∣) |uδ(x′) – uδ(x)|p

|x′ – x|p dx′ dx
∣∣∣∣ ≤ εC

for any r < r0 and uniformly in δ > 0. Then

lim
δ→0

∫
�

∫
�

H
(
x′, x

)
kδ

(∣∣x′ – x
∣∣) |uδ(x′) – uδ(x)|p

|x′ – x|p dx′ dx

≥ lim
δ→0

∫
�–r

∫
�–r

H
(
x′, x

)
kδ

(∣∣x′ – x
∣∣) |ur,δ(x′) – ur,δ(x)|p

|x′ – x|p dx′ dx – εC

for any r < r0. At this point, we notice that Proposition 1 from [8, p. 242] can be modified
by including the term H(x′, x) within the integrand; this is factually what Remark 1 estab-
lishes. Then passing to the limit as δ → 0 and using the convergence of ρr ∗ uδ → ρr ∗ u in
C2(�–r), we get

lim
δ→0

∫
�–r

∫
�–r

H
(
x′, x

)
kδ

(∣∣x′ – x
∣∣) |ur,δ(x′) – ur,δ(x)|p

|x′ – x|p dx′ dx
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≥
∫

�–r

h(x)
∣∣∇(ρr ∗ u)(x)

∣∣p dx′ dx.

Consequently, letting r → 0 in this inequality and taking into account that ∇(ρr ∗ u)
strongly converges to ∇u in Lp(�), we derive

lim
δ→0

∫
�

∫
�

H
(
x′, x

)
kδ

(∣∣x′ – x
∣∣) |uδ(x′) – uδ(x)|p

|x′ – x|p dx′ dx ≥
∫

�

h(x)
∣∣∇u(x)

∣∣p dx′ dx – εC.

Now, since ε is arbitrarily small, the statement is proved under the assumption that h is
continuous in �s.

If h : � → [hmin, hmax] is a measurable function, then we extend it by zero to �s and then
apply Luzin’s theorem to this extended function. The remaining details follow along the
lines of Sect. 2.2.
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