
Gürbüz et al. Journal of Inequalities and Applications        (2020) 2020:172 
https://doi.org/10.1186/s13660-020-02438-1

R E S E A R C H Open Access

Hermite–Hadamard inequality for fractional
integrals of Caputo–Fabrizio type and related
inequalities
Mustafa Gürbüz1, Ahmet Ocak Akdemir2* , Saima Rashid3 and Erhan Set4

*Correspondence:
aocakakdemir@gmail.com
2Department of Mathematics,
Faculty of Arts and Sciences, Ağrı
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Abstract
In this article, firstly, Hermite–Hadamard’s inequality is generalized via a fractional
integral operator associated with the Caputo–Fabrizio fractional derivative. Then a
new kernel is obtained and a new theorem valid for convex functions is proved for
fractional order integrals. Also, some applications of our main findings are given.
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1 Introduction
Fractional calculus has been appealing to many researchers over the last decades [1–5].
Some researchers have found that different fractional derivatives with different singular
or nonsingular kernels need to be identified by real-world problems in different fields of
engineering and science [6–12]. These different fractional operators are also used in inte-
gral inequalities [13–21]. Thus, fractional calculus plays an important role in the develop-
ment of inequality theory. One of the best-known inequalities, the Hermite–Hadamard
inequality, which is generalized by means of several fractional integral operators, is given
now.

Theorem 1 (See [22]) Let f : I → R be a convex function defined on the interval I of real
numbers and a, b ∈ I with a < b. Then the following inequality holds:

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
.

In the field of fractional analysis, many researchers have focused on defining new op-
erators and modeling and implementing of the problems based on their features. The
features that make the operators different from each other include singularity and lo-
cality, while kernel expression of the operator is presented with functions such as the
power law, the exponential function or a Mittag-Leffler function. The distinctive feature
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of the Caputo–Fabrizio operator is that it has a non-singular kernel. With the help of the
Caputo–Fabrizio operator, new studies have been made on many modeling problems and
real-world problems. This is so because the definition of Caputo–Fabrizio is very effec-
tive in better describing heterogeneousness and systems with different scales with mem-
ory effects. The main basic feature of the Caputo–Fabrizio definition can be explained
as a real power turned into the integer by the Laplace transformation, thus the exact so-
lution can be easily found for various problems. Now, we will proceed by some neces-
sary definitions and preliminary results which are used and referred throughout this pa-
per.

Definition 1 (See [1, 23, 24]) Let f ∈ H1(a, b), a < b, α ∈ [0, 1], then the definition of the
left fractional derivative in the sense of Caputo and Fabrizio becomes

(CFC
a Dαf

)
(t) =

B(α)
1 – α

∫ t

a
f ′(x)e

–α(t–x)α
1–α dx

and the associated fractional integral is

(CF
a Iαf

)
(t) =

1 – α

B(α)
f (t) +

α

B(α)

∫ t

a
f (x) dx,

where B(α) > 0 is a normalization function satisfying B(0) = B(1) = 1. For the right frac-
tional derivative we have

(CFCDα
b f

)
(t) =

–B(α)
1 – α

∫ b

t
f ′(x)e

–α(x–t)α
1–α dx

and the associated fractional integral is

(CFIα
b f

)
(t) =

1 – α

B(α)
f (t) +

α

B(α)

∫ b

t
f (x) dx.

Fractional derivative and integral operators have recently been used to generalize ex-
isting kernels. The kernel which we will generalize with the help of a Caputo–Fabrizio
fractional integral operator is proven by Dragomir and Agarwal.

Lemma 1 (See [25]) Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I with
a < b. If f ′ ∈ L[a, b] then the following equality holds:

f (a) + f (b)
2

–
1

b – a

∫ b

a
f (x) dx =

b – a
2

∫ 1

0
(1 – 2t)f ′(ta + (1 – t)b

)
dt.

In the following section, we will prove a theorem which is a variant of the Hermite–
Hadamard inequality.
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2 A generalization of Hermite–Hadamard inequality via the Caputo–Fabrizio
fractional operator

Theorem 2 Let a function f : [a, b] ⊆ R → R be convex on [a, b] and f ∈ L1[a, b]. If α ∈
[0, 1], then the following double inequality holds:

f
(

a + b
2

)
≤ B(α)

α(b – a)

[(CF
a Iαf

)
(k) +

(CFIα
b f

)
(k) –

2(1 – α)
B(α)

f (k)
]

≤ f (a) + f (b)
2

, (1)

where k ∈ [a, b] and B(α) > 0 is a normalization function.

Proof Since f is a convex function on [a, b] we can write

2f
(

a + b
2

)
≤ 2

b – a

∫ b

a
f (x) dx

=
2

b – a

(∫ k

a
f (x) dx +

∫ b

k
f (x) dx

)
. (2)

By multiplying both sides of (2) with α(b–a)
2B(α) and adding 2(1–α)

B(α) f (k) we have

2(1 – α)
B(α)

f (k) +
α(b – a)

B(α)
f
(

a + b
2

)

≤ 2(1 – α)
B(α)

f (k) +
α

B(α)

(∫ k

a
f (x) dx +

∫ b

k
f (x) dx

)

=
(

1 – α

B(α)
f (k) +

α

B(α)

∫ k

a
f (x) dx

)
+

(
1 – α

B(α)
f (k) +

α

B(α)

∫ b

k
f (x) dx

)

=
(CF

a Iαf
)
(k) +

(CFIα
b f

)
(k). (3)

So, the proof of the first inequality in (1) is completed by reorganizing the last inequality.
For the proof of the second inequality in (1), if we use the right hand side of Hadamard
inequality, we can write

2
b – a

∫ b

a
f (x) dx ≤ f (a) + f (b). (4)

By making the same operations with (2) in (4), we have

(CF
a Iαf

)
(k) +

(CFIα
b f

)
(k) ≤ 2(1 – α)

B(α)
f (k) +

α(b – a)
2B(α)

(
f (a) + f (b)

)
. (5)

By reorganizing (5), the proof of the second inequality in (1) is completed. �

Theorem 3 Let f , g : I ⊆ R → R be a convex function. If fg ∈ L([a, b]), then we have the
following inequality:

2B(α)
α(b – a)

[(CF
a Iαfg

)
(k) +

(CFIα
b fg

)
(k) –

2(1 – α)
B(α)

f (k)g(k)
]

≤ 2
3

M(a, b) +
1
3

N(a, b),

where

M(a, b) = f (a)g(a) + f (b)g(b),
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N(a, b) = f (a)g(b) + f (b)g(a),

and k ∈ [a, b], B(α) > 0 is a normalization function.

Proof Since f and g are convex functions on [a, b], we have

f
(
ta + (1 – t)b

) ≤ tf (a) + (1 – t)f (b), ∀t ∈ [0, 1], a, b ∈ I,

and

g
(
ta + (1 – t)b

) ≤ tg(a) + (1 – t)g(b), ∀t ∈ [0, 1], a, b ∈ I.

Multiplying above inequalities both sides, we have

f
(
ta + (1 – t)b

)
g
(
ta + (1 – t)b

)
≤ t2f (a)g(a) + (1 – t)2f (b)g(b) + t(1 – t)

[
f (a)g(b) + f (b)g(a)

]
. (6)

Integrating (6) with respect to t over [0, 1], and making the change of variable, we obtain

2
b – a

∫ b

a
f (x)g(x) dx ≤ 2

3
[
f (a)g(a) + f (b)g(b)

]
+

1
3
[
f (a)g(b) + f (b)g(a)

]
,

which implies

2
b – a

[∫ t

a
f (x)g(x) dx +

∫ b

t
f (x)g(x) dx

]
≤ 2

3
M(a, b) +

1
3

N(a, b).

By multiplying both sides with α(b–a)
2B(α) and adding 2(1–α)

B(α) f (k)g(k) we have

α

B(α)

[∫ k

a
f (x)g(x) dx +

∫ b

k
f (x)g(x) dx

]
+

2(1 – α)
B(α)

f (k)g(k)

≤ α(b – a)
2B(α)

[
2
3

M(a, b) +
1
3

N(a, b)
]

+
2(1 – α)

B(α)
f (k)g(k).

Thus

(CF
a Iαfg

)
(k) +

(CFIα
b fg

)
(k) ≤ α(b – a)

2B(α)

[
2
3

M(a, b) +
1
3

N(a, b)
]

+
2(1 – α)

B(α)
f (k)g(k),

and with suitable rearrangements, the proof is completed. �

Theorem 4 Let f , g : I ⊆R→ R be a convex function. If fg ∈ L([a, b]), the set of integrable
functions, then

2f
(

a + b
2

)
g
(

a + b
2

)
–

1
b – a

[(CF
a Iαfg

)
(k) +

(CFIα
b fg

)]
k +

1 – α

α(b – a)
f (k)g(k)

≤ 2
3

M(a, b) +
4
3

N(a, b), (7)
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where M(a, b) and N(a, b) are given in Theorem 3 and k ∈ [a, b], B(α) > 0 is a normalization
function.

Proof Since f and g are convex functions on [a, b], for t = 1
2 , we have

f
(

a + b
2

)
≤ f ((1 – t)a + tb) + f (ta + (1 – t)b)

2
, ∀a, b ∈ I, t ∈ [0, 1],

and

g
(

a + b
2

)
≤ g((1 – t)a + tb) + g(ta + (1 – t)b)

2
, ∀a, b ∈ I, t ∈ [0, 1].

Multiplying the above inequalities at both sides, we have

f
(

a + b
2

)
g
(

a + b
2

)

≤ 1
4
[
f
(
(1 – t)a + tb

)
g
(
(1 – t)a + tb

)
+ f

(
ta + (1 – t)b

)
g
(
ta + (1 – t)b

)

+ f
(
(1 – t)a + tb

)
g
(
ta + (1 – t)b

)
+ f

(
ta + (1 – t)b

)
g
(
(1 – t)a + tb

)]

≤ 1
4
[
f
(
(1 – t)a + tb

)
g
(
(1 – t)a + tb

)
+ f

(
ta + (1 – t)b

)
g
(
ta + (1 – t)b

)

+ 2
{

t(1 – t)
[
f (a)g(a) + f (b)g(b)

]
+ (1 – t)2f (a)g(b) + t2f (b)g(a)

}]
.

Integrating the above inequality with respect to t over [0, 1] and making the change of
variable, one obtains

f
(

a + b
2

)
g
(

a + b
2

)

≤ 1
2(b – a)

∫ b

a
f (x)g(x) dx +

1
3
[
f (a)g(a) + f (b)g(b)

]
+

2
3
[
f (a)g(b) + f (b)g(a)

]
.

Thus

4f
(

a + b
2

)
g
(

a + b
2

)
≤ 2

(b – a)

∫ b

a
f (x)g(x) dx +

4
3

M(a, b) +
8
3

N(a, b).

By multiplying both sides with α(b–a)
2B(α) and subtracting 2(1–α)

B(α) f (k)g(k) we have

2α(b – a)
B(α)

f
(

a + b
2

)
g
(

a + b
2

)
–

α

B(α)

[∫ k

a
f (x)g(x) dx +

∫ b

k
f (x)g(x) dx

]

–
2(1 – α)

B(α)
f (k)g(k)

≤ α(b – a)
2B(α)

[
4
3

M(a, b) +
8
3

N(a, b)
]

–
2(1 – α)

B(α)
f (k)g(k),
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and one arrives at

2α(b – a)
B(α)

f
(

a + b
2

)
g
(

a + b
2

)
–

α

B(α)
[(CF

a Iαfg
)
(k) +

(CFIα
b fg

)]
(k)

≤ α(b – a)
2B(α)

[
4
3

M(a, b) +
8
3

N(a, b)
]

–
2(1 – α)

B(α)
f (k)g(k).

Multiplying both sides of the above inequality by 2B(α)
α(b–a) , we get the required inequality

(7). �

3 Some new results related with Caputo–Fabrizio fractional operator
In this section, firstly, we will generalize a lemma, then we will put forward a theorem with
the help of the lemma.

Lemma 2 Let f : I ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I with a < b. If f ′ ∈
L1[a, b] and α ∈ [0, 1], the following equality holds:

b – a
2

∫ 1

0
(1 – 2t)f ′(ta + (1 – t)b

)
dt –

2(1 – α)
α(b – a)

f (k)

=
f (a) + f (b)

2
–

B(α)
α(b – a)

[(CF
a Iαf

)
(k) +

(CFIα
b f

)
(k)

]
,

where k ∈ [a, b] and B(α) > 0 is a normalization function.

Proof It is easy to see that

∫ 1

0
(1 – 2t)f ′(ta + (1 – t)b

)
dt

=
f (a) + f (b)

b – a
–

2
(b – a)2

(∫ k

a
f (x) dx +

∫ b

k
f (x) dx

)
.

By multiplying both sides with α(b–a)2

2B(α) and subtracting 2(1–α)
B(α) f (k) we have

α(b – a)2

2B(α)

∫ 1

0
(1 – 2t)f ′(ta + (1 – t)b

)
dt –

2(1 – α)
B(α)

f (k)

=
α(b – a)(f (a) + f (b))

2B(α)
+

2(1 – α)
B(α)

f (k) –
α

B(α)

(∫ k

a
f (x) dx +

∫ b

k
f (x) dx

)

=
α(b – a)(f (a) + f (b))

2B(α)
–

(
(1 – α)
B(α)

f (k) +
α

B(α)

∫ k

a
f (x) dx

)

–
(

(1 – α)
B(α)

f (k) +
α

B(α)

∫ b

k
f (x) dx

)

=
α(b – a)(f (a) + f (b))

2B(α)
–

[(CF
a Iαf

)
(k) +

(CFIα
b f

)
(k)

]
.

Thus, the proof is completed. �
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Theorem 5 Let f : I ⊆R →R be a differentiable positive mapping on I◦ and |f ′| be convex
on [a, b] where a, b ∈ I with a < b. If f ′ ∈ L1[a, b] and α ∈ [0, 1], the following inequality
holds:

∣∣∣∣ f (a) + f (b)
2

+
2(1 – α)
α(b – a)

f (k) –
B(α)

α(b – a)
[(CF

a Iαf
)
(k) +

(CFIα
b f

)
(k)

]∣∣∣∣
≤ (b – a)(|f ′(a)| + |f ′(b)|)

8
,

where k ∈ [a, b] and B(α) > 0 is a normalization function.

Proof By using Lemma 2, the properties of the absolute value and the convexity of |f ′| we
have

∣∣∣∣ f (a) + f (b)
2

+
2(1 – α)
α(b – a)

f (k) –
B(α)

α(b – a)
[(CF

a Iαf
)
(k) +

(CFIα
b f

)
(k)

]∣∣∣∣
≤ b – a

2

∫ 1

0
|1 – 2t|∣∣f ′(ta + (1 – t)b

)∣∣dt

≤ b – a
2

∫ 1

0
|1 – 2t|(t

∣∣f ′(a)
∣∣ + (1 – t)

∣∣f ′(b)
∣∣)dt

=
b – a

2

(∫ 1
2

0
(1 – 2t)

(
t
∣∣f ′(a)

∣∣ + (1 – t)
∣∣f ′(b)

∣∣)dt

+
∫ 1

1
2

(2t – 1)
(
t
∣∣f ′(a)

∣∣ + (1 – t)
∣∣f ′(b)

∣∣)dt
)

=
(b – a)(|f ′(a)| + |f ′(b)|)

8
.

So the proof is completed. �

Theorem 6 Let f : I ⊆R →R be a differentiable positive mapping on I◦ and |f ′|q be convex
on [a, b] where p > 1, p–1 + q–1 = 1, a, b ∈ I with a < b. If f ′ ∈ L1[a, b] and α ∈ [0, 1], the
following inequality holds:

∣∣∣∣ f (a) + f (b)
2

+
2(1 – α)
α(b – a)

f (k) –
B(α)

α(b – a)
[(CF

a Iαf
)
(k) +

(CFIα
b f

)
(k)

]∣∣∣∣

≤ b – a
2

(
1

p + 1

) 1
p
( |f ′(a)|q + |f ′(b)|q

2

) 1
q

,

where k ∈ [a, b] and B(α) > 0 is a normalization function.

Proof By a similar argument to the proof of the previous theorem, but now using Lemma 2,
the Hölder inequality and convexity of |f ′|q, we get

∣∣∣∣ f (a) + f (b)
2

+
2(1 – α)
α(b – a)

f (k) –
B(α)

α(b – a)
[(CF

a Iαf
)
(k) +

(CFIα
b f

)
(k)

]∣∣∣∣
≤ b – a

2

∫ 1

0
|1 – 2t|∣∣f ′(ta + (1 – t)b

)∣∣dt



Gürbüz et al. Journal of Inequalities and Applications        (2020) 2020:172 Page 8 of 10

≤ b – a
2

(∫ 1

0
|1 – 2t|p dt

) 1
p
(∫ 1

0

∣∣f ′(ta + (1 – t)b
)∣∣q dt

) 1
q

=
b – a

2

(
1

p + 1

) 1
p
( |f ′(a)|q + |f ′(b)|q

2

) 1
q

.

So the proof is completed. �

4 Application to special means
It is very important to give an application in terms of efficiency and usefulness of the
results obtained. At the same time, the accuracy of the findings will be confirmed by the
application to special means for real numbers a1, a2 such that a1 	= a2:

(1) The arithmetic mean

A = A(a1, a2) =
a1 + a2

2
, a1, a2 ∈R.

(2) The generalized logarithmic mean

L = Lr
r(a1, a2) =

ar+1
2 – ar+1

1
(r + 1)(a2 – a1)

, r ∈R \ {–1, 0\}, a1, a2 ∈R, a1 	= a2.

Now, using the results in Sect. 3, we have some applications to the special means of real
numbers.

Proposition 1 Let a1, a2 ∈R
+, a1 < a2, then

∣∣A(
a2

1, a2
2
)

– L2
2(a1, a2)

∣∣ ≤ (a1 – a2)
4

[|a1| + |a2|
]
.

Proof In Theorem 5, if we set f (z) = z2 with α = 1 and B(α) = B(1) = 1, then we obtain the
result immediately. �

Proposition 2 Let a1, a2 ∈R
+, a1 < a2, then

∣∣A(
ea1 , ea2

)
– L

(
ea1 , ea2

)∣∣ ≤ (a2 – a1)
8

(
ea1 + ea2

)
.

Proof In Theorem 5, if we set f (z) = ez with α = 1 and B(α) = B(1) = 1, then we obtain the
result immediately. �

Proposition 3 Let a1, a2 ∈R
+, a1 < a2, then

∣∣A(
an

1, an
2
)

– Ln
n(a1, a2)

∣∣ ≤ n(a1 – a2)
8

(∣∣an–1
1

∣∣ +
∣∣an–1

2
∣∣).

Proof In Theorem 5, if we set f (z) = zn where n is an even number with α = 1 and B(α) =
B(1) = 1, then we obtain the result immediately. �
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