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Abstract
In this manuscript, we give and study the concept of exponential type convex
functions and some of their algebraic properties. We prove two Hermite–Hadamard
(H-H) type integral inequalities for the newly introduced class of functions. We also
obtain some refinements of the H-H inequality for functions whose first derivative in
absolute value at certain power is exponential type convex.
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1 Introduction
A function f : I →R is said to be convex function if the following inequality holds:

f
(
km + (1 – k)n

) ≤ kf (m) + (1 – k)f (n) (1)

for all m, n ∈ I and k ∈ [0, 1]. If (1) reverses, then f is said to be concave on I �= ∅. Convexity
theory provides powerful principles and techniques for studying a class of problems in
mathematics. See articles [4, 5, 7, 9–13] and the references therein.

Let f : I →R be a convex function. Then the following inequalities hold:

f
(

m + n
2

)
≤ 1

n – m

∫ n

m
f (x) dx ≤ f (m) + f (n)

2
(2)

for all m, n ∈ I with m < n. Inequality (2) is well known as the Hermite–Hadamard (H-H)
integral inequality [6]. Some refinements of the H-H inequality for convex functions have
been obtained [3, 15].

The aim of this study is to submit the concept of exponential type convex functions and
find some results connected with the right-hand side of new inequalities similar to the
H-H inequality for this type of functions.

Definition 1.1 ([14]) Let h : J → R be a nonnegative function and h �= 0. We say that
f : I →R is an h-convex function, or that f belongs to the class SX(h, I), if f is nonnegative
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and for all m, n ∈ I , k ∈ [0, 1] we have

f
(
km + (1 – k)n

) ≤ h(k)f (m) + h(1 – k)f (n). (3)

If (3) is reversed, then f is said to be h-concave, i.e., f ∈ SV (h, I). It is clear that, if h(u) = u,
then the h-convexity reduces to convexity.

Readers can look at [1, 8] for studies on h-convexity.

2 Main results
In this section, we give a new definition, which is called exponential type convexity, and
we give it by setting some algebraic properties for the exponential type convex functions,
as follows.

Definition 2.1 A nonnegative function f : I → R is called exponential type convex func-
tion if, for every m, n ∈ I and k ∈ [0, 1],

f
(
km + (1 – k)n

) ≤ (
ek – 1

)
f (m) +

(
e1–k – 1

)
f (n). (4)

The class of all exponential type convex functions on interval I is indicated by EXPC(I).

Remark 2.1 The range of the exponential type convex functions is [0,∞).

Proof Let m ∈ I be arbitrary. Using the definition of the exponential type convex function
for k = 1, we have f (m) ≤ (e – 1)f (m) �⇒ 0 ≤ (e – 2)f (m) �⇒ f (m) ≥ 0. �

We discuss some connections between the class of exponential type convex functions
and other classes of generalized convex functions.

Lemma 2.1 For all k ∈ [0, 1], the inequalities ek – 1 ≥ k and e1–k – 1 ≥ 1 – k hold.

Proof The proof is obvious. �

Proposition 2.1 Every nonnegative convex function is exponential type convex function.

Proof According to Lemma 2.1, since k ≤ ek – 1 and 1 – k ≤ e1–k – 1 for all k ∈ [0, 1], we
obtain

f
(
km + (1 – k)n

) ≤ kf (m) + (1 – k)f (n) ≤ (
ek – 1

)
f (m) +

(
e1–k – 1

)
f (n). �

Proposition 2.2 Every exponential type convex function is an h-convex function with
h(k) = ek – 1.

Proof If we substitute ek – 1 = h(k) and e1–k – 1 = h(1 – k) in inequality (3), an h-convex
function is easily obtained. �

Theorem 2.1 Let f , g : [a, b] →R. If f and g are exponential type convex functions, then
(i) f + g is exponential type convex,

(ii) for c ≥ 0, cf is exponential type convex.
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Proof (i) Let f , g be exponential type convex, then

(f + g)
(
km + (1 – k)n

)

= f
(
km + (1 – k)n

)
+ g

(
km + (1 – k)n

)

≤ (
ek – 1

)
f (m) +

(
e1–k – 1

)
f (n) +

(
ek – 1

)
g(m) +

(
e1–k – 1

)
g(n)

=
(
ek – 1

)[
f (m) + g(m)

]
+

(
e1–k – 1

)[
f (n) + g(n)

]

=
(
ek – 1

)
(f + g)(m) +

(
e1–k – 1

)
(f + g)(n).

(ii) Let f be exponential type convex and c ∈R (c ≥ 0), then

(cf )
(
km + (1 – k)n

) ≤ c
[(

ek – 1
)
f (m) +

(
e1–k – 1

)
f (n)

]

=
(
ek – 1

)
cf (m) +

(
e1–k – 1

)
cf (n)

=
(
ek – 1

)
(cf )(m) +

(
e1–k – 1

)
(cf )(n). �

Remark 2.2 Theorem 2.1 follows from the known fact that the space of an h-convex func-
tion is a convex cone for each h (see [14], Proposition 9).

Theorem 2.2 If f : I → J is convex and g : J → R is an exponential type convex function
and nondecreasing, then g ◦ f : I →R is an exponential type convex function.

Proof For m, n ∈ I and k ∈ [0, 1], we get

(g ◦ f )
(
km + (1 – k)n

)
= g

(
f
(
km + (1 – k)n

))

≤ g
(
kf (m) + (1 – k)f (n)

)

≤ (
ek – 1

)
g
(
f (m)

)
+

(
e1–k – 1

)
g
(
f (n)

)

=
(
ek – 1

)
(g ◦ f )(m) +

(
e1–k – 1

)
(g ◦ f )(n). �

Remark 2.3 The above theorem can also be derived from Theorem 15 in [14].

Theorem 2.3 Let n > 0 and fα : [m, n] → R be an arbitrary family of exponential type
convex functions, and let f (x) = supα fα(x). If J = {u ∈ [m, n] : f (u) < ∞} is nonempty, then J
is an interval and f is an exponential type convex function on J .

Proof Let k ∈ [0, 1] and m, n ∈ J be arbitrary. Then

f
(
km + (1 – k)n

)
= sup

α

fα
(
km + (1 – k)n

)

≤ sup
α

[(
ek – 1

)
fα(m) +

(
e1–k – 1

)
fα(n)

]

≤ (
ek – 1

)
sup

α

fα(m) +
(
e1–k – 1

)
sup

α

fα(n)

=
(
ek – 1

)
f (m) +

(
e1–k – 1

)
f (n) < ∞.

This shows simultaneously that J is an interval, since it contains every point between any
two of its points, and that f is an exponential type convex function on J . �
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Theorem 2.4 If the function f : [m, n] → R is exponential type convex, then f is bounded
on [m, n].

Proof Let K = max{f (m), f (n)} and x ∈ [m, n] be an arbitrary point. Then there exists k ∈
[0, 1] such that x = km + (1 – k)n. Thus, since ek ≤ e and e1–k ≤ e, we have

f (x) ≤ f
(
km + (1 – k)n

)

≤ (
ek – 1

)
f (m) +

(
e1–k – 1

)
f (n)

≤ (
ek + e1–k – 2

)
.K

≤ 2(e – 1).K = M.

Also, for every x ∈ [m, n], there exists λ ∈ [0, n–m
2 ] such that x = m+n

2 + λ or x = m+n
2 – λ.

Without loss of generality, we suppose x = m+n
2 + λ. So, we have

f
(

m + n
2

)
= f

(
1
2

[
m + n

2
+ λ

]
+

1
2

[
m + n

2
– λ

])

≤ (
√

e – 1)
(

f (x) + f
(

m + n
2

– λ

))
.

By using M as the upper bound, we get

f (x) ≥ f
(

m + n
2

)
1√

e – 1
– f

(
m + n

2
– λ

)

≥ 1√
e – 1

f
(

m + n
2

)
– M = m. �

3 Hermite–Hadamard inequality for exponential type convex functions
The aim of this section is to find some inequalities of H-H type for exponential type convex
functions. In the next sections, we denote by L[m, n] the space of (Lebesgue) integrable
functions on the interval [m, n].

Theorem 3.1 Let f : [m, n] → R be an exponential type convex function. If m < n and
f ∈ L[m, n], then the following Hermite–Hadamard type inequalities hold:

1
2(

√
e – 1)

f
(

m + n
2

)
≤ 1

n – m

∫ n

m
f (x) dx ≤ (e – 2)

[
f (m) + f (n)

]
. (5)

Proof Firstly, from the property of the exponential type convex function of f , we get

f
(

m + n
2

)
= f

(
[km + (1 – k)n] + [(1 – k)m + kn]

2

)

= f
(

1
2
[
km + (1 – k)n

]
+

1
2
[
(1 – k)m + kn

])

≤ (
e

1
2 – 1

)
f
(
km + (1 – k)n

)
+

(
e1– 1

2 – 1
)
f
(
(1 – k)m + kn

)
.
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Now, if we take integral in the last inequality with respect to k ∈ [0, 1], we deduce that

f
(

m + n
2

)

≤
[
(
e

1
2 – 1

)∫ 1

0
f
(
km + (1 – k)n

)
dk +

(
e

1
2 – 1

)∫ 1

0
f
(
(1 – k)m + kn

)
dk

]

=
2(

√
e – 1)

n – m

∫ n

m
f (x) dx.

Secondly, by using the property of the exponential type convex function f , if the variable
is changed as u = km + (1 – k)n, then

1
n – m

∫ n

m
f (u) du =

∫ 1

0
f
(
km + (1 – k)n

)
dk

≤
∫ 1

0

{(
ek – 1

)
f (m) +

(
e1–k – 1

)
f (n)

}
dk

= (e – 2)
[
f (m) + f (n)

]
. �

4 Some new inequalities for exponential type convex functions
The aim of this section is to find new estimates that refine H-H inequality for func-
tions whose first derivative in absolute value at certain power is exponential type convex.
Dragomir and Agarwal [2] used the following lemma.

Lemma 4.1 ([2]) Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, m, n ∈ I◦ with
m < n. If f ′ ∈ L[m, n], then the following identity holds:

f (m) + f (n)
2

–
1

n – m

∫ n

m
f (x) dx =

n – m
2

∫ 1

0
(1 – 2k)f ′(km + (1 – k)n

)
dk.

Theorem 4.1 Let f : I → R be a differentiable function on I◦, m, n ∈ I◦ with m < n, and
assume that f ′ ∈ L[m, n]. If |f ′| is an exponential type convex function on [m, n], then the
inequality

∣∣
∣∣
f (m) + f (n)

2
–

1
n – m

∫ n

m
f (x) dx

∣∣
∣∣ ≤ (n – m)

(
4
√

e – e –
7
2

)
A

(∣∣f ′(m)
∣
∣,

∣
∣f ′(n)

∣
∣)

holds for k ∈ [0, 1], where A(u, v) is the arithmetic mean of u and v.

Proof From Lemma 4.1 and the inequality

∣∣f ′(km + (1 – k)n
)∣∣ ≤ (

ek – 1
)∣∣f ′(m)

∣∣ +
(
e1–k – 1

)∣∣f ′(n)
∣∣,

we get

∣
∣∣
∣
f (m) + f (n)

2
–

1
n – m

∫ n

m
f (x) dx

∣
∣∣
∣

≤ n – m
2

∫ 1

0
|1 – 2k|∣∣f ′(km + (1 – k)n

)∣∣dk
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≤ n – m
2

∫ 1

0
|1 – 2k|[(ek – 1

)∣∣f ′(m)
∣∣ +

(
e1–k – 1

)∣∣f ′(n)
∣∣]dk

=
n – m

2

[∣∣f ′(m)
∣∣
∫ 1

0
|1 – 2k|(ek – 1

)
dk +

∣∣f ′(n)
∣∣
∫ 1

0
|1 – 2k|(e1–k – 1

)
dk

]

= (n – m)
(

4
√

e – e –
7
2

)
A

(∣∣f ′(m)
∣
∣,

∣
∣f ′(n)

∣
∣),

where
∫ 1

0
|1 – 2k|(ek – 1

)
dk =

∫ 1

0
|1 – 2k|(e1–k – 1

)
dk = 4

√
e – e –

7
2

. �

Theorem 4.2 Let f : I → R be a differentiable function on I◦, m, n ∈ I◦ with m < n, q > 1,
and assume that f ′ ∈ L[m, n]. If |f ′|q is an exponential type convex function on [m, n], then
the inequality

∣
∣∣
∣
f (m) + f (n)

2
–

1
n – m

∫ n

m
f (x) dx

∣
∣∣
∣ ≤ n – m

2
[
2(e – 2)

] 1
q

(
1

p + 1

) 1
p

A
1
q
(∣∣f ′(m)

∣∣q,
∣∣f ′(n)

∣∣q)

holds for k ∈ [0, 1], where 1
p + 1

q = 1 and A is the arithmetic mean.

Proof From Lemma 4.1, Hölder’s integral inequality, and the following inequality:

∣∣f ′(km + (1 – k)n
)∣∣q ≤ (

ek – 1
)∣∣f ′(m)

∣∣q +
(
e1–k – 1

)∣∣f ′(n)
∣∣q,

which is the exponential type convex function of |f ′|q, we get
∣
∣∣
∣
f (m) + f (n)

2
–

1
n – m

∫ n

m
f (x) dx

∣
∣∣
∣

≤ n – m
2

∫ 1

0
|1 – 2k|∣∣f ′(km + (1 – k)n

)∣∣dk

≤ n – m
2

(∫ 1

0
|1 – 2k|p dk

) 1
p
(∫ 1

0

∣∣f ′(km + (1 – k)n
)∣∣q dk

) 1
q

≤ n – m
2

(
1

p + 1

) 1
p
(∫ 1

0

[(
ek – 1

)∣∣f ′(m)
∣
∣q +

(
e1–k – 1

)∣∣f ′(n)
∣
∣q]dk

) 1
q

=
n – m

2
[
2(e – 2)

] 1
q

(
1

p + 1

) 1
p

A
1
q
(∣∣f ′(m)

∣∣q,
∣∣f ′(n)

∣∣q). �

Theorem 4.3 Let f : I → R be a differentiable function on I◦, m, n ∈ I◦ with m < n, q ≥ 1,
and assume that f ′ ∈ L[m, n]. If |f ′|q is an exponential type convex function on [m, n], then
the inequality

∣∣
∣∣
f (m) + f (n)

2
–

1
n – m

∫ n

m
f (x) dx

∣∣
∣∣

≤ n – m

22– 1
q

[
2
(

4
√

e – e –
7
2

)] 1
q

A
1
q
(∣∣f ′(m)

∣∣q,
∣∣f ′(n)

∣∣q) (6)

holds for k ∈ [0, 1].
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Proof Assume first that q > 1. By using Lemma 4.1, Hölder’s inequality, and the property
of the exponential type convex function of |f ′|q, we obtain

∣∣
∣∣
f (m) + f (n)

2
–

1
n – m

∫ n

m
f (x) dx

∣∣
∣∣

≤ n – m
2

∫ 1

0
|1 – 2k|∣∣f ′(km + (1 – k)n

)∣∣dk

≤ n – m
2

(∫ 1

0
|1 – 2k|dk

)1– 1
q
(∫ 1

0
|1 – 2k|∣∣f ′(km + (1 – k)n

)∣∣q dk
) 1

q

=
n – m

2

(
1
2

)1– 1
q
(∫ 1

0
|1 – 2k|[(ek – 1

)∣∣f ′(m)
∣∣q +

(
e1–k – 1

)∣∣f ′(n)
∣∣q]dk

) 1
q

=
n – m

22– 1
q

[
2
(

4
√

e – e –
7
2

)] 1
q

A
1
q
(∣∣f ′(m)

∣
∣q,

∣
∣f ′(n)

∣
∣q).

For q = 1, we consider the estimates from the proof of Theorem 4.1, which also follows
step by step the above estimates. �

Remark 4.1 Under the assumptions of Theorem 4.3 with q = 1, we get the conclusion of
Theorem 4.1.

5 Applications for special means
Throughout this section, for the sake of simplicity, the following notations are used for
special means of two nonnegative numbers m, n (n > m):

1. The arithmetic mean

A := A(m, n) =
m + n

2
, m, n ≥ 0.

2. The geometric mean

G := G(m, n) =
√

mn, m, n ≥ 0.

3. The harmonic mean

H := H(m, n) =
2mn

m + n
, m, n > 0.

4. The logarithmic mean

L := L(m, n) =

{
n–m

ln n–ln m , m �= n,
m, m = n;

m, n > 0.

5. The p-logarithmic mean

Lp := Lp(m, n) =

{
( np+1–mp+1

(p+1)(n–m) )
1
p , m �= n, p ∈R \ {–1, 0},

m, m = n;
m, n > 0.
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6. The identric mean

I := I(m, n) =
1
e

(
nn

mm

) 1
n–m

, m, n > 0.

It is well known that Lp is monotonically increasing over p ∈R. Moreover, L0 = I , L–1 = L.

Proposition 5.1 Let m, n ∈ [0,∞) with m < n and r ∈ (–∞, 0) ∪ [1,∞) \ {–1}. Then the
inequalities

Ar(m, n)
2(

√
e – 1)

≤ Lr
r(m, n) ≤ 2(e – 2)A

(
mr , nr)

hold.

Proof It is easily seen from inequalities (5) for the function

f (x) = xr , x ∈ [0,∞). �

Proposition 5.2 Let m, n ∈ (0,∞) with m < n . Then the inequalities

A–1(m, n)
2(

√
e – 1)

≤ L–1(m, n) ≤ 2(e – 2)H–1(m, n)

hold.

Proof It is easily seen from inequalities (5) for the function

f (x) = x–1, x ∈ (0,∞). �

Proposition 5.3 Let m, n ∈ (0, 1] with m < n. Then the inequalities

2(e – 2) ln G(m, n) ≤ ln I(m, n) ≤ ln A(m, n)
2(

√
e – 1)

hold.

Proof It is easily seen from inequalities (5) for the function

f (x) = – ln x, x ∈ (0, 1]. �

6 Conclusion
In this paper, we studied the concept of exponential type convex functions, which is a
new concept. We proved some new Hermite–Hadamard type integral inequalities for the
newly introduced class of functions using an identity together with Hölder’s integral in-
equality. Especially, we would like to emphasize that different types of integral inequalities
can be obtained using this new definition.
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