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Abstract
In this paper, we study the alternating CQ algorithm for solving the split equality
problem in Hilbert spaces. It is, however, not easy to implement since its selection of
the stepsize requires prior information on the norms of bounded linear operators. To
avoid this difficulty, we propose several modified algorithms in which the selection of
the stepsize is independent of the norms. In particular, we consider the case
whenever the convex sets involved are level sets of given convex functions.
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1 Introduction
The split feasibility problem (SFP) requires finding a point x ∈ H1 satisfying the property

x ∈ C and Ax ∈ Q, (1)

where A : H1 → H2 is a bounded linear operator, and C and Q are two nonempty closed
and convex subsets of Hilbert spaces H1 and H2, respectively. The SFP was first introduced
by Censor and Elfving [5] and has a very broad range of applications in many disciplines
including signal processing, image reconstruction problem, and radiation therapy; see [2,
3, 11]. Various iterative algorithms have been constructed to solve SFP (1); see [10, 21–24,
26]. An iterative algorithm for solving the SFP, called the CQ algorithm, has the following
iterative step:

xn+1 = PC
(
xn – γ A∗(I – PQ)Axn

)
, (2)

where γ ∈ (0, 2
‖A‖2 ), I denotes the identity operator, A∗ denotes the adjoint of A, and PC and

PQ are projections onto C and Q, respectively. The SFP can be also solved by a different
method [19, 29]:

xn+1 = xn – γn
[
(I – PC)xn + A∗(I – PQ)Axn

]
, (3)
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where

γn =
‖(I – PC)xn‖2 + ‖(I – PQ)Axn‖2

‖(I – PC)xn + A∗(I – PQ)Axn‖2 .

It is known that both (2) and (3) converge weakly to a solution of the SFP if it is consistent,
that is, its solution set is nonempty.

Recently, Moudafi [13] introduced the split equality problem (SEP):

Find x ∈ C, y ∈ Q such that Ax = By. (4)

Here, C ⊆ H1, Q ⊆ H2 are two nonempty closed and convex subsets, and A : H1 → H3,
B : H2 → H3 are two bounded linear operators, where H1, H2, H3 are Hilbert spaces. In
what follows, we always assume that the SEP is consistent, namely

S =
{

(x, y) ∈ C × Q | Ax = By
} �= ∅.

Many algorithms for solving the SEP have been proposed; see [8, 9, 12, 13, 15, 20]. In
particular, Byrne and Moudafi [4, 14] introduced the simultaneous CQ algorithm:

⎧
⎨

⎩
xn+1 = PC(xn – γnA∗(Axn – Byn)),

yn+1 = PQ(yn + γnB∗(Axn – Byn)),
(5)

where γn ∈ (ε, 2/(‖A‖2 + ‖B‖2) – ε) for small enough ε > 0. To determine stepsize γn in (5),
one needs first to calculate or estimate the norms ‖A‖ and ‖B‖, which is in general difficult
or even impossible. To overcome this drawback, many authors have conducted worthwhile
works[6–8, 19]. Among these works, Wang [19] suggested a novel variable-step:

τn =
ρn

max(‖A∗(Axn – Byn)‖,‖B∗(Axn – Byn)‖)
, (6)

where {ρn} is a sequence of positive real numbers such that

∞∑

n=0

ρn = ∞,
∞∑

n=0

ρ2
n < ∞. (7)

For solving the SEP, Moudafi [13] also introduced the alternating CQ-algorithm:

⎧
⎨

⎩
xn+1 = PC(xn – γnA∗(Axn – Byn)),

yn+1 = PQ(yn + γnB∗(Axn+1 – Byn)),
(8)

where {γn} is a nondecreasing sequence such that γn ∈ (ε, min( 1
‖A‖2 , 1

‖B‖2 ) – ε) for small
enough ε > 0. It is worth noting that in algorithm (8) the choice of the stepsize still depends
on the norms ‖A‖ and ‖B‖. Thus, a similar question arises: Does there exist a way to select
the stepsize in algorithm (8) that does not depend on the operator norms? It is the purpose
of this paper to answer this question affirmatively. Motivated by the choice of stepsize (6),
we propose three alternating iterative algorithms for the SEP, in which the choice of the
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stepsize is independent of the norms ‖A‖ and ‖B‖. To the best of our knowledge, this is the
first work to study alternating iterative algorithms for the SEP without prior knowledge of
operator norms.

2 Preliminaries
Throughout this paper, we always assume that H is a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖, and C is a nonempty closed convex subset in H . We
denote by I the identity operator on H , and by Fix(T) the set of the fixed points of an
operator T . Given a sequence {xn} in H , ωw(xn) stands for the set of cluster points in the
weak topology. The notation → stands for strong convergence and ⇀ stands for weak
convergence.

Definition 2.1 Let T : H → H be an operator. Then T is
(i) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H ;

(ii) firmly nonexpansive if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥
∥(I – T)x – (I – T)y

∥
∥2, ∀x, y ∈ H .

Definition 2.2 For any x ∈ H , the metric projection onto C is defined as

PCx = argmin
{‖y – x‖ | y ∈ C

}
.

The projection PC has the following well-known properties.

Lemma 2.3 ([1, 17]) Let x, y ∈ H and z ∈ C. Then
(i) 〈x – PCx, z – PCx〉 ≤ 0;

(ii) PC is firmly nonexpansive;
(iii) 〈PCx – PCy, x – y〉 ≥ ‖PCx – PCy‖2.

Definition 2.4 Let T : H → H be an operator with Fix(T) �= ∅. Then I – T is said to be
demiclosed at zero if, for any {xn} in H , the following implication holds:

xn ⇀ x and (I – T)xn → 0 �⇒ x ∈ Fix(T).

It is well known that I – T is demiclosed at zero if T is nonexpansive [1, 17]. Since PC is
clearly nonexpansive, then I – PC is demiclosed at zero.

Definition 2.5 Let λ ∈ (0, 1) and f : H → (–∞, +∞] be a proper function.
(i) The function f is convex if

f
(
λx + (1 – λ)y

) ≤ λf (x) + (1 – λ)f (y), ∀x, y ∈ H .

(ii) A vector u ∈ H is a subgradient of f at a point x if

f (y) ≥ f (x) + 〈u, y – x〉, ∀y ∈ H .
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(iii) The set of all subgradients of f at x, denoted by ∂f (x), is called the subdifferential
of f .

Next, we state the following lemmas which will be used in the sequel.

Lemma 2.6 ([1]) Let f : H → (–∞, +∞] be a proper convex function. Then f is semicon-
tinuous if and only if it is weakly semicontinuous.

Lemma 2.7 ([18]) Suppose that {an} and {bn} are two sequences of nonnegative numbers
such that

an+1 ≤ an + bn, n ≥ 0.

If
∑∞

n=0 bn converges, then limn→∞ an exists.

Lemma 2.8 ([25]) Let {xn} be a sequence in H satisfying the properties:
(i) limn→∞ ‖xn – x‖ exists for each x ∈ C;

(ii) ωw(xn) ⊆ C.
Then {xn} is weakly convergent to a point in C.

Lemma 2.9 Assume {an}, {γn}, {bn}, and {cn} are sequences of nonnegative real numbers
such that

an+1 ≤ (1 + γn)(an – bn + cn), n ≥ 0, (9)

where
∑∞

n=0 γn < ∞ and
∑∞

n=0 cn < ∞. Then
(i) limn→∞ an exists,

(ii)
∑∞

n=0 bn < ∞.

Proof (i) Since
∑∞

n=0 γn is convergent, we have
∏∞

n=0(1 + γn) is convergent. Let
∏∞

n=0(1 +
γn) = γ . It follows from (9) that

an ≤ (1 + γn–1)an–1 + (1 + γn–1)cn–1

≤ (1 + γn–1)(1 + γn–2)an–2 + (1 + γn–1)(1 + γn–2)cn–2 + (1 + γn–1)cn–1

≤ · · ·

≤
n–1∏

k=0

(1 + γk)a0 +
n–1∑

j=0

(n–1∏

k=j

(1 + γk)cj

)

≤ γ a0 + γ

n–1∑

j=0

cj

≤ γ a0 + γ c,

where c =
∑∞

n=0 cn. This implies that

an+1 ≤ (1 + γn)an + (1 + γn)cn
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≤ an + γn(γ a0 + γ c) + γ cn.

Since
∑∞

n=0 γn < ∞ and
∑∞

n=0 cn < ∞, by Lemma 2.7, part (i) holds.
(ii) It follows from (9) that

an+1 ≤ (1 + γn)an – (1 + γn)bn + (1 + γn)cn

≤ (1 + γn)(1 + γn–1)an–1 – (1 + γn)(1 + γn–1)bn–1 – (1 + γn)bn

+ (1 + γn)(1 + γn–1)cn–1 + (1 + γn)cn

≤ · · ·

≤
n∏

k=0

(1 + γk)a0 –
n∑

j=0

( n∏

k=j

(1 + γk)bj

)

+
n∑

j=0

( n∏

k=j

(1 + γk)cj

)

≤ γ a0 + γ c –
n∑

j=0

bj,

where the last inequality holds since
∏n

k=j(1 + γk) ≥ 1. So we obtain

n∑

j=0

bj ≤ γ a0 + γ c,

which means that
∑∞

n=0 bn < ∞. �

Lemma 2.10 Let {un}, {ρn} be sequences of nonnegative real numbers such that
(i)

∑∞
k=0 ρnun < ∞;

(ii) there exists some M > 0 such that, for all k ≥ 0, |un+1 – un| ≤ Mρn;
(iii) {ρn} satisfies condition (7).

Then limn→∞ un = 0.

Proof It follows from (i) and the assumption
∑∞

k=0 ρn = ∞ that

lim inf
n→∞ un = 0.

On the other hand, observe that

u2
n+1 = u2

n + 2un(un+1 – un) + (un+1 – un)2

≤ u2
n + 2Mρnun + M2ρ2

n . (10)

It is clear that
∑∞

n=0(2Mρnun + M2ρ2
n) < ∞ due to (i) and (7). Applying Lemma 2.7 to

(10), we obtain that limn→∞ un exists. Hence limn→∞ un = 0, since we have shown that
lim infn→∞ un = 0. �

3 Alternating iterative algorithm I
As shown in the introduction, one needs first to calculate (or at least estimate) the norms
‖A‖ and ‖B‖ when algorithm (8) is implemented. But this is difficult or even impossible. To
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overcome this difficulty, we aim to introduce the following alternating iterative algorithm
which does not depend on the norms. In this and next sections, we mainly consider the
case whenever the projections PC and PQ have closed-form expressions; for example, half
spaces and closed balls.

Algorithm 3.1 Let (x0, y0) ∈ H1 × H2 be arbitrary, δ > 0 be a constant, and {ρn} be a se-
quence of positive real numbers. Given (xn, yn), construct (xn+1, yn+1) via the formula

⎧
⎨

⎩
xn+1 = PC(xn – τnA∗(Axn – Byn)),

yn+1 = PQ(yn + τnB∗(Axn+1 – Byn)),
(11)

where τn = ρn(max{‖A∗(Axn – Byn)‖,‖B∗(Axn – Byn)‖, δ})–1.

Theorem 3.2 Let {(xn, yn)} be the sequence generated by Algorithm 3.1. If {ρn} satisfies
condition (7), then {(xn, yn)} converges weakly to a solution of SEP (4).

Proof Let (x∗, y∗) ∈ S be arbitrarily chosen. Then x∗ ∈ C, y∗ ∈ Q and Ax∗ = By∗. Let

zn = PQ
(
yn + τnB∗(Axn – Byn)

)
.

From Lemma 2.3 and the obvious fact that xn ∈ C, it follows that

‖xn+1 – xn‖ =
∥∥PC

(
xn – τnA∗(Axn – Byn)

)
– PCxn

∥∥

≤ τn
∥
∥A∗(Axn – Byn)

∥
∥ ≤ ρn, (12)

and

‖yn+1 – zn‖ =
∥∥PQ

(
yn + τnB∗(Axn+1 – Byn)

)
– PQ

(
yn + τnB∗(Axn – Byn)

)∥∥

≤ ∥∥τnB∗(Axn+1 – Axn)
∥∥

≤ τn‖B‖‖A‖‖xn+1 – xn‖

≤ ρ2
n

1
δ
‖B‖‖A‖. (13)

On the other hand, in view of (11) and Lemma 2.3, we have

∥∥xn+1 – x∗∥∥2 =
∥∥PC

(
xn – τnA∗(Axn – Byn)

)
– x∗∥∥2

≤ ∥∥xn – x∗∥∥2 – 2τn
〈
A∗(Axn – Byn), xn – x∗〉 + τ 2

n
∥∥A∗(Axn – Byn)

∥∥2

≤ ∥
∥xn – x∗∥∥2 – 2τn

〈
Axn – Byn, Axn – Ax∗〉 + ρ2

n .

Similarly, we obtain

∥
∥zn – y∗∥∥2 =

∥
∥PQ

(
yn + τnB∗(Axn – Byn)

)
– y∗∥∥2

≤ ∥∥yn – y∗∥∥2 + 2τn
〈
B∗(Axn – Byn), yn – y∗〉 + τ 2

n
∥∥B∗(Axn – Byn)

∥∥2
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≤ ∥∥yn – y∗∥∥2 + 2τn
〈
Axn – Byn, Byn – By∗〉 + ρ2

n .

By adding the last two inequalities and using the fact that Ax∗ = By∗, we finally obtain

∥
∥xn+1 – x∗∥∥2 +

∥
∥zn – y∗∥∥2

≤ ∥∥xn – x∗∥∥2 +
∥∥yn – y∗∥∥2 – 2τn‖Axn – Byn‖2 + 2ρ2

n . (14)

It then follows from Young’s inequality, (13), and (14) that

∥∥xn+1 – x∗∥∥2 +
∥∥yn+1 – y∗∥∥2

=
∥
∥xn+1 – x∗∥∥2 +

∥
∥yn+1 – zn + zn – y∗∥∥2

≤ ∥
∥xn+1 – x∗∥∥2 +

(
1 + ρ2

n
)∥∥zn – y∗∥∥2 +

(
1 +

1
ρ2

n

)
‖yn+1 – zn‖2

≤ (
1 + ρ2

n
)
(∥∥xn+1 – x∗∥∥2 +

∥∥zn – y∗∥∥2 + ρ2
n‖A‖2‖B‖2 1

δ2

)

≤ (
1 + ρ2

n
)(∥∥xn – x∗∥∥2 +

∥∥yn – y∗∥∥2 – 2τn‖Axn – Byn‖2 + ρ2
n

(
2 + ‖A‖2‖B‖2 1

δ2

))
.

Now, by setting an = ‖xn – x∗‖2 + ‖yn – y∗‖2, γn = ρ2
n , bn = 2τn‖Axn – Byn‖2, and cn = ρ2

n(2 +
‖A‖2‖B‖2 1

δ2 ), we obtain

an+1 ≤ (1 + γn)(an – bn + cn). (15)

Applying Lemma 2.9 to (15), we conclude that there exists a∗ ≥ 0 such that limn→∞ an = a∗

and

∞∑

n=0

τn‖Axn – Byn‖2 < ∞.

Hence {an} is bounded, and so are {xn} and {yn}. Since A and B are bounded linear op-
erators, there exists M1 > 0 such that ‖A∗(Axn – Byn)‖ ≤ M1, ‖B∗(Axn – Byn)‖ ≤ M1, and
‖Axn+1 – Byn+1‖ + ‖Axn – Byn‖ ≤ M1. So we have

∞∑

n=0

ρn

max(M1, δ)
‖Axn – Byn‖2 ≤

∞∑

n=0

τn‖Axn – Byn‖2 < ∞.

This implies that

∞∑

n=0

ρn‖Axn – Byn‖2 < ∞.

We next show limn→∞ ‖Axn – Byn‖2 = 0. From (13) and the obvious fact that yn ∈ Q, it
follows that

‖yn+1 – yn‖ ≤ ‖yn+1 – zn‖ + ‖zn – yn‖
= ‖yn+1 – zn‖ +

∥∥PQ
(
yn + τnB∗(Axn – Byn)

)
– PQyn

∥∥
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≤ ρ2
n

1
δ
‖B‖‖A‖ + τn

∥∥B∗(Axn – Byn)
∥∥

≤ ρ2
n

1
δ
‖B‖‖A‖ + ρn.

Let un = ‖Axn – Byn‖2. By the last inequality and (12), we have

|un+1 – un| =
∣∣‖Axn+1 – Byn+1‖ – ‖Axn – Byn‖

∣∣(‖Axn+1 – Byn+1‖ + ‖Axn – Byn‖
)

≤ ∥∥(Axn+1 – Byn+1) – (Axn – Byn)
∥∥M1

≤ (‖A‖‖xn+1 – xn‖ + ‖B‖‖yn+1 – yn‖
)
M1

≤ ρn

(
‖A‖ + ‖B‖ + ρn

1
δ
‖B‖2‖A‖

)
M1

≤ ρnM2,

where M2 is a positive number such that (‖A‖ + ‖B‖ + ρn
1
δ
‖B‖2‖A‖)M1 ≤ M2 for all n ≥ 0.

Therefore, by Lemma 2.10, we have limn→∞ ‖Axn – Byn‖2 = 0.
Now we turn to prove that ωw(xn, yn) ⊆ S. Let x̄ and ȳ be weak cluster points of the

sequences {xn} and {yn}, respectively. We assume that xnk ⇀ x̄ and ynk ⇀ ȳ, where {xnk }
and {ynk } are subsequences of {xn} and {yn}, respectively. Since {xnk } ⊆ C, {ynk } ⊆ Q and C
and Q are closed and convex, we have x̄ ∈ C and ȳ ∈ Q. Furthermore, the weak convergence
of {Axnk –Bynk } to Ax̄–Bȳ and the weakly lower semicontinuity of the squared norm imply

‖Ax̄ – Bȳ‖2 ≤ lim inf
k→∞

‖Axnk – Bynk ‖2 = 0.

Hence (x̄, ȳ) ∈ S.
It is readily seen that limn→∞ ‖xn – x∗‖2 + ‖yn – y∗‖2 exists for each (x∗, y∗) ∈ S and

ωw(xn, yn) ⊆ S. Therefore, it follows from Lemma 2.8 that {(xn, yn)} converges weakly to
a solution of SEP (4). �

Remark 3.3 It is clear that our choice of the stepsize in Algorithm 3.1 does not need any
information on the values of ‖A‖ and ‖B‖.

4 Alternating iterative algorithm II
In this section, we propose another alternating iterative algorithm for problem (4), in
which the choice of the stepsize does not need any prior information of operator norms.

Algorithm 4.1 Let (x0, y0) ∈ H1 × H2 be arbitrary, δ > 0 be a constant, and {ρn} be a se-
quence of positive real numbers. Given (xn, yn), construct (xn+1, yn+1) via the formula

⎧
⎨

⎩
xn+1 = xn – τn[(I – PC)xn + A∗(Axn – Byn)],

yn+1 = yn – τn[(I – PQ)yn – B∗(Axn+1 – Byn)],
(16)

where τn = ρn(max{‖(I – PC)xn + A∗(Axn – Byn)‖,‖(I – PQ)yn – B∗(Axn – Byn)‖, δ})–1.

Theorem 4.2 Let {(xn, yn)} be the sequence generated by Algorithm 4.1. If {ρn} satisfies
condition (7), then {(xn, yn)} converges weakly to a solution of SEP (4).
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Proof Let (x∗, y∗) ∈ S be arbitrarily chosen. Then x∗ ∈ C, y∗ ∈ Q, and Ax∗ = By∗. Let

zn = yn – τn
[
(I – PQ)yn – B∗(Axn – Byn)

]
.

Then we have

‖yn+1 – zn‖2 =
∥∥τnB∗(Axn+1 – Axn)

∥∥2

≤ τ 2
n ‖B‖2‖A‖2‖xn+1 – xn‖2

≤ τ 2
n ‖B‖2‖A‖2ρ2

n

≤ ρ4
n

1
δ2 ‖B‖2‖A‖2. (17)

It follows from (16) that

∥
∥xn+1 – x∗∥∥2 =

∥
∥xn – x∗∥∥2 – 2τn

〈
(I – PC)xn + A∗(Axn – Byn), xn – x∗〉

+ τ 2
n
∥
∥(I – PC)xn + A∗(Axn – Byn)

∥
∥2

≤ ∥∥xn – x∗∥∥2 – 2τn
〈
(I – PC)xn, xn – x∗〉 – 2τn

〈
Axn – Byn, Axn – Ax∗〉

+ τ 2
n
∥∥(I – PC)xn + A∗(Axn – Byn)

∥∥2

≤ ∥∥xn – x∗∥∥2 – 2τn
∥∥(I – PC)xn

∥∥2 – 2τn
〈
Axn – Byn, Axn – Ax∗〉 + ρ2

n .

Similarly, we obtain

∥∥zn – y∗∥∥2 =
∥∥yn – y∗∥∥2 – 2τn

〈
(I – PQ)yn – B∗(Axn – Byn), yn – y∗〉

+ τ 2
n
∥∥(I – PQ)yn – B∗(Axn – Byn)

∥∥2

≤ ∥
∥yn – y∗∥∥2 – 2τn

〈
(I – PQ)yn, yn – y∗〉 + 2τn

〈
Axn – Byn, Byn – By∗〉

+ τ 2
n
∥
∥(I – PQ)yn – B∗(Axn – Byn)

∥
∥2

≤ ∥
∥yn – y∗∥∥2 – 2τn

∥
∥(I – PQ)yn

∥
∥2 + 2τn

〈
Axn – Byn, Byn – By∗〉 + ρ2

n .

By adding the last two inequalities and using the fact Ax∗ = By∗, we finally obtain

∥
∥xn+1 – x∗∥∥2 +

∥
∥zn – y∗∥∥2 ≤ ∥

∥xn – x∗∥∥2 +
∥
∥yn – y∗∥∥2 – 2τn

(∥∥(I – PC)xn
∥
∥2

+
∥∥(I – PQ)yn

∥∥2 + ‖Axn – Byn‖2) + 2ρ2
n . (18)

It then follows from Young’s inequality, (17), and (18) that

∥∥xn+1 – x∗∥∥2 +
∥∥yn+1 – y∗∥∥2

=
∥∥xn+1 – x∗∥∥2 +

∥∥yn+1 – zn + zn – y∗∥∥2

≤ ∥∥xn+1 – x∗∥∥2 +
(
1 + ρ2

n
)∥∥zn – y∗∥∥2 +

(
1 +

1
ρ2

n

)
‖yn+1 – zn‖2

≤ (
1 + ρ2

n
)(∥

∥xn+1 – x∗∥∥2 +
∥
∥zn – y∗∥∥2 + ρ2

n
1
δ2 ‖B‖2‖A‖2

)
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≤ (
1 + ρ2

n
)[∥

∥xn – x∗∥∥2 +
∥
∥yn – y∗∥∥2 – 2τn

(∥∥(I – PC)xn
∥
∥2

+
∥
∥(I – PQ)yn

∥
∥2 + ‖Axn – Byn‖2) + ρ2

n

(
2 +

1
δ2 ‖B‖2‖A‖2

)]
.

Now, by setting an = ‖xn – x∗‖2 + ‖yn – y∗‖2, γn = ρ2
n , cn = ρ2

n(2 + 1
δ2 ‖B‖2‖A‖2) and

bn = 2τn
(∥∥(I – PC)xn

∥
∥2 +

∥
∥(I – PQ)yn

∥
∥2 + ‖Axn – Byn‖2),

we can immediately obtain

an+1 ≤ (1 + γn)(an – bn + cn). (19)

Applying Lemma 2.9 to (19), we conclude that limn→∞ an exists and

∞∑

n=0

2τn
(∥∥(I – PC)xn

∥
∥2 +

∥
∥(I – PQ)yn

∥
∥2 + ‖Axn – Byn‖2) < ∞.

Therefore {an} is bounded, and so are {xn} and {yn}. Observe that

∥
∥PCxn – x∗∥∥ ≤ ∥

∥xn – x∗∥∥,
∥
∥PQyn – y∗∥∥ ≤ ∥

∥yn – y∗∥∥.

This implies that {(I –PC)xn} and {(I –PQ)yn} are also bounded. Since A and B are bounded
linear operators, there exists M3 > 0 such that, for all n ≥ 0, ‖(I – PC)xn + A∗(Axn – Byn)‖ ≤
M3, ‖(I – PQ)yn – B∗(Axn – Byn)‖ ≤ M3, ‖(I – PC)xn+1‖ + ‖(I – PC)xn‖ < M3, and ‖(I –
PQ)yn+1‖ + ‖(I – PQ)yn‖ < M3. Thus, we have

∞∑

n=0

ρn

max(M3, δ)
(∥∥(I – PC)xn

∥
∥2 +

∥
∥(I – PQ)yn

∥
∥2 + ‖Axn – Byn‖2)

≤
∞∑

n=0

τn
(∥∥(I – PC)xn

∥
∥2 +

∥
∥(I – PQ)yn

∥
∥2 + ‖Axn – Byn‖2) < ∞.

This implies that

∞∑

n=0

ρn
∥∥(I – PC)xn

∥∥2 < ∞,
∞∑

n=0

ρn
∥∥(I – PQ)yn

∥∥2 < ∞, (20)

and

∞∑

n=0

ρn‖Axn – Byn‖2 < ∞.

We next prove that limn→∞ ‖(I – PC)xn‖2 = 0, limn→∞ ‖(I – PQ)yn‖2 = 0, and
limn→∞ ‖Axn – Byn‖2 = 0. From (17), we get

‖yn+1 – yn‖ ≤ ‖yn+1 – zn‖ + ‖zn – yn‖ ≤ ρ2
n

1
δ
‖B‖‖A‖ + ρn.
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Observe that

∣∣∥∥(I – PC)xn+1
∥∥2 –

∥∥(I – PC)xn
∥∥2∣∣

=
∣∣∥∥(I – PC)xn+1

∥∥ –
∥∥(I – PC)xn

∥∥∣∣(∥∥(I – PC)xn+1
∥∥ +

∥∥(I – PC)xn
∥∥)

≤ ∥∥(I – PC)xn+1 – (I – PC)xn
∥∥M3

≤ ‖xn+1 – xn‖M3

≤ M3ρn.

This along with (20) and Lemma 2.10 implies that limn→∞ ‖(I – PC)xn‖2 = 0. Similarly, we
have

∣
∣
∥
∥(I – PQ)yn+1

∥
∥2 –

∥
∥(I – PQ)yn

∥
∥2∣∣

=
∣∣∥∥(I – PQ)yn+1

∥∥ –
∥∥(I – PQ)yn

∥∥∣∣(∥∥(I – PQ)yn+1
∥∥ +

∥∥(I – PQ)yn
∥∥)

≤ ∥∥(I – PQ)yn+1 – (I – PQ)yn
∥∥M3

≤ ‖yn+1 – yn‖M3

≤ ρn

(
ρn

1
δ
‖B‖‖A‖ + 1

)
M3

≤ M4ρn,

where M4 is a positive number such that (ρn
1
δ
‖B‖‖A‖ + 1)M3 ≤ M4 for all n ≥ 0. Hence,

by Lemma 2.10, we conclude that limn→∞ ‖(I – PQ)yn‖2 = 0. Using a similar method in
Theorem 3.2, we obtain limn→∞ ‖Axn – Byn‖2 = 0.

Now, we show that ωw(xn, yn) ⊆ S. Let x̄ and ȳ be weak cluster points of the sequences
{xn} and {yn}, respectively. We assume that {xnk } and {ynk } are subsequences of {xn} and
{yn} such that xnk ⇀ x̄ and ynk ⇀ ȳ, respectively. Since I – PC and I – PQ are demiclosed
at zero, it follows from (I – PC)xnk → 0 and (I – PQ)ynk → 0 that x̄ ∈ C and ȳ ∈ Q. Further-
more, the weak convergence of {Axnk – Bynk } to Ax̄ – Bȳ and the weakly lower semiconti-
nuity of the squared norm imply

‖Ax̄ – Bȳ‖2 ≤ lim inf
k→∞

‖Axnk – Bynk ‖2 = 0.

Hence (x̄, ȳ) ∈ S. In summary, we have proved that limn→∞ ‖xn – x∗‖2 + ‖yn – y∗‖2 exists
for each (x∗, y∗) ∈ S and ωw(xn, yn) ⊆ S. Thus, we conclude from Lemma 2.8 that {(xn, yn)}
converges weakly to a solution of SEP (4). �

5 A relaxed alternating iterative algorithm
In this section, we consider the case whenever PC or PQ fails to have a closed-form expres-
sion. Indeed, Moudafi [12] considered one of such cases when C and Q are level sets:

C =
{

x ∈ H1 | c(x) ≤ 0
}

(21)

and

Q =
{

y ∈ H2 | q(y) ≤ 0
}

, (22)
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where c : H1 → R and q : H2 → R are two convex lower semicontinuous and subdiffer-
ential functions on H1 and H2, respectively. Here the subdifferential operators ∂c and ∂q
of c and q are assumed to be bounded, i.e., bounded on bounded sets. In this case, it is
known that the associated projections are very hard to calculate. To overcome this diffi-
culty, Moudafi [12] presented the relaxed alternating CQ-algorithm (RACQA):

⎧
⎨

⎩
xn+1 = PCn (xn – γ A∗(Axn – Byn)),

yn+1 = PQn (yn + γ B∗(Axn+1 – Byn)),
(23)

where {Cn} and {Qn} are two sequences of closed convex sets defined by

Cn =
{

x ∈ H1 | c(xn) + 〈ξn, x – xn〉 ≤ 0
}

, ξn ∈ ∂c(xn) (24)

and

Qn =
{

y ∈ H2 | q(yn) + 〈ηn, y – yn〉 ≤ 0
}

, ηn ∈ ∂q(yn). (25)

Since Cn and Qn are clearly half-spaces, the associated projections thus have closed form
expressions. This indicates that the implementation of RACQA is very easy. Under suitable
conditions, Moudafi [12] proved that the RACQA converges weakly to a solution of (4).

Following the RACQA and our proposed algorithms, we now present a relaxed alternat-
ing iterative algorithm in which we just need projections onto half-spaces [16, 27, 28].

In what follows, we will treat SEP (4) under the following assumptions.
(A1) The sets C and Q are given in (21) and (22), respectively.
(A2) For any x ∈ H1 and y ∈ H2, at least one subgradient ξ ∈ ∂c(x) and η ∈ ∂q(y) can be

calculated.

Remark 5.1 It follows from Lemma 2.6 that both c and q are weakly lower semicontinuous
by condition (A2), since c : H1 →R and q : H2 → R are convex.

We are now in a position to present a relaxed alternative iterative algorithm that does
not depend on operator norms for solving SEP (4).

Algorithm 5.2 Let (x0, y0) be arbitrary, δ > 0 be a constant, and {ρn} be a sequence of
positive real numbers. Given (xn, yn), construct (xn+1, yn+1) via the formula

⎧
⎨

⎩
xn+1 = xn – τn[(I – PCn )xn + A∗(Axn – Byn)],

yn+1 = yn – τn[(I – PQn )yn – B∗(Axn+1 – Byn)],
(26)

where Cn and Qn are given as in (24) and (25), respectively, and

τn = ρn
(
max

{∥∥(I – PCn )xn + A∗(Axn – Byn)
∥∥,

∥∥(I – PQn )yn – B∗(Axn – Byn)
∥∥, δ

})–1.

Remark 5.3 By the definition of the subgradient, it is obvious that C ⊆ Cn and Q ⊆ Qn for
all n ≥ 0. Since Cn and Qn are both half-spaces, the projections onto Cn and Qn can be
directly calculated. Thus Algorithm 5.2 is easily implementable.
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Theorem 5.4 Let {(xn, yn)} be the sequence generated by Algorithm 5.2. If {ρn} satisfies
condition (7), then {(xn, yn)} converges weakly to a solution of SEP (4).

Proof Take (x∗, y∗) ∈ S, i.e., x∗ ∈ C (and thus x∗ ∈ Cn); y∗ ∈ Q (and thus y∗ ∈ Qn), Ax∗ = By∗.
Similarly as in the proof of Theorem 4.2, we can conclude that limn→∞(‖xn – x∗‖2 + ‖yn –
y∗‖2) exists, limn→∞ ‖(I – PCn )xn‖2 = 0, limn→∞ ‖(I – PQn )yn‖2 = 0, and limn→∞ ‖Axn –
Byn‖2 = 0.

We next show that ωw(xn, yn) ⊆ S. Since limn→∞(‖xn – x∗‖2 + ‖yn – y∗‖2) exists, the se-
quences {xn} and {yn} are bounded. Let x̄ and ȳ be weak cluster points of the sequences
{xn} and {yn}, respectively. Without loss of generality, we assume that xn ⇀ x̄ and yn ⇀ ȳ.
Since ∂c is bounded on bounded sets, there is a constant σ1 > 0 such that ‖ξn‖ ≤ σ1 for all
n ≥ 0. From (24) and the fact that PCn (xn) ∈ Cn, it follows that

c(xn) ≤ 〈ξn, xn – PCn xn〉 ≤ σ1
∥
∥(I – PCn )xn

∥
∥.

The weakly lower semicontinuity of c leads to

c(x̄) ≤ lim inf
n→+∞ c(xn) ≤ σ1 lim inf

n→+∞
∥
∥(I – PCn )xn

∥
∥ = 0,

and therefore x̄ ∈ C. Likewise, since ∂q is bounded on bounded sets, there is a constant
σ2 > 0 such that ‖ηn‖ ≤ σ2 for all n ≥ 0. From (25) and the fact that PQn (yn) ∈ Qn, it follows
that

q(yn) ≤ 〈ηn, yn – PQn yn〉 ≤ σ2
∥∥(I – PQn )yn

∥∥.

Again, the weakly lower semicontinuity of q leads to

q(ȳ) ≤ lim inf
n→+∞ q(yn) ≤ σ2 lim inf

n→+∞
∥∥(I – PQn )yn

∥∥ = 0,

and therefore ȳ ∈ Q. Furthermore, the weak convergence of {Axn – Byn} to Ax̄ – Bȳ and the
weakly lower semicontinuity of the squared norm imply

‖Ax̄ – Bȳ‖2 ≤ lim inf
n→+∞ ‖Axn – Byn‖2 = 0.

Hence (x̄, ȳ) ∈ S.
Finally, we deduce from Lemma 2.8 that {(xn, yn)} converges weakly to a solution of SEP

(4), since limn→∞ ‖xn – x∗‖2 + ‖yn – y∗‖2 exists for each (x∗, y∗) ∈ S and ωw(xn, yn) ⊆ S. �

Acknowledgements
Not applicable.

Funding
This work was supported by the National Natural Science Foundation of China (Nos. 11971216, 11571005) and the
Foundation of He’nan Educational Committee (No. 20A110029).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.



Yu and Wang Journal of Inequalities and Applications        (2020) 2020:214 Page 14 of 14

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 June 2020 Accepted: 17 August 2020

References
1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Space. Springer, Berlin

(2011)
2. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453

(2002)
3. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse

Probl. 20, 103–120 (2004)
4. Byrne, C., Moudafi, A.: Extensions of the CQ algorithm for the split feasibility and split equality problems. J. Nonlinear

Convex Anal. 18, 1485–1496 (2017)
5. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms

8, 221–239 (1994)
6. Chuang, C., Du, W.: Hybrid simultaneous algorithms for the split equality problem with applications. J. Inequal. Appl.

2016, 198 (2016)
7. Dong, Q., He, S.: Self-adaptive projection algorithms for solving the split equality problems. Fixed Point Theory 18(1),

191–202 (2017)
8. Dong, Q., He, S., Zhao, J.: Solving the split equality problem without prior knowledge of operator norms. Optimization

64(9), 1887–1906 (2015)
9. Dong, Q., Jiang, D.: Simultaneous and semi-alternating projection algorithms for solving split equality problems. J.

Inequal. Appl. 2018, 4 (2018)
10. He, S., Tian, H., Xu, H.: The selective projection method for convex feasibility and split feasibility problems. J. Nonlinear

Convex Anal. 19(7), 1199–1215 (2018)
11. López, G., Martín, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms.

Inverse Probl. 28, 085004 (2012)
12. Moudafi, A.: A relaxed alternating CQ-algorithm for convex feasibility problems. Nonlinear Anal. 79, 117–121 (2013)
13. Moudafi, A.: Alternating CQ-algorithm for convex feasibility and split fixed-point problems. J. Nonlinear Convex Anal.

15, 809–818 (2014)
14. Moudafi, A., Al-Shemas, E.: Simultaneous iterative methods for split equality problems and applications. Trans. Math.

Program. Appl. 1, 1–11 (2013)
15. Naraghirad, E.: On an open question of Moudafi for convex feasibility problem in Hilbert spaces. Taiwan. J. Math.

18(2), 371–408 (2014)
16. Qu, B., Xiu, N.H.: A new halfspace-relaxation projection method for the split feasibility problem. Linear Algebra Appl.

428(5), 1218–1229 (2008)
17. Takahashi, W.: Nonlinear Functional Analysis, Fixed Point Theory and Its Applications. Yokahama Publishers,

Yokahama (2000)
18. Tan, K.K., Xu, H.K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math.

Anal. Appl. 178, 301–308 (1993)
19. Wang, F.: A new iterative method for the split common fixed point problem in Hilbert spaces. Optimization 66,

407–415 (2017)
20. Wang, F.: On the convergence of CQ algorithm with variable steps for the split equality problem. Numer. Algorithms

74, 927–935 (2017)
21. Wang, F.: Polyak’s gradient method for split feasibility problem constrained by level sets. Numer. Algorithms 77,

925–938 (2018)
22. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
23. Xu, H.K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22,

2021–2034 (2006)
24. Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26,

105018 (2010)
25. Xu, H.K.: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 150(2), 360–378 (2011)
26. Xu, H.K.: Properties and iterative methods for the Lasso and its variants. Chin. Ann. Math., Ser. B 35(3), 501–518 (2014)
27. Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)
28. Yang, Q.: On variable-step relaxed projection algorithm for variational inequalities. J. Math. Anal. Appl. 302, 166–179

(2005)
29. Yao, Y., Liou, Y., Postolache, M.: Self-adaptive algorithms for the split problem of the demicontractive operators.

Optimization 67(9), 1309–1319 (2018)


	Alternating iterative algorithms for the split equality problem without prior knowledge of operator norms
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Alternating iterative algorithm I
	Alternating iterative algorithm II
	A relaxed alternating iterative algorithm
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


