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1 Introduction

The inequality discovered by Hermite and Hadamard (see [3], [4, pp. 137]) is one of the
best-established inequalities in the theory of convex functions with a geometrical inter-
pretation and many applications. These inequalities state that, if f : I — R is a convex

function on the interval I of real numbers and a, b € I with a < b, then

f(a;b)_—/f(x)d <f()+f() (L1)

Both inequalities in (1.1) hold in the reversed direction if f is concave. We note that
Hermite—Hadamard inequality may be regarded as a refinement of the concept of con-
vexity and it follows easily from Jensen’s inequality. Hermite—Hadamard inequality for
convex functions has received renewed attention in recent years and a remarkable vari-
ety of refinements and generalizations have been studied; see [5-14] and the references
therein.

On the other hand, interval analysis is a particular case of set-valued analysis, which is
the study of sets in the spirit of mathematical analysis and general topology. It was intro-
duced as an attempt to handle interval uncertainty that appears in many mathematical
or computer models of some deterministic real-world phenomena. An old example of an
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interval enclosure is Archimedes’ method which is related to computation of the circum-
ference of a circle. In 1966, the first book related to interval analysis was given by Moore
who is known as the first user of intervals in computational mathematics; see [15]. Af-
ter his book, several scientists started to investigate the theory and application of interval
arithmetic. Nowadays, because of its applications, interval analysis is a useful tool in the
various area which are interested intensely in uncertain data. You can see applications in
computer graphics, experimental and computational physics, error analysis, robotics, and
many others.

Moreover, several important inequalities (Hermite—Hadamard, Ostrowski, etc.) have
been studied for the interval-valued functions in recent years. In [16, 17], Chalco—Cano
et al. obtained Ostrowski type inequalities for interval-valued functions by using the
Hukuhara derivative for interval-valued functions. In [18], Roman-Flores et al. established
Minkowski and Beckenbach’s inequalities for interval-valued functions. For the others, see
[18-22]. However, inequalities were studied for the more general set-valued maps. For ex-
ample, in [23], Sadowska gave the Hermite—Hadamard inequality. For other studies, you
can see [24, 25].

The purpose of this paper is to complete the Riemann-Liouville integrals for interval-
valued functions and to obtain the Hermite—Hadamard inequality via these integrals. Fur-

thermore, Hermite—Hadamard-type inequalities are given using these integrals.

2 Interval calculus
A real valued interval X is a bounded, closed subset of R and is defined by

X=[XX]={teR:X<t=<X},

where X, X € R and X < X. The numbers X and X are called the left and the right end-
points of the interval X, respectively. When X = X = a, the interval X is said to be de-
generate and we use the form X = a = [a,4]. Also, we call X positive if X > 0 or negative
if X < 0. The set of all closed intervals of R, and the sets of all closed positive intervals
of R and closed negative intervals of R is denoted by Rz, R} and RZ, respectively. The
Pompeiu—Hausdorff distance between the intervals X and Y is defined by

d(X; Y) = d([&ry]r [X’Y]) = max{l)_(—XI, |)_(_Y|}

It is well known that (Rz, d) is a complete metric space; see [26].
Now, we give the definitions of basic interval arithmetic operations for the intervals X

and Y as follows:

X+Y=[X+Y,X+7Y],

X-Y-= [)_(_?’)_(_X]’

X-Y =[minS,maxS] whereS={XY,XY, XY, XY},

X/Y =[minT,max T] where T = {X/Y,X/Y,X/Y,X/Y}and 0 ¢ Y.
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Scalar multiplication of the interval X is defined by

AX,AX], A>0;
AX = ALX, X] = 1 {0}, A=0;
[AX,2X], A<0O,

where A e R.
The opposite of the interval X is

—X:=(-1)X = [-X,-X],

where A = -1.
The subtraction is given by

X-Y=X+(-Y)=[X-Y,X-Y].
In general, —X is not additive inverse for X, i.e. X — X #0.
The definitions of operations lead to a number of algebraic properties which allows Rz
to be a quasilinear space; see [27]. They can be listed as follows (see [15, 26—29]):

(1) (Associativity of addition) X +Y)+Z =X+ (Y +Z) forall X,Y,Z e Rz,
(2) (Additivity element) X +0=0+ X =0 for all X € Rz,

(3) (Commutativity of addition) X + Y =Y + X for all X, Y € Ry,

(4) (Cancelationlaw) X +Z=Y +Z= X=Y forall X,Y,Z € Ry,

(5) (Associativity of multiplication) (X -Y)-Z=X-(Y -Z) forall X,Y,Z € Ry,
(6) (Commutativity of multiplication) X - Y =Y - X forall X, Y € Rz,

(7) (Unity element) X -1=1-X forall X € Ry,

(8) (Associativity law) A(uX) = (Ap)X forall X e Rz and all A, u € R,

(9) (First distributivity law) A(X +Y) =AX + LY forall X, Y e Rz and all A € R,

(10) (Second distributivity law) (A + u)X = AX + uX for all X e Rz and all A, u € R.
Besides these properties, the distributive law is not always valid for intervals. For exam-
ple, X =[1,2], Y =[2,3] and Z = [-2,-1].
X-(Y+2Z)=10,4]
whereas
X-Y+X-Z=[-25]
But this law holds in certain cases. If Y - Z > 0, then
X-(Y+2)=X-Y+X-Z

Moreover, one of the set properties is the inclusion C that is given by

XCY <= Y<X and X<Y.
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Considering together with arithmetic operations and inclusion, one has the following
property which is called the inclusion isotone of interval operations:

Let © be the addition, multiplication, subtraction or division. If X, Y, Z and T are inter-
vals such that

XCY and ZCT,
then the following relation is valid:

XOZCYOT.
The following proposition is about scalar multiplication preserving the inclusion.
Proposition 1 Let X, Y be intervalsand L e R.If X C Y, then AX CAY.
2.1 Integral of interval-valued functions
In this section, the notion of integral is mentioned for interval-valued functions. Before
the definition of integral, the necessary concepts will be given as follows:

A function F is said to be an interval-valued function of ¢t on [a,b], if it assigns a
nonempty interval to each t € [a, b]

F(t) = [E@),F()]-

A partition of [a, b] is any finite ordered subset P having the form
P:ia=ty<t1<---<t,=b.

The mesh of a partition P is defined by
mesh(P) = max{t; —t;_1:i=1,2,...,n}.

We denote by P([a,b]) the set of all partitions of [a,b]. Let P(5, [4, b]) be the set of all

P € P([a, b]) such that mesh(P) < §. Choose an arbitrary point &; in the interval [t; 1, ¢;],

(i=1,2,...,n) and let us define the sum
n
S(F,P,8) = ) F(&)ti — ti],
i=1

where F : [a,b] — Rz. We call S(F,P,8) a Riemann sum of F corresponding to P €
P8, [a, b]).

Definition 1 ([30-32]) A function F: [a,b] — Rz is called interval Riemann integrable

((IR)-integrable) on [a, b], if there exists A € R; such that, for each ¢ > 0, there exists § >0
such that

d(S(F,P,(S),A) <€
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for every Riemann sum S of F corresponding to each P € P(§, [a, b]) and independent from
choice of §; € [¢;_1,¢] forall 1 <i < n.In this case, A is called the (/R)-integral of F on [a, b]
and is denoted by

b
A= (IR)/ F(t)dt.

The collection of all functions that are (IR)-integrable on [4, b] will be denoted by IR ((4,)).

The following theorem gives a relation between (IR)-integrable and Riemann integrable
(R-integrable) (see [33], p. 131):

Theorem 1 Let F: [a,b] — Rz be an interval-valued function such that F(t) = [F(t), F(t)].
Fe IR([a,b]) lfﬂl’ld only {fg(t), f(t) € R([a,b]) and

b b b
(IR)/ F(t)dt = |:(R)/ E(2)dt, (R)/ f(t)dt],

where R 4,5)) denotes the all R-integrable functions.

It is seen easily that, if F(£) C G(¢) for all £ € [a, b], then

b b
(IR) / F(t)dt C (IR) / G(¢)dt.
a a
In [1, 34], Zhao et al. introduced a kind of convex interval-valued function as follows.

Definition 2 Let /1 : [c,d] — R be a non-negative function, (0,1) € [c,d] and /& # 0. We
say that F : [a,b] — R is a h-convex interval-valued function, if for all x,y € [a, b] and
t € (0,1), we have

h(t)F(x) + h(1 - t)F(y) < F(tx +(1- t)y). (2.1)
With SX(#, [a, b], RY) will show the set of all /-convex interval-valued functions.

The usual notion of convex interval-valued function corresponds to relation (2.1) with
h(t) = ¢, see [23]. Also, if we take i(t) = £* in (2.1), then Definition 2 gives the other convex
interval-valued function defined by Breckner; see [35].

Otherwise, Zhao et al. obtained the following Hermite—Hadamard inequality for

interval-valued functions by using s-convexity.

Theorem 2 ([1]) Let F : [a,b] — R be an interval-valued function such that F(t) =
[E(¢),F(t)] and F € TRap), h: [0,1] — R be a non-negative function and h(%) #0.If
F € SX(h,[a, b],RY,), then

1 a+b 1 b 1
2h(%)F< 5 )Qb_a(lR)/a F(x)de[F(a)+F(b)]/o h(t) dt. (2.2)
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Remark 1 (i) If h(¢) = t, then (2.2) reduces to the following result:

a+b 1 b F(a)+ F(b)
F( > ) > m(m)fa F@)dx 2 ————, (2.3)

which is obtained by Sadowska in [23].
(ii) If A(2) = ¢*, then (2.2) reduces to the following result:

. a+b 1 b F(a) + F(b)
2 1F(T) - E([R)/a F(x)dx > 1

which is obtained by Osuna-Gomez et al. in [36].

Theorem 3 Let F,G : [a,b] — R% be two interval-valued functions such that F(t) =
[E(t), F(t)] and G(t) = [G(t), G(t)], where F, G € TR (i), h1,h2 : [0,1] — R are two non-
negative functions and hl(%)hz(%) #0.IfF,G € SX(h, [a, b], RY,), then

1 F<a+b>G<a+b) (2.4)
2m(3)ha(3) 2 2 '

1
b-a

b 1
) (IR)/ F(x)G(x)dx+M(a,b)(lR)/ h(t)h(1-¢t)dt
a 0
1
+ N(a, b)(IR) / I (s (t) dt
0

and

1

b
- (IR)/ F(x)G(x) dx (2.5)
1 1
> M(a, b)(IR) / I (©)ha(e) dt + N(a, b)(IR) / I (Oha(1 - ) dt,
0 0
where

M(a,b) = F(a)G(a) + F(b)G(b) and N(a,b)=F(a)G(b) + F(b)G(a).

Remark 2 If h(t) = ¢, then (2.5) reduces to the following result:

b
%(IR)/L; F(x)G(x)dx 2 %M(ﬂ, b) + éN(a, b). (2.6)

Remark 3 If h(t) = ¢, then (2.4) reduces to the following result:

b
2F<ﬂ;b>G(ﬂ;b> ) biﬂ([R)/ﬂ F(x)G(x) dx + éM(u,b) + %N(a,b). (2.7)

In [2], Budak et al. obtained the following inequalities of Hermite—Hadamard type for
the convex interval-valued functions.
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Theorem 4 If F : [a,b] — R} is a convex interval-valued function such that F(t) =
[E(t),F(t)] and « > 0, then we have

F(ﬂ‘l’b) ) F((X + 1) [];:_F(b) +]Z,F(ﬂ)] 2 w‘ (28)

2 ~2(b-a) 2

Theorem 5 IfF,G: [a,b] — R are two convex interval-valued functions such that F(t) =
[E(2), E(t)] and G(¢t) = [G(¢), G(t)], then for o > O we have

Mo +1)
2(b-a)

1 a s
> (3 e MO N

2P(“+b>G(“+b> (2.10)
2 2

Vs E(b)G(b) + i F(@)G(a)] (2.9)

and

Mo+l , 3
2 55—y Ve FOIGB) + T Fa)Gla)]
o 1 o
M A (a - m)m“’ b

where M(a, b) and N(a, b) are defined in Theorem 3.
For the other fractional inequalities for the convex interval-valued functions, see [37].

3 Interval-valued approximately convexities

In this section we define a new class of interval-valued approximately s-convex functions,
which is depending upon a given function. We discuss some special cases of our new def-
inition and find new definitions of approximately /-convex functions. We let (X, || - |I1)
be a normed quasilinear space, let I be a nonempty interval-valued convex subset of X,
H:X x X — Randlet/:(0,1) — R be the given functions.

Definition 3 A function F: I — R is said to be interval-valued approximately /z-convex
function, if

F(tx +(1- L‘)y) D h(t)F(x) + h(1 - £)F(y) + H(x,y), (3.1)

forallt € (0,1) and a,b € I.

Now we discuss some special cases of Definition 3.

L. If we use H(x,y) = €(]lx — y||)” for some € € R and y > 1 in Definition 3, then we have
a new definition of an interval-valued approximately convex function which is called
an interval-valued y -approximately /-convex function.

Definition 4 A function F : ] — R is said to be an interval-valued y -approximately /-

convex function, if
E(tx+ (1 -t)y) 2 h(®)F(x) + h(1 - F(y) + € (llx - y1)", (3.2)

forallt € (0,1)and a,b € I.
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II. If we use H(x,y) = €(|lx — y||) for some € € R in Definition 3, then we have a new
definition of an interval-valued approximately convex function which is called an
interval-valued e-approximately 4-convex function.

Definition 5 A function F : I — RZ is said to be an interval-valued e-approximately /-

convex function, if
F(tx +(1- L‘)y) D h(t)F(x) + h(1 - £)F(y) + 6(||x —y||), (3.3)
forallt € (0,1)and a,b e 1.

IIL. If we use H(x,y) = —ut(1 —t)|ly — x||? for some u > 0 in Definition 3, then we have a
new definition of an interval-valued approximately convex function which is called
an interval-valued strongly s-convex function.

Definition 6 A function F: 1 — R is said to be an interval-valued strongly /-convex

function, if
F(tx + (1= t)y) 2 h(t)F(x) + h(1 = )F(y) — ut(1 = t)lly — %, (34)
forallt€(0,1) and a,b e .

IV. If we use H(x,y) = ut(1 —t)|y — x||? for some u > 0 in Definition 3, then we have a
new definition of interval-valued approximately convex function which is called an
interval-valued relaxed /-convex function.

Definition 7 A function F : I — RY is said to be an interval-valued relaxed /-convex

function, if
F(tx+ (1= 8)y) 2 h(t)F(x) + h(1 - )F(y) + pt(1 - 1) |ly - x| (3.5)
forallt € (0,1) and a,b € I.
V. If we use y = 0 in Definition 4 or € = 0 in Definition 5, we have Definition 2.

4 Interval-valued generalized fractional integral operators
In this section, we define a generalized fractional integral operator for the interval-valued
functions and discuss special cases of our newly define integral operator.

Let us define a function ¢ : [0, +00) — [0, +00) satisfying the following conditions:

1
t

/wdt<+oo, (4.1)
0 t

1 1

L9 4 frl<icn (42)
A1 T o) 27 r

ﬁ;)gAzﬂ;) fors<r, (4.3)

1
@—ﬂ;) < Aj| _S|ﬂ2’) for - < <2, (4.4)
r r 27 r
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where A1, A3, A3 >0 are independent of r,s > 0. If ¢(r)r* is increasing for some o > 0 and
ﬂ;) is decreasing for some B > 0, then ¢ satisfies (4.1)—(4.4); see [12]. Meanwhile, in [11],
Sarikaya and Ertugral defined the following generalized fractional integrals:

il f (%) = / e D i a xsa

x—t

b
b L f () = / 0= ydt, x<b.

t—x
Therefore, we can give the following new definitions.

Definition 8 Let F : [4,b] — Rz be an interval-valued function such that F(¢) = [F(£), F(£)]
and F € IR (4. Then the interval-valued left-sided and right-sided generalized frac-

tional integrals of the function F, respectively, are given as

- (R) /

»-JF(x) = (IR) /

X

F(t) dt, x>a, (4.5)

w()

F(t)dt, x<b. (4.6)

Corollary 1 Let F : [a,b] — Rz be an interval-valued function such that F(t) = [E(t), F(t)]
and F € TR (4. Then, we have

a+j<pF(x) = [a+1(p£(x)’a+1<pf(x)]
and
b—j(pF(x) = [b—LpE(x): b—IrpF(x)]'

The most important feature of interval-valued generalized fractional integrals is that
they generalize some types of fractional integrals such as the Riemann—Liouville fractional
integral, the k-Riemann-Liouville fractional integral, Katugampola fractional integrals,
the conformable fractional integral, and Hadamard fractional integrals. These important
special cases of the integral operators (4.5) and (4.6) are mentioned below.

i) Taking ¢(¢) = t, the operators (4.5) and (4.6) reduce to the interval-valued Riemann
integrals as follows:

1,+F(x) = (IR) /xF(t) dt, x>a,
b
I-F(x) = (IR)/ F(t)dt, x<b.

ii) Taking ¢(f) = the operators (4.5) and (4.6) reduce to the interval-valued

a)’

Riemann-Liouville fractional integrals as follows:

“ F(x) = ﬁ(]R) /x(x )" F@)dt, x>a,

b
Jp-F(x) = (IR) f (t-x)*'F(t)dt, x<b.

1
I'(a)
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iii) Taking ¢(¢) = =+, the operators (4.5) and (4.6) reduce to the interval-valued k-
Riemann-Liouville fractlonal integrals as follows:

I7 (F(x) = e )(IR)/ (x—1)k _1F(t)dt, x>a,
Iy (F(x) = kl"( )IR / (t - x)k‘lF(t)dt x<b,
where

Fk(ot):/ gt ’7 dt, R(x)>0,
0
and

() :k%_lr(%), R(x) >0;k>0.

iv) Taking ¢(¢) = t(x — £)*7!, the operator (4.5) reduces to the interval-valued con-
formable fractional operator as follows:

X X
I7F(x) = (IR)/ t*YF () dt = (IR)/ F(t)dyt, x>a,ac(0,1).
a a
5 Main results
In this section, we prove some inequalities of Hermite—Hadamard type for the interval-

valued approximately /z-convex functions via generalized fractional integrals. We use for

brevity the following notations in the next new results:
“o((b-a)t
A(x)z/ Mdt<+oo
0

and

x p({b=a)
w(x)zf v(570) dt < +00.
0 t

Theorem 6 IfF:[a,b] — R is an interval-valued approximately h-convex function such
that F(t) = [F(t), F(t)], then we have the following inequalities for the generalized fractional

integrals:
1 a+b 1 bob-x)
2h(%)F< 5 )_Zh(%)A(l)/; b H(x,a+b—x)dx (5.1)
1
2 m[zujwlj(b) + b—ij(ﬂ)]
[F(a) + F(b)] [* @((b - a)t)
) T(l) /0 [h(t) +h(1- t)]f dt + H(a,b).

Proof Since F is interval-valued approximately /-convex function, we have

1 x+y 1
@F< 5 )DF(x +F(y)+h(2) (%, ). (5.2)

Page 10 of 38
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By settingx =ta + (1 —t)band y = tb + (1 — t)a in (5.2), we obtain

1 a+b
@F( 5 > D F(ta+(1-10)b) +F(th+(1-1)a) (5.3)

+ %H(m + (1 —-t)b,th + (1 -t)a).
2

Multiplying both sides of (5.3) by M and integrating the resultant one with respect

to t over [0, 1], we get

1 a+b Lo((b-a)t)
@p( : > /0 — 4 (5.4

1 1
2{(112) fo MF(ta+(l—t)b)dt+(lR) fo M[’(tb+(l—t)a)dt

1
+Zé$£ ﬂ@%@QHVa+u—ﬂhw+U—”@d4'

In Eq. (5.4), using Theorem 1, we obtain
Lo((b-a)t
(IR)/ MP(m +(1-)b)dt
0

1 1
=[(R) / M!_—"(m+(l—t)b)dt,(]€) / Mf(m+(l—t)b)dt]
0

0

b b
_ [(R) f YO Foydx, (R) / ACLIb dx}

b-x . b-x

= [l E(B), 01, F(B)]
=4+ J,F (D).

Similarly, we have

(IR) / 1 MF(tb +(1-ta) dt

0

Lo((b-a)t) Lo((b-a)t)=
:[(R) /0 %E(tb+(l—t)a)dt,([€) /0 %F(tmu-t)a)dt]
= .3,F(a).

Hence, we achieved our first inequality. To prove the second inequality since F is interval-
valued approximately s-convex function, we get

F(m +(1- t)b) D h(t)F(a) + h(1 — t)F(b) + H(a, b) (5.5)
and

F(tb+ (1 -8)a) 2 h(t)F(b) + h(1 - t)F(a) + H(a, b). (5.6)

Page 11 of 38
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Adding (5.5) and (5.6), we have
F(m +(1- t)b) + F(tb +(1- t)a) ) [h(t) +h(1 - t)] [F(a) + F(b)] +2H(a, b). (5.7)

Multiplying (5.7) by £=99 4 both sides and integrating the resultant one with respect
to ¢t over [0, 1], we have

(IR) f 1 MP(tﬂ+(l—t)b) dt + (IR) / 1 MP(tb+(l—t)a) it (58)

0 0

a)t)

1
Q[F(a)+F(b)]/o M[ (t)+h(1—t)]dt+2H(a,b)/ bidt.

This completes the proof. d

Corollary 2 If we choose ¢(t) = t in Theorem 6, then we have the following inequalities:

1
. F(‘”b) / H(x,a+b-x)dx (5.9)
2h(3) 2 2h(3 )(b a)
1 b F(a)+F(b) (!
> (R / Flxydx 2 F@OTE®) / [1(t) + h(1 - 0)] dt + H(a, b).
Corollary 3 Ifwe choose ¢(t) = r; in Theorem 6, then we have the following inequalities

for the Riemann—Liouville fmcttonal integrals:

1 a+b .
2h(%)F( 2 ) 2h(1)(b - a)a/ (b—x)*"H(x,a+b-x)dx (5.10)

F(zz)+F(b)/ al

5 Ma+1)

2 5 e Vi F®) i F@] 2

h(£) + h(1 - )] dt + H(a, b).

Theorem 7 If F,G : [a,b] — R are two interval-valued approximately h-convex func-
tions such that F(t) = [F(t),F(t)] and G(t) = [G(t), G(t)], then we have the following in-
equality for the generalized fractional integrals:

%[MLF(b)G(Za) +4-J,F(a)G(a)] (5.11)

D KyM(a, b) + KyN(a, b) + KsP(a, b)H(a, b) + A(1)H?(a, b),
where M(a, b) and N(a, b) are defined in Theorem 3 and
P(a,b) = F(a) + G(a) + F(b) + G(b),

1 [ o((b-a))
K = 5/0 %[hz(t) +H2(1-t)]dt

1
K, = fo Mh(t)h(l 1y,

1 _
K = % f M[lq(t) +h(1 - 1)) de

0
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Proof Since F and G are interval-valued approximately s-convex functions for ¢ € [0, 1],

we have

F(ta+ (1 -t)b) 2 h(¢t)F(a) + h(1 — t)F(b) + H(a, ) (5.12)
and

G(ta+ (1-1t)b) 2 h(t)G(a) + h(1 - t)G(b) + H(a, b). (5.13)

Multiplying (5.12) and (5.13), we get
F(ta+(1-1t)b)G(ta+ (1 - t)b) (5.14)

> I2(t)F(a)Gla) + K2(1 - )F(b)G(b) + h(H)h(1 — )[F(@)G(b) + F(h)G(a)]
+ h(O)H(a, b)[F(@) + G(@)] + h(1 - O)H(a, b)[F(b) + G(b)] + H(a, ).

Similarly, we obtain

F(tb+(1-0a)G(thb+ (1 -t)a) (5.15)
2 (1 -t)F(a)G(a) + K*()F(b)G(b) + h(t)h(1 - t)[F(a)G(b) + F(b)G(a)]
+ h(t)H(a, b)[F(b) + G(b)] + h(1 - t)H(a, b)[F(a) + G(a)] + H*(a, b).

Adding (5.14) and (5.15), we have the following relation:

F(ta+(1-t)b)G(ta+(1-t)b) + F(th+ (1 - )a)G(tb + (1 - t)a) (5.16)
) [hz(t) + (1 - t)]M(ol, b) + 2h(t)h(1 — t)N(a, b)
+ [h(t) +h(1- t)]P(a, b)H(a,b) + 2H?(a, b).

Multiplying (5.16) by £ (b =94 on both sides and integrating the resultant one with respect
to t over [0, 1], we get

1
(IR) /0 alG . D E(ta-+ (1 - 0b)G(ta+ (1 - Ob) dt (5.17)

1
+ (IR) /0 o6 . DD E(th + (1 - ) G(th + (1 - )a) dt

> M(a, b) /01 M[hz(t) + 21— 1)]dt
a)t)

+2N(a b)/ h(t)h(1-t)dt

1
M [h(t) + h(1 - )] dt + 2H2(a, b)/ p(b=ab) 4,
t o ¢

+ P(a,b)H(a,b) /
0

Using Theorem 1 in Eq. (5.17), we have

(IR) / wlb + (1= 0)b)G(ta + (1 - )b) dt = ,,I,F(H)G(b) (5.18)
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and

(IR) /01 MF(tb +(1- t)a)G(tb +(1- t)a) dt = ,_J,F(a)G(a). (5.19)

Substituting (5.18) and (5.19) in Eq. (5.17), we have our desired result (5.11). This com-
pletes the proof. d

Corollary 4 Under the assumptions of Theorem 7 with ¢(t) = t, then we have the following

inequality:

b 1 1
—— (IR f F(x)G(x)dx > M(a, b) f H*(t) dt + N(a, b) / hOh(1-t)dt  (5.20)
a 0 0

1
+ P(a,b)H(a, b) / h(t)dt + H*(a, b).
0

Corollary 5 If we use ¢(t) = = in Theorem 7, then we have the following inequality for

the Riemann—Liouville fmctlomzl integrals:

Mo +1)

2b—ar [J2,F(b)G(b) +J;_F(a)G(a)] (5.21)

_ aM(a,b)

1 1
/ 1 [h2(t) + h2(1 _ l’)] dt + aN(a, b)/ ta_lh(t)h(l —t)dt
0 0

+M/ £ [1(e) + (1~ 1)) dt + H(a, b).

Theorem 8 If F,G : [a,b] — R are two interval-valued approximately h-convex func-
tions such that F(t) = [F(t),F(t)] and G(t) = [G(t), G(t)], then we have the following in-
equality for the generalized fractional integrals:

1 b b
2h2(%)F(a; )G(a; ) (5.22)

1 b o(b-x)
" 2ARD) [(IR)/a . (F(®) + G))H(x,a + b —x)dx

+ (IR) /

> —)[a+3 F(B)G(b) +-I,F(a)G(a)]

F(x) +G(x))H(a + b - x,x) dx]

p(b— x) )
1)h2( )/ H(x,a+b—-x)dx

A(l) [1<2M(6l b) + K1N(a, b) + K3P(a,b)H (a, b)] + H(a,b),



Zhao et al. Journal of Inequalities and Applications (2020) 2020:222 Page 15 of 38

where M(a, b), N(a, b) and K3, K, K3, P(a, b) are defined from Theorem 3 and Theorem 7,

respectively.

Proof For t € [0, 1], we can write

a+b (1—t)a+tb+m+(1—t)b
2 2 2 ’

Since F and G are two interval-valued approximately /z-convex functions, we have

1 F a+b G a+b (5.23)
n2(3) ( 2 ) ( 2 ) '

1 ((1—t)a+tb ta+(1—t)b> ((1—t)a+tb ta+(1—t)b>
= F + G +

n(3) 2 2 2 2

) |:F((1 —bta+ tb) + F(m +(1- t)b) + ﬁH((l —ta+th,ta+(1- t)b):|
2

X |:G((1 —Ba+th) + G(ta+ (1 -t)b) + ﬁH((l —Ba+thta+(1- t)b)]
2

=[F(1-t)a+h)G((1 - t)a + tb) + F(ta+ (1 -1)b)G(ta + (1 -1)b)]
+[F((1 - 0a + tb)G(ta + (1 - t)b) + F(ta+ (1 - )b)G((1 - t)a + tb) |

[F(ta+ (1 -1)b)H(ta + (1-t)b,tb+ (1 - t)a)

h(
+F(th+(1-0)a)H(ta+ (1-1)b,th + (1 - t)a)

G(ta+(1-t)b)H(ta+ (1 -1)b,tb+ (1 - t)a)
+G(th+(1-t)a)H(ta+ (1 -0)b,th + (1 -t)a)]

+ (%) [H*(ta + (1-0)b,th + (1 - t)a)]

D [F(1-t)a+th)G((1-t)a+th) + F(ta+ (1 -t)b)G(ta + (1 -t)b)]
+ [H2(t) + B*(1 - t)|N(a, b) + 2h(t)h(1 - t)M(a, b)
+ [h(t) +h(1 - t)]P(a, b)H(a,b) + 2H?(a, b)

+ ﬁl—"(m +(1- t)b)H(m +(1=8)b,th+ (1 - t)a)
2

+ h%F(tb +(1- t)a)H(ta +(1-t)b,th + (1 -t)a)

—
P—‘N
~

+ h—lG(m +(1- t)b)H(m +(1-t)b,th+(1- t)a)

—
[\
~

+ ﬁG(tb +(1-t)a)H(ta + (1 - 0)b,th + (1 - t)a)
2

L H*(ta+(1-t)b,th + (1 -t)a).

")
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(p(ba

Multiplying by both sides of inequality (5.23) and integrating the resultant one

with respect to ¢ over [0, 1], we obtain

1 w((b—a)t)F(a + b)G(a + b) gt
t 2 2

D (IR) /1 MP(Q —t)a+tb)G((1 - t)a + th) dt

0

1
+ (IR) /0 MF(M +(1-b)G(ta + (1 - O)b) dt

1
+ hzé) /0 ‘P((bt—a)t)Hz(ta+ (1= b, th+ (1 - a) dt

1
+ h%UR) / MF(M + (1= t)b)H (ta+ (1 - )b, th + (1 - )a) dt
* —UR)/ M F(th + (1 - t)a)H(ta + (1 t)b,th + (1 - t)a) dt

—(IR)/ p(b-a)) +(1-t)b)H(ta + (1 - )b, tb + (1 - t)a) dt

1
h(%)

1
+ N(a,b) / M[hz(t) +H2(1-t)]dt
0

——(IR) /O Mc(tb + (1= D)a)H(ta + (1 - 0)b, tb + (1 - )a) dt

1
+2M(a, b) / Mh(t)h(l—t)dt

w((b a)t) [ 90((19 a)y) .

+ P(a,b)H(a, b) / h(t) + h(1 - £)] dt + 2H>(a, b) f

By changing the variable of integration we achieved the desired inequality (5.22). O

Corollary 6 Under the assumptions of Theorem 8 with ¢(t) = t, then we have the following

inequality:

1 b b
2h2<§)F<a; )(*5°) .

b
(IR)/ [F(x) + G(x)]H(x,a +b—x)dx

o
(b= a)h(3)

1 b
—a(IR)/a Fx)G(x)dx + ————— 5

») / H*(x,a +b—-x)dx

(b—a Yh2( %
[M(a b) / W(e)h(1 = £) dt + N(a, b) f () dt

+ P(a, b)H(a,b)/ h(t) dt] + H*(a, b).
0
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Corollary 7 Under the assumptions of Theorem 8 with ¢(t) = then we have the fol-
lowing inequality for the Riemann—Liouville fractional mtegmls

1 b b
2hz(%)F(a; )G(a; ) (5.25)

o

" 2(b-a)h(d)

b
|:(1R) / (b-x)°"1 [F(x) + G(x)]H(x, a+b—x)dx

b
+ (IR)/ (x—a)*! [F(x) + G(x)]H(a +b—x,x) dx]

Mo +1)

2506 _ar Vi, E(b)G(b) + F(a)G(a)]

b
# _\a-lgg2 _
i Z(b—a)“h2(%)/a (b—x)*""H*(x,a+b—-x)dx

1 1
a[M(a,b) f EHOH - e+ N2 [ e iro - o
0

+M[ et h(t)+h(1—t)]dt:| +H’(a,b).

Theorem 9 IfF:[a,b] — R is an interval-valued approximately h-convex function such
that F(t) = [F(t), F(t)], then we have the following inequalities for the generalized fractional

integrals:
1 a+b 1 b -x)
2h(%)F( 5 >_21ﬂ(1)h(%)/a_5b - H(x,a+b-x)dx (5.26)
1
D) @) [(%ﬁij(b) + (%)_j(pl:(d)]

Fa)+E(b) [P o(B20] (2-t t
2 200 /0 . |:h( 3 >+h(§>:|dt+H(a,b).

Proof Since F is interval-valued approximately /-convex function on [, b], we have

1 x+y> 1
——F DF(x)+F(y) + H(x,y).
h(3) ( 2 h(})
Forx:%a+ bandy——a+tb,weget
1 a+b
—1F( > (5.27)
h(3) 2

t 2-t 2-t 1 t 2-t 2-t t
ODF|-a+—>b|+F|—a+= b —H|-a+——b——a+:b).
2 2 2 2 h(i) 2 2 2 2

b—a
Multiplying by 9 both sides of inequality (5.27) and integrating the resultant one
with respect to ¢ over [0, 1], we obtain

1 a+b lw(@t)
@F( 5 >/(; . dt (5.28)

Page 17 of 38
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~a) 2-t
)F<fa )dt (IR)/
2
1 o2 /¢ 2-t 2-t ¢
—1/ 7 )H<—a+—b,—a+—b>dt.
nhJo e 24T Ty

Using Theorem 1 and Eq. (5.28), we have

1, (b-a) _
(IR)f MP<§61+ %b) dt
0
1 (-2 b ﬂ) _
:[(R)/O a 2 t)g(f )dt (R)/ F( a+%b>dt}

by - b -
=[(R)f YO panw) [ P )d}

a+b

2

F<1a+ tb)dt
2 2

= [(Lﬁby](pg(b), (aTH))+I(pF(b)]

= (232 J,E (D).
Similarly, we get
1 ,(0b-a)
e(57) _(2-t ot -
(IR) /0 %F(Ta + Eb) dt = [(ap)-1,E(a), (ap) 1, F(@)] = ap)-T,F(a).

Hence, we proved the first inequality. To prove the second inequality of (5.26), first we

note that, since F is an interval-valued approximately /-convex function, we have

F(?a ' §b> > h( . )F(zz) +h< )F(b) + H(a,b) (5.29)
and
F<§a+ ?b) ( )F( )+h< )F(b) + H(a,b). (5.30)
Adding (5.29) and (5.30), we get
F<ﬁa+ Eb) +F(£a+ Eb) (5.31)
2 2 2 2
> [F(a) + F(b)] [h(?) + h(§>:| +2H(a,b).

w(2

Multiplying by ) both sides of inequality (5.31) and integrating the resultant one

with respect to ¢ over [0, 1], we obtain

(b—a) (b—a)
(IR)/ “’( 2 ( —as b)dt (IR)/ A t)F<2a+?b>dt
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(b—-a)
> rom [ X (25 (5| a

(b-a)

1
+2H(a,b) / P50 g,
0 t
By changing the variables of integration we have the second inequality of (5.26). g
Corollary 8 Ifwe choose ¢(t) = t in Theorem 9, then we have the following inequalities:
1 b 1 b
T F<a+ )— T H(x,a+b—x)dx (5.32)
2h(3) 2 (b-a)h(3) Jagt
b F(a)+F(b) [T (2-t¢ t
Fv)dx o> L@+ EO) / h(—) +h(—> dt + H(a, b).
a 2 0 2 2
Corollary 9 Taking ¢(t) = = in Theorem 9, then we have the following inequalities for
the interval-valued fmctzonal opemtors.
1 b 20! b
T F(a+ )— « T / (b—x)*"'H(x,a+b-x)dx (5.33)
21D\ 2 )T b-aph(d) Joyp

2¢ 1P (o + 1)
(b—a)

5 w/ ot [h(?) +h(§)]dt+H(a,b).
0

[ (a3 F(b) +]a+h) F(ﬂ)]

Theorem 10 If F,G : [a,b] — R are two interval-valued approximately h-convex func-
tions such that F(t) = [F(t), F(t)] and G(t) = [(G(t), G(t)], then we have the following inequal-

ity for the generalized fractional integrals:

>~

[(egeyr

oF(D)G(D) + (3013, F(@)G(a)]

|U“4

KuM(a, b) + KsN(a, b) + H(a, b)P(a, b)Ks + 2y (1)H*(a, b),

where M(a, b) and N(a, b) are defined in Theorem 3 and

1 (b_“)t) ¢
_ [ POt 2
e[ () (5
Vo2 e\ [2-t
e TS
K6:/0 : [(2)”(?)}”‘

Proof Since F and G are two interval-valued approximately /-convex functions,

F<%a+gb>3h( . )F(a)+h< )F(b)+H(a,b)

(5.34)

(5.35)
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and
2—t t 2—t t
~—a+-b)ohl=— - . .

G( 5 a+2b)_h< 5 )G(a)+h<2>G(b)+H(a,b) (5.36)

Multiplying (5.35) and (5.36), we have
2— 2
F< tu + Eb) <—ta + b) (5.37)
2 2 2

> h2<2 )P(a)G(a) + h2< )F(b)G(b) s h( t)h(é) [F(@)G(b) + F(h)G(a)]

< )H(a b)[F(b) + G(b)] + h( )H(a b)[F(a) + G(a)] + H?*(a,b).

Similarly, we get

F(ta+ub>G<£ ub) (5.38)
2 2
th(g)F(a) @)+ h2(22t)F(b)G(b)+h<§)h<?)[P(q)G(b)+F(b)G(a)]

" h( >H(a, b)[F(b) + G(b)] + h( )H(a, b)[F(@) + G(a)] + H(a, b).

Adding (5.37) and (5.38), we obtain the following relation:

F<ﬁa+ Eb) <ua+ b) (£a+ub) <£a+ub) (5.39)
2 275 2 20 2 22

S5 (?) [F@G(a) + F(b)G(b)]

2 (%) [F(@)Gla) + F(b)G(b)] + 2h< )h(2 . t) [F@)G(b) + F(b)G(a)]

+ H(a,b) [h(%) + h<2;t>] [Fa) + F(b) + G(a) + G(b)] + 2H(a, b)
2-t
[hz( ) h2< )]M(a,b>+zh( )h( )N(a,b)
2 2
H(a, b)p(a,b)[hG) + h(?)} +2H2(a, b).

Multiplying by 9 both sides of inequality (5.39) and integrating the resultant one
with respect to ¢ over [0, 1], we have
1, (b-a)
——t 2—t t 2-t¢
(IR)/ v )F —a+=-b |G| —a+ b dt (5.40)
, t 2 2 2 2

(ba
(IR)f (5 2- tb)G(é +?b)dt
(b—a)
QM(a,b)/ (5 t t)[h2< _ >+h2(%>]dt
0

Page 20 of 38
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+2N(a, b)/

AT
+ H(a, b)P(a, b)/ o5 [h(%)

lwtii)

Y
(55

+2H%(a, b)/ dt.
0

By using Theorem 1 in Eq. (5.40), we obtain our required inequality. O

Corollary 10 Taking ¢(t) = t in Theorem 10, then we have the following inequality:

b
——(R) / F(x)G(x) dx (5.41)

! 2 E 2 2t
QM(ﬂ,b)/(; [h <§> h < ):|dt+2N(zz b)/ ( ) (T)dt
1
+Ha,bP@b) [ [h(%) +h<?>]dt+2H2(a,b).
0

Corollary 11 Taking ¢(t) = F(a)
the interval-valued fractional operators:

in Theorem 10, then we have the following inequality for

2T (a + 1)
(b—a)

a-1 2 ¢ 2
et [ e (2) (352
o 2t
+2aNab)/ h( >h( 5 )dt
+ozH(a,b)P(a,b)/ t“l[ (;>+h< . )]dt+2H2(a b).
0

Theorem 11 IfF,G: [a,b] — R are two interval-valued approximately h-convex func-
tions such that F(t) = [F(t), F(t)] and G(t) = (G(t), G(t)], then we have the following inequal-
ity for the generalized fractional integrals:

Uiegs) FBIG®) + [y F(@)G(a)] (5.42)

1 b b
h%@F(a; )G(“; ) (5.43)
b pa—
_ m |:(IR) /;+b % [F(x) + Gx)|H(x,a + b —x)dx
2 @

+ (IR) /T px—a) [F(x) + G(x)]H(a +b—-x,x) dx]

1
2 Syl T EBIGD) + o) Ty F@)Gla)]
a+b
1 2 px—a) ,
+w<1>h2<%)/a oo [ warb-x)dx

¥ W[KsM(a ,b) + K4N(a, b) + KsP(a, b)H(a, b)] + 2H?(a, b),

Page 21 of 38
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where M(a,b), N(a,b) and Ky, Ks, K¢ are defined in Theorem 3 and Theorem 10, respec-
tively.

Proof Since F and G are two interval-valued approximately /-convex functions on [a, 5],

we have
! F<x+y>DF( +FO) + —H(x,y) (5.44)
— x x,9). .
n) \ 2 n®)
For x = —a+ thandy=Za+ —b we obtain
1 b 2t t t 2—-t
—lF(ﬂ+ > SF(=a+ —b) ¥ (—a+ —b) (5.45)
nd) \ 2 2 "2 277 2
1 2 - -
+ —1H<—ta + Eb, Ea + ub)
r) "\ 2 T2 2
Similarly, we get
1 b 2-t t t 2t
—IG(”” > > G<—a+ b) <—a+ —b) (5.46)
n(H) 7\ 2 2 T2 277 2
1 2—-t t, t 2-t
+ —1H<—a+ —b,—a+ —b).
m)y U2 TT272" T 2

Multiplying the inequalities (5.45) and (5.46), we obtain
1 a+b a+b
—F G (5:47)
h2(3) 2 2
2— 2—
) F(—ta + Eb)G(—ta + Eb)
2 2
t t

+F

t 2 2—-t t
+F —a+—b)G —a+=b

2 2 2 2

1 2 -

(2t T s 20

n(3) 2 ‘7273

1 2—-t t 2—t t t 2t

— a+—-b|H| —a+=-b,—a+—0>b
nl)y \ 2 2 2 272 2

1 2 - 2 - 2 -
—1F<t + —tb)H(—ta + E19, Ea + —tb)
n(l) \2 2 2 272 2

1 2—-t t 2t t. t 2t
—=G a+—-b|H|—a+=b,—a+—10>
hld) "\ 2 2 2 272 2

1 2 - 2- 2-
—1G<£a + —tb>H(—ta + Eb, Ea + —tb)
n(l) \2 2 2 272 2

2—t t 2—t t t 2—-t t 2—-t

ODF\—a+-b |G| ——a+=b|+F|za+—Db |G| za+ —D>
2 2 2 2 2 2
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X |:h(§ G(a) +h(E>G(b)+H(a,b)]

t 2t
+ [h<§ F(a) +h<T>F(b) +H(a,b)]

G(b) + H(a, b)]

X
i
=
/—\

l\J
M

H
N~
Q
&
+
=
N
N |~
N~

t
2 2
=F<2_ta+tb)G(2_ta+tb)+F(ta+ _tb>G(ta+2_tb)
2 “*3 2 “*3 2t 24t
+2M(a,b)h<;t)h<£)+|:h2<2 t) h2<t):|N(a,b)
2 )"\ 2
+[h(f>+h<2 t>:|P(a DH@b)+ 1 Hz(imfb,fmﬂb)
2 2 2d) (2 a7
t

t 2—t 2—t t t 2—t
—a+ b)H|=—a+-b—a+=—>b)+2H*(a,b).
2 2 2 2 2

b—
Multiplying by ) both sides of inequality (5.47) and integrating the resultant one
with respect to ¢ over [0, 1], we obtain our result (5.43). O

Corollary 12 Taking ¢(t) =t in Theorem 11, then we have the following inequality:

1 a+b a+b
hZ(%)F( . )G( : ) (5.48)

9 b
- m [(IR) /agb [F(x) + Gx) |H(x,a + b - x) dx

a+b
+ (IR) f " [F() + G)]H(a+b— x,%) dx]
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b
; F(x)G(x)dx+m/ H?*(x,a+b—x)dx

L7t 2t ¢ 2t
+2M(a,b)/0 h(i)h(T)dﬂN(a,b)/o [h2(5> hz( . )]dt
1
+P(a,b)l—[(a,b)/ [h(%) +h<%>]dt+w2(a,b).
0

Corollary 13 Taking ¢(t) = F(a) in Theorem 11, then we have the following inequality for
the interval-valued fractional operators:

1 a+b a+b
()

2%
(b-a)*h(3)
ath

+ (IR)/ ’ (x—a)*t [F(x) + G(x)]H(a +b—x,x) dx]

a

]
=p_

b
|:(IR) ﬁm (b-x)t [F(x) + G(x)]H(x, a+b—x)dx

2T (x + 1)
2> G ay Ve OGO + oy F@)G(@)]

2% b 1o
+m/;+b(b—x) H2(x,a + b — x) dx

» 2t
+oz{2M(a,b)/ : h( )h( . )dt
! a-1 2 t 2
N(a,b)/o ¢ [h (5) h( . )}dt
+P(a,b)H(a,b)/01t°‘1 [h(é) +h(22 t)]dt} + 2H2(a, b).

Theorem 12 If F : [a,b] — R is interval-valued approximately h-convex function such

that F(t) = [F(t), F(t)], then we have the following inequalities for the generalized fractional
integrals:

1 a+b 1 b <p(x—@)
2h(%)F( 2 ) 2y (Vh(2 )/Tb 5 b Hx,a+b-x)dx (5.50)

5 1 5 F a+b A F a+b
—2w(1>[”* ¢ (T)”’ ’ ( 2 >]

1, ((b-a) -
2F(z/z)+l-"(b) p(-571) |:h<1+t)+h(u)]dt+H(a,b).
w1 Jo ot 2 2

Proof Since F is an interval-valued approximately %-convex function on [, b], we have

1 x+y 1
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1t
2

1 a+b 1-¢ 1+t 1+t 1-¢
() (L 100) (1 1) -
h(3) 2 2 2 2 2

1 1- 1 1 1-
( t +tb +t tb).

_ 1+t _ 1+t 1-¢t
Forx=Sra+ 5 bandy= a+ b, we get

+— a+ , a+
h(3) 2 2 2 2

(b-a)
Multiplying by M both sides of inequality (5.51) and integrating the resultant one

with respect to ¢ over [0, 1], we obtain

1 (a+b\ (T2
mF( 5 ) /0 p dt (5.52)

1
2

L9y /1-t 1+t
Q(IR)/ b )F< a+— b)dt
Lt 2 2
L9y /14t 1-¢
+(IR)/ (5 )F< ML b)dt
¢ 2 2

1 lo(B2) /1-¢t 1+t 1+t 1-¢
+—1/ - 2 )H a+ - b, - a+ b dt.
o ot 2 2 2 2

By using Theorem 1 in Eq. (5.52), we have

)

Lo(B2y)y r1-¢ 1+t
(IR)/ v )F< a+— b>dt
0 t 2 2

To(t=2y) 1 1
:[(R)/ ¢ )5( Las +tb)dt,
L ¢ 2 2

(b-a)
® [ 2 t)l?(l_tu+1+tb>dt]

y ¢ 2 2
b atb b a+b
:[(m/ ) pyan, ) [T 2 )du]

Similarly, we get

1, (b-a)
(52 (1+t 1-t a+b _(a+bh
(IR)/O t2 F( At b)dt:[a+1¢£<7>,a+1¢1f( 5 )]
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Hence, we proved the first inequality. To prove the second inequality of (5.50), first we
note that, since F is an interval-valued approximately /-convex function, we have

F<%a+ %b) Dh( . )P( )+h( . )F(b)+H(a b) (5.53)
and
F(%‘” %b) 3h< 5 )F( ) + <¥)F(b)+H(a,b). (5.54)
Adding (5.53) and (5.54), we have
F<£a+ﬁb) +F(u 1+tb> (5.55)
2 2 2

> [F(a) + F(b)] [h(%) + h( ! o t)] +2H(a,b).

Multiplying by Y both sides of inequality (5.55) and integrating the resultant one
with respect to ¢ over [0, 1], we obtain

1 —a) 1 (b—a)
t 1+¢ 1-t t 1-¢ 1+t
(IR) (Mt e [ O (At T g
2 2 2 2
0 0
(b-a)

1 = 1 ,((b=a)
2[F(a)+F(b)]/o ‘ [h<1;t> +h(1;t>:|dt+2H(a,b)/o %dn

This completes the proof. d

Corollary 14 Ifwe choose ¢(t) = t in Theorem 12, then we have the following inequalities:

b
11 F(d+b> ! H(x,a+b x) dx (5.56)
2n(3) \ 2 (b—a)h(3) Joy

1
u ’ Py d o M/O [h(%)m(l; ):|dt+H(a b).

Corollary 15 Taking ¢() = r in Theorem 12, then we have the following inequalities for

the interval-valued fmctlonal opemtors

a1 b a-1
11 F<a+b)_ a2 1 <x_6l+b) H(x,a+b—x)dx (5.57)
2h(3) \ 2 ) (b-a)lh(}) Jap 2

R 2010 ( + 1) o a+b 7 a+b
_W[zn ( 2 > b- ( 2 >:|
1
o A EO) [ [y (1) (2
2 0 2 2

Theorem 13 If F,G : [a,b] — R are two interval-valued approximately h-convex func-
tions such that F(t) = [E(t), F(t)] and G(t) = [G(t), G(¢)], then we have the following inequal-
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ity for the generalized fractional integrals:

A F a+b G a+b 9 F a+b G a+b 5 58
e (50)6(*5) v (457 (57) (>58)

D K7M(a, b) + KgN(a, b) + KoH(a, b)P(a, b) + 2v (1)H*(a, b),

where M(a, b) and N(a, b) are defined in Theorem 3 and

Lo(at 1 1-
1<7=/ b )[;ﬂ( +t)+h2<—t>]dt,
o t 2 2
1 Mt _

1<8:2/ o5 )h<1+t>h(1 t)dt,
o t 2 2
1 Mt _
1(9=/ M[h<£)+h(u)]dt
o t 2 2

Proof Since F and G are two interval-valued approximately /z-convex functions,

F(%a+ %b) 2h(¥)1~"(ﬂ) +h(%>F(b)+H(a,b) (5.59)
and
G(%a + %b) 2 h(%)G(ﬂ) + h(%)G(b) +H(a,b). (5.60)

Multiplying (5.59) and (5.60), we have

1-t 1+¢ 1-t¢ 1+t
F a+ * b)G a+ * b (5.61)
2 2 2 2

> W(%)F(a)G(a) + h2<¥)F(b)G(b)

1-t 1+t

" h<T>h<T) [F(@)G(b) + F(h)G(a)]

+ h<%>H(a, b)[F(b) + G(b)] + h(%)H(ﬂ,b)[F(a) + G(a)] + H*(a, b).

Similarly, we get

1+t 1-t 1+t 1-t
F< LA b)G( ML b) (5.62)
2 2 2 2

o2 (%)F(a)G(a) + i (%)F(b)a(b)

1+t 1-t

+ h(%)H(a, B[F(®) + GB)] + h(%)H(g, b[F(@) + G@)] + H*a,b).
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Adding (5.61) and (5.62), we obtain the following relation:
1-¢ 1+¢ 1-t¢ 1+¢
Fl—a+ — p)6( —La+ b (5.63)
2 2 2 2
1 1- 1 1-
+F * ta + tb G i ta + tb
2 2 2 2

o <%> [F(@)Gla) + F(b)G(b)]

+ 1 (%) [F(a)G(a) + F(b)G(b)]
2h( ! — t)h(%) [F@)G(b) + F(b)G(a)]

+ H(a,b) [h(%) + h(%)} [F(a) +F(b) + G(a) + G(b)] +2H*(a, b)

=[h2(1’t) h2<1+t)]M(a,b)+2h(1+t)h<u)N(a,b)
2 2 2
+ H(a, b)P(a, b) [h(%) + h(%)} +2H2(a, b).

Multiplying by Y both sides of inequality (5.63) and integrating the resultant one
with respect to ¢ over [0 1], we have

1-t¢ 1+¢ 1-t 1+t
(IR)/ ( 5 a+ 5 b>G< 5 a+ 5 b)dt (5.64)
(b—a) _ _
+(IR)/ 05 t)F<1+ta+1 tb)G(1+ta+1 tb)dt
2 2 2 2
ha)
e S5 ()
2
1+¢ 1-¢
+2Nab)/ h( 5 )h( 5 )dt
H(a, b)P(a b)/ [(1;t>+h(%)]dt

+ 2H%(a, b) / ol
0

dt.

By using Theorem 1 in Eq. (5.64), we obtain our required inequality. g

Corollary 16 Ifwe choose ¢(t) = t in Theorem 13, then we get the following inequality:

DM(ab)/[ (1;) h2( )}dt+2N(ab)/ (1”)14(%)6&
0
+ H(a, b)P(a, b)/ [ (1”)+h( _ >:|dt+2H2(a,b)

b
bL(IR) /a F(x)G(x) dx (5.65)
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Corollary 17 Taking ¢(t) = % in Theorem 13, then we have the following inequality for

the interval-valued fractional operators:

2T (a + 1)
(b—a)

Da{M(u,b)/ t‘“[hz(l;rt) h2< 2t>]dt
-1 L+t 1-t¢
+H(a,b)P(a,b)/0 gl [h(%) +h<%>:|dt} + 2H2(a, b).

Theorem 14 If F,G : [a,b] — R are two interval-valued approximately h-convex func-
tions such that F(t) = [F(t), F(t)] and G(t) = [G(t), G(t)], then we have the following inequal-
ity for the generalized fractional integrals:

Ufess) FOIG) + Jiuss F(@)G(a)] (5.66)

1 a+b a+b
hZ(%)F< : )c( : ) (5.67)
1 bop(x- %)
_ m |:(IR) /# ﬁ[}f(x) +G@)|H(x,a+b-x)dx

a+b

ol a+b
+(1R)/ o5 i x)[F( )+ G(x )] (a+b—x,x)dx:|

) )

_M)

e
i R
—y(@)

1

I)0(1)]’12( ) a+l7 x_ﬂ+b H2(xra+b x)dx

+ ﬁ [KsM(a, b) + K;N(a, b) + KoP(a, b)H (a, b)] + 2H*(a, b),

where M(a,b), N(a,b) and K7, Kg, Ky are defined in Theorem 3 and Theorem 13, respec-
tively.

Proof Since F and G are two interval-valued approximately /-convex functions on [4, 5],

we have
1 xX+y 1
—F( ) D F(x) + F(y) + ——H(x, ). (5.68)
h(3) \ 2 h(3)
For x = %a + %b and y = %u + %b, we obtain
1 b 1-1¢ 1+t 1+t 1-t¢
—1F<a+ ) QF(—a Lb) (La+ —b) (5.69)
nl)y \ 2 2 2 2
1 1-t¢ 1+t 1+t 1-t¢
+—H a+ b, oy b).
() 2 2 2 2
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Similarly, we get

1 1- 1 1
TG(M) 5 G(_t jb) G(;tM
h(l) 2 2 2

’

1 1-t 1+t 1+t
+———H( b
h(3)

1
2

Multiplying the inequalities (5.69) and (5.70), we obtain

1 F(a+b)G(a+b>
h2 (=) 2 2
_ G

N

a+ a
2 2 2

1-¢ 1+t
H a+ b,
2 2

1-t 1+t
H a+ b,
2 2

1-¢ 1+¢
H a+ b,
2 2

1-t 1+t
H a+ b,
2 2

1-¢ 1+¢ 1-t¢ 1+¢
2F< a+— b>G g+ b)
t

+
i
=
N
—
N+
A N
N~
pac
K
+
>
N
—_
#|1
v
=
E
+
’S
R
—
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1 1-t 1+t 1-t 1+t 1+t 1-t¢
+ ——F a+ b|H a+ , a+ b
h(3) 2 2 2 2 2 2

1 1+¢ 1-¢ 1-¢ 1+t 1+t 1-t¢
+—F * a+ b|H a+ * b, * a+ b
nl)y \ 2 2 2 2 2 2

1 1-t 1+t 1-t 1+t 1+t 1-t
+—G a+ b|H a+ X a+ b
h(l) 2 2 2 2 2 2

1 1+¢ 1-t 1-t¢ 1+t 1+t 1-t
—=G * a+ b|H a+ * b, " a+ b
hl) "\ 2 2 2 2 2

2
1+¢ 1-t¢ 1+¢ 1-¢
+F hl a+ b |G * a+ b
2 2 2 2

+
=
5
AL
N
N
—_
N‘
N
—_ N
=
N
I
o~
N——
+
—
=
)
3 I/
—_
N
A
N~
E‘
/‘\
[a—
+
A
N——
Z
N
s

| ——
Ayl
/\
o
T l\°+
=~
TN N—
+

1 1-¢ 1 1+t 1-t
+ = 2 a+ b, i a+ b)
G \ 2 2
1 1- t 1 t t 1 t 1 t 1 t
+ —IF( ’ b)H( i b)
h(3) 2 2
1 1+ t 1 t 1- 1 L‘ 1 t 1 ¢
+ —1F< b)H( i , * ]9)
h(3) 2 2
1 1- t 1 +t 1- 1 + t 1+ t 1 ¢
h(3) 2 2
1 1+ t 1 t 1- 1 t 1 t 1 t
¥ —IG( b)H( iyt b) +2H(a,b).
h(3) 2
Multiplying by n 9 both sides of inequality (5.71) and integrating the resultant one
with respect to ¢ over [0, 1], we obtain our result (5.67). O

Corollary 18 Taking ¢(t) =t in Theorem 14, then we have the following inequality:

1 a+b a+b
()

2
(b-a)h(3)

b
[(IR)/ [F(x) + G(x)]H(x,a +b—x)dx

+ (IR) / 7 [F@) + GWH@ + b - x%,2) dx]

b 9 b ,
F(x)G(x)dx+m %H(x,a+b—x)dx
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+2M(a, b)/ (1”);1(%) dt+N(u,b)/0 [h2<1;t) +h2<¥>]dt
+ P(a, b)H(a, b)/ [ (1”) +h(¥>}d¢+2H2(a,b).

Corollary 19 Taking ¢(t) = ¢ (a)
the interval-valued fractional operators:

in Theorem 14, then we have the following inequality for

1 a+b a+b
hz(%)F( 2 )G( 2 ) (5.73)
@ b a-1
_ (b_i%[(m) /T (x_ “;b) [F) + G)]H(x,a + b—x)dx

oo a-1
+ (IR)/ (# - x) [F(x) + G(x)]H(a +b-x,9) dx:|

20T (o + 1)
~ (b-a) [

m/ < ﬂ) Hz(x,a+b—x)dx
+oz{2M(a b)/ - lh(lgt)h<%> dt
-1 2 1+¢ 2
e [ e (1)
P(a,b)H(a,b)/lt"“l[h<1;t)+h< . )]dt}+2H2(a,b).
0

6 Some special cases

E(B)G(D) + Jays, Fla )G(a)]

(4b)+

In this section, we discuss some special cases from our main results.

From Theorem 6, we have the following result.

Corollary 20 If F : [a,b] — R is interval-valued y-approximately h-convex function,

then
1 a+b
%(5)17( : ) A s / ) (|2x - (a+ b)) d (6.1
2 m[aJrj(pF(b) + b—j(pF(’l)]
F(a)+F(b) [* ¢((b - a)t) v
o) A0 [h(t) +h(1- t)]f de+e(lb-all)’.

Corollary 21 If F,G : [a,b] — RY are two interval-valued y-approximately h-convex

functions, then

% [4+T,F(B)G(b) + -7, F(a)G(a)] (6.2)

> KyM(a, b) + KyN(a, b) + KsP(a, b)e([1b - all)” + AQ)e>(I1b - all)*”
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Corollary 22 If F,G : [a,b] — R} are two interval-valued e-approximately h-convex

functions, then

% [0:3,F(B)Gb) + 1, 3,F(@)G(a)] 6.3)

D K1M(a, b) + KoN(a, b) + K3P(a, b)e(||b - all) + A(1)e>(|1b - a||)2.
From Theorem 8, we obtain the following result.

Corollary 23 If F,G : [a,b] — R are two interval-valued y-approximately h-convex

functions, then

1 F<a+b)G(a+b) (6.4)
2m2(3) \ 2 2 '
2A(1)h( )[( )/
(1R>f

[, FB)G®) + - 3,F(@)G(a)]

2 (P + 6) (|26~ @+ D)) @

F(x) +G))(lla+b-2x])" dxi|

1
i P
= 2A(1)

(p(b x) (|2 - (a+b)||)2y

2A(1)h2( ) /

+ﬁ[I(ZM(a,b)+K1N(a,b)+1(3P(a, be(lb-al)']+e*(I1b-all)*”

Corollary 24 If F,G : [a,b] — R are two interval-valued e-approximately h-convex

functions, then

1 P a+b G a+b 65)
2h2(%)(2)(2) '

€ b (b - x)
‘m[(m)/ﬂ A, (F(x) + G®))(|2x = (a + b)||) dx

b _
+ (IR)/ (p(x;:)(F(x) + G(x))(||a +b- 2x||) dx:|

1
2 5yl FBIGO) + 1.3, F@G(@)]

2

€ ob—x) 2
2A(1)h2(%)/a P (H2x a+b)H) dx

+ ﬁ[KzM(a, b) + K\N(a,b) + K3P(a, b)e(||b - al|)] + €* (|| —a||)2.

From Theorem 9, we have the following result.
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Corollary 25 If F : [a,b] — R is interval-valued y-approximately h-convex function,
then

1 a+b
2h(%)F( 2 ) l)h( )/ Hzx (a+b)])" 4 (6.6)

1
=2y

(Fa)+ F®)] ' (520 —t t y
) 20 () /0 ; [h( 5 )+h(§):|dt+e(||b—a||) .

Corollary 26 If F : [a,b] — R is interval-valued e-approximately h-convex function,
then

oo ToF) + oy T, F@)]

1 a+b € (
2h( )F< 2 >_2¢(1)h(§)/7b b (Hzx‘(“b)H)dx 6.7)

1
2

1
21/,(1) [ fi oF() + (43b)- F(a)]

b u)
5 S 1EC Z)I;(f )] [ ( ;t) +h(§)]dt+€(llb—ﬂ||)'

From Theorem 10, we get

Corollary 27 If F,G : [a,b] — R are two interval-valued y-approximately h-convex

functions, then

[(M JF(b)G(b) + M)_fi F(a)G(a)] (6.8)

> KyM(a, b) + KsN(a, b) + €2(Ilb - al))” Pla, b)Ks + 2y (1)e> (|16 — al])*”

Corollary 28 If F,G : [a,b] — R} are two interval-valued e-approximately h-convex

functions, then

(52 T F(B)G(B) + (a0 T, F(@)G(a)] (6.9)

D> K4M(a, b) + KsN(a, b) + €2(lb - ) Pa, b)Ks + 2y (1)e>(|1b - all)’.
From Theorem 11, we obtain the following result.

Corollary 29 If F,G : [a,b] — R} are two interval-valued y-approximately h-convex

functions, then

1 a+b a+b
hz@F( . )G( : ) (6.10)

o(b-x) ,
e )1/f<1) [(IR)/ [F6) + GW)([26 - @+ b)) d

. / ash

Fx)+G](la+b-2x])" dx]
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1
=yl

[ T FB)G(B) + ays) T, F(@)G(a)]

1 b ob-x) 2y
e M s (LR I

wil)[l(sM(a,b) + KuN(a,b) + €(||b - all)" KsP(a, b)] + 2¢*(|1b - all)*

Corollary 30 If F,G : [a,b] — R} are two interval-valued e-approximately h-convex
functions, then

1 b b
R
€ b o(b-x)
_ m |:(IR) /# e [Fx) + G®)](| 2%~ (a + b)||) dx
+ (IR) /ﬂT (picx__;) [F(x) + G(x)](||a +b- 2x||) dx]
> 5l JFOIGO) + ) 3, F@)G(w)]
R [ 2D o] e
1//11) [I(5M(a, b) + K4N(a, b) + e(||b a||)1(6P(a, b)] +2¢ (||b - a||)2.

From Theorem 12, we have the following result.

Corollary 31 If F : [a,b] — RY is interval-valued y-approximately h-convex function,
then

1 a+b € p(x— %b) v
2h(%)F( 5 >_2w(1)h(%)/7b payar (||2% = (@ + b)|)” dax (6.12)

5 1 3 F a+b A F a+b
—2w(1>[”* v (T)“’ ’ ( 2 >]

[F@) + E®) [ o(B20[ (1+0)  (1-1 y
o E SO [0l ) en(250) | e ctro-any”

Corollary 32 If F : [a,b] — R is interval-valued e-approximately h-convex function,
then

1 ,(a+h ¢ bg(x - wb)
2h(%)F< 2 ) t//(l)h(%)/ b (|2%~(a+ b)) dx (6.13)

1 - a+b a+b
> e+ (57) e (50)

(b-a)
. [F(a) + F(b)] [ o(*521) [h<1+t>+h<1‘t>]dt+e(||b—a||).
@) Jo ¢ 2 2

From Theorem 13, we get the following result.
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Corollary 33 If F,G : [a,b] — R are two interval-valued y-approximately h-convex

functions, then

a+b a+b - a+b a+b
|:a+j¢F( D) )G(T)+b—J¢F(T)G( ) ):| (614')

> K7M(a, b) + KsN(a,b) + €(||b - al])” KoP(a, b) + 2y (1> (|16 - all)*”

Corollary 34 If F,G : [a,b] — R are two interval-valued e-approximately h-convex

functions, then

1 F a+b G a+b 4 F a+b G a+b 6.15
2e(13)e(557) o2 (7)) 619

D K7M(a, b) + KsN(a, b) + €([|b - all)KoP(a, b) + 29 (1)e>([1b - az||)2.

From Theorem 14, we obtain the following result.

Corollary 35 If F,G : [a,b] — R are two interval-valued y-approximately h-convex

functions, then

1 b b
EMEDIED
a+b)

bopx- %2
IR - 27
h( )t/f(l)[( ) ash - LL

[Fx) + G@)](|2¢ - (a + b)||)” 4

”*b a+b
(IR)/ M F(x) +G@](la+b-2x])" dx:|

a+b a+b - a+b a+b
Qm[“*j‘ﬂF(T)G(T)”“(T)G( )]
2

N € bopx—
1/f(1)h2(%) O

2

u+b)

(|2x - (@+b)|)* dx

w(l) ——[KsM(a, b) + K;N(a,b) + €(|b - all)” KoP(a, b)] + 2€*(||b - a||)2y

Corollary 36 If F,G : [a,b] — R} are two interval-valued e-approximately h-convex

functions, then

hztl)F(“;b>G(“;b) 6.17)

[( )/ (_a+b)[F(x)+G(x)](||2x (a+b)|)dx
h( )I/f(l) - atb

2

”*b a+b
(IR)/ F( )+G(x)](||a+b—2x||)dx]

a+b

D_ AE ﬂ)G a+b>+ 5 F(a+b G(a+b
=y T2 2 e\ o 2
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b _ atb
€ / ol 2)(”296—(oz+b)||)2a,’x

+w<1)h2<§) g xoa

1//(1) [I(gM(a, b) + K;N(a, b) + e(||b a||)1(9P(a, h)] + 2¢ (||b - a||)2.

Remark 4 Applying our Theorems 6—14, where H (x, y) = —ut(1 - ¢)||y — x||> and H(x,y) =
ut(l - t)II% - ’—lc |? for some p > 0, then we can obtain some new inequalities for interval-

valued strongly and relaxed /-convex functions via generalized fractional integrals.

Remark 5 Under the assumptions of Corollaries 2, 4, 6, if we take case V of Definition 3
then we have the results of Zhao et al. [1].

Remark 6 Under the assumptions of Corollaries 3, 5, 7, if we use case V of Definition 3
and /() = t, then we have the results of Budak et al. [2].

[;k .
kTi(@)’

o) =tlx—)* ! fora € (0,1); ¢(t) = M L exp(-At), where A = %" for a € (0,1), etc., we can
construct some new inequalities for interval-valued approximately /-convex functions.
Finally, for appropriate choices of the function k(t) = 1; h(t) = t; h(t) = £5; h(t) = t~5; h(t) =

t(1-1¢); h(t) = F etc., we can deduce some new interesting inequalities via generalized

Remark 7 By using our Theorems 6—14, for suitable options of the function ¢(¢) =

fractional integrals. We omit their proofs and the details are left to the interested reader.

7 Conclusion

This new class of functions called interval-valued approximately /-convex can be applied
to obtain several new results in convex analysis, related optimization theory. The authors
hope that this work may stimulate further research in different areas of pure and applied

sciences.
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