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Abstract
In this paper, we obtain some potentially useful conditions (or criteria) for the
Carathéodory functions as a certain class of analytic functions by applying
Nunokawa’s lemma. We also obtain several conditions for strong starlikeness and
close-to-convexity as special cases of the main results presented here.
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1 Introduction and preliminaries
Let A be a class of functions f of the following normalized form:

f (z) = z +
∞∑

n=2

anzn, (1.1)

which are analytic in the open unit disk U given by

U :=
{

z : z ∈ C and |z| < 1
}

.

Let P̃(α) be a class of functions p of the form

p(z) =
∞∑

n=0

pnzn,

which are analytic in U with p(0) = 1 and

∣∣arg
(
p(z)

)∣∣ <
απ

2
(z ∈U; 0 < α � 1).

Then, in the special case when α = 1, P̃(1) is the well-known class of Carathéodory func-
tions in U (see [8] and [9]; see also the recent developments on this subject in, for example,
[19, 20, 23], and [28]).
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For two functions f and F , which are analytic in U, we say that the function f is subor-
dinate to the function F in U and we write f (z) ≺ F(z) if there exists a Schwarz function ω,
which is analytic in U with

ω(0) = 0 and
∣∣ω(z)

∣∣ < 1 (z ∈U),

such that f (z) = F(ω(z)) for all z ∈U. In particular, if the function F is univalent in U, then
we have the following equivalence:

f (z) ≺ F(z) ⇐⇒ f (0) = F(0) and f (U) ⊂ F(U).

Several recent investigations on various applications of differential subordination and dif-
ferential superordination were reported in, for example, [21, 22, 26, 27] (see also [4, 5], and
[6]).

We denote by S̃∗(α) the subclass of A consisting of functions which are strongly starlike
of order α in U, that is,

S̃∗(α) :=
{

f : f ∈Aand
∣∣∣∣arg

(
zf ′(z)
f (z)

)∣∣∣∣ <
απ

2
(z ∈U; 0 < α � 1)

}
.

Thus, in particular, S∗ := S̃∗(1) is the class of starlike functions in the open unit disk U.
By means of the principle of subordination between analytic functions, the above defi-

nition is equivalent to

S̃∗(α) :=
{

f : f ∈Aand
zf ′(z)
f (z)

≺
(

1 + z
1 – z

)α

(z ∈U; 0 < α � 1)
}

.

We also denote by C̃C(α) the subclass of A consisting of functions that are strongly close-
to-convex of order α in U if there exists a function g ∈ S∗ such that

∣∣∣∣arg

(
zf ′(z)
g(z)

)∣∣∣∣ <
απ

2
(z ∈U; 0 � α < 1).

In particular, CC := C̃C(1) is the class of close-to-convex functions in the open unit disk U.
Furthermore, we denote by C̃(α) the subclass of A consisting of functions satisfying the

following condition:

∣∣arg
(
f ′(z)

)∣∣ <
απ

2
(z ∈U; 0 � α < 1).

In particular, C := C̃(1) is a subclass of close-to-convex functions in the open unit disk U.
In the year 1978, Miller and Mocanu [14] introduced the method of differential sub-

ordinations. Then, in recent years, several authors have obtained several applications of
the method of differential subordinations in geometric function theory by using differen-
tial subordination associated with starlikeness, convexity, close-to-convexity, and so on
(see, for example, [1–3, 7, 10–13, 17, 18, 24, 25]). The object of the present paper is to
derive various potentially useful conditions (or criteria) for the Carathéodory functions
as a certain class of analytic functions in the open unit disk U by using a lemma given by
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Nunokawa (see [15] and [16]). Further, we give some applications to strong starlikeness
and close-to-convexity.

The following lemma will be used in proving our main result.

Lemma 1.1 (see [15] and [16]) Let the function p(z) given by

p(z) = 1 +
∞∑

n=m
cnzn (cm 
= 0)

be analytic in U with

p(0) = 1 and p(z) 
= 0 (z ∈U).

If there exists a point z0 (with |z0| < 1) such that

∣∣arg
(
p(z)

)∣∣ <
βπ

2
(|z| < |z0|

)

and
∣∣arg

(
p(z0)

)∣∣ =
βπ

2

for some β > 0, then

z0p′(z0)
p(z0)

= ikβ (i =
√

–1),

where

k � m(a + a–1)
2

� m when arg
(
p(z0)

)
=

βπ

2
(1.2)

and

k � –
m(a + a–1)

2
≤ –m when arg

(
p(z0)

)
= –

βπ

2
, (1.3)

where

[
p(z0)

]1/β = ±ia and a > 0.

2 Sufficient conditions for strong starlikeness and close-to-convexity
Theorem 2.1 Let p be an analytic function in U, with p(0) = 1, p′(0) 
= 0, and p(z) 
= 0 for
z ∈U, that satisfies the following inequality:

∣∣∣∣
[
p(z)

]2 +
zp′(z)
p(z)

∣∣∣∣ < A(α)
∣∣p(z)

∣∣, (2.1)

where

A(α) =

⎧
⎨

⎩

√
α2
4 [( 1+α

1–α
)(1–α)/2 + ( 1+α

1–α
)(–1–α)/2]2 + 2α sin(πα) if 0 < α < 1,

1
2 if α = 1.

(2.2)

Then p ∈ P̃(α).
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Proof To prove the result asserted by Theorem 2.1, we suppose that there exists a point
z0 ∈ U such that

∣∣arg
(
p(z)

)∣∣ <
απ

2
for |z| < |z0|

and

∣∣arg
(
p(z0)

)∣∣ =
απ

2
.

Then, from Lemma 1.1, it follows that

zp′(z0)
p(z0)

= ikα,

where [p(z0)] 1
α = ±ia (a > 0) and k is given by (1.2) or (1.3) for m = 1.

For the case when

[
p(z0)

] 1
α = ia (a > 0),

we have
∣∣∣∣]p(z0)]2 +

zp′(z0)
p(z0)

∣∣∣∣ =
∣∣p(z0)

∣∣
∣∣∣∣p(z0) +

zp′(z0)
p(z0)

1
p(z0)

∣∣∣∣ =
∣∣p(z0)

∣∣
∣∣∣∣(ia)α + ikα

1
(ia)α

∣∣∣∣

=
∣∣p(z0)

∣∣
∣∣∣∣a

αeiπα/2 +
kα

aα
eiπ (1–α)/2

∣∣∣∣. (2.3)

From (2.3) for α = 1, we find that

∣∣∣∣
[
p(z0)

]2 +
zp′(z0)
p(z0)

∣∣∣∣ =
∣∣p(z0)

∣∣
∣∣∣∣a

αeiπα/2 +
kα

aα
eiπ (1–α)/2

∣∣∣∣ =
∣∣p(z0)

∣∣
∣∣∣∣aeiπ/2 +

k
a

∣∣∣∣

=
∣∣p(z0)

∣∣
∣∣∣∣ia +

k
a

∣∣∣∣ =
∣∣p(z0)

∣∣
√

a2 +
(

k
a

)2(k
a
� a2 + 1

2a2 � 1
2

)

�
∣∣p(z0)

∣∣
√

1
4

=
∣∣p(z0)

∣∣1
2

.

Also, since

kα

aα
� α

2
(
a1–α + a–1–α

)
,

by applying (2.3) for 0 < α < 1 with

k � (a + a–1)
2

� 1,

we deduce that
∣∣∣∣
[
p(z0)

]2 +
zp′(z0)
p(z0)

∣∣∣∣ =
∣∣p(z0)

∣∣
∣∣∣∣a

αeiπα/2 +
kα

aα
eiπ (1–α)/2

∣∣∣∣
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=
∣∣p(z0)

∣∣
√(

kα

aα

)2

+
(
aα

)2 + 2kα cos

(
π

2
(1 – 2α)

)

�
∣∣p(z0)

∣∣
√(

α

2
(
a1–α + a–1–α

))2

+ 0 + 2α cos

(
π

2
(1 – 2α)

)
.

We now define a real function g by

g(a) = a1–α + a–1–α (a > 0).

Then this function g takes the minimum value for a given by

a =
√

1 + α

1 – α
.

Therefore, from the above equality in the case when 0 < α < 1, we obtain

∣∣∣∣
[
p(z0)

]2 +
zp′(z0)
p(z0)

∣∣∣∣�
∣∣p(z0)

∣∣
√

α2

4

[(
1 + α

1 – α

)(1–α)/2

+
(

1 + α

1 – α

)(–1–α)/2]2

+ 2α sin(πα),

which contradicts our hypothesis of Theorem 2.1.
For the case when

[
p(z0)

] 1
α = –ia (a > 0),

by utilizing the same method as above, Lemma 1.1 for α = 1 yields

∣∣∣∣
[
p(z0)

]2 +
zp′(z0)
p(z0)

∣∣∣∣ =
∣∣p(z0)

∣∣
∣∣∣∣a

αe–iπα/2 +
kα

aα
eiπ (1+α)/2

∣∣∣∣

=
∣∣p(z0)

∣∣
∣∣∣∣ae–iπ/2 –

k
a

∣∣∣∣

=
∣∣p(z0)

∣∣
∣∣∣∣–ia –

k
a

∣∣∣∣ =
∣∣p(z0)

∣∣
√

a2 +
(

k
a

)2

�
∣∣p(z0)

∣∣
√

1
4

=
1
2
∣∣p(z0)

∣∣.

Also, for 0 < α < 1, it follows for k � –1 that

∣∣∣∣
[
p(z0)

]2 +
zp′(z0)
p(z0)

∣∣∣∣

=
∣∣p(z0)

∣∣
∣∣∣∣a

αe–iπα/2 +
kα

aα
eiπ (1+α)/2

∣∣∣∣

=
∣∣p(z0)

∣∣
√(

k
a

)2

+
(
aα

)2 + 2kα cos

(
π

2
(1 + 2α)

)

�
∣∣p(z0)

∣∣
√

α2

4

[(
1 + α

1 – α

)(1–α)/2

+
(

1 + α

1 – α

)(–1–α)/2]2

+ 2kα cos

(
π

2
(1 + 2α)

)
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�
∣∣p(z0)

∣∣
√

α2

4

[(
1 + α

1 – α

)(1–α)/2

+
(

1 + α

1 – α

)(–1–α)/2]2

+ 2α sin(πα),

which also contradicts our hypothesis of Theorem 2.1. From the two above-discussed con-
tradictions, it follows that

∣∣arg
(
p(z)

)∣∣ <
απ

2
(∀z ∈U).

This completes the proof of Theorem 2.1. �

Remark 2.1 If

f ∈A and p(z) :=
zf ′(z)
f (z)


= 0,

then p′(0) 
= 0 is equivalent to f ′′(0) 
= 0 and Theorem 2.1 leads to the following result,
which gives a sufficient condition for strong starlikeness of order α.

Corollary 2.1 Let the function f ∈A, with f ′′(0) 
= 0, satisfy the following inequality:

∣∣∣∣1 +
zf ′′(z)
f ′(z)

+
zf ′(z)
f (z)

(
zf ′(z)
f (z)

– 1
)∣∣∣∣ < A(α)

∣∣∣∣
zf ′(z)
f (z)

∣∣∣∣,

where A(α) is given by (2.2). Then f ∈ S̃∗(α).

Remark 2.2 For f ∈A, α = 1 and p(z) := f ′(z) 
= 0, Theorem 2.1 leads to the following result
which gives a sufficient condition for the close-to-convexity (univalence) of the function
f .

Corollary 2.2 If the function f ∈A, with f ′′(0) 
= 0, satisfies the following inequality:

∣∣∣∣
[
f ′(z)

]2 +
zf ′(z)
f (z)

∣∣∣∣ <
1
2
∣∣f ′(z)

∣∣,

then f ∈ C .

We now state and prove the following result.

Theorem 2.2 Let p be an analytic function in U, with p(0) = 1, p′(0) 
= 0, and p(z) 
= 0 for
z ∈U, that satisfies the following inequality:

∣∣∣∣p(z) +
zp′(z)
[p(z)]2

∣∣∣∣ < B(α)
∣∣p(z)

∣∣,

where

B(α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
1 + α2

4 (̃α(1–2α)/2 + α̃(–1–2α)/2)2 + α(̃α(1–2α)/2 + α̃(–1–2α)/2) sin(πα)

if 0 < α < 1
2 ,√

5
4 if α = 1

2

(2.4)



Cho et al. Journal of Inequalities and Applications         (2020) 2020:85 Page 7 of 14

and

α̃ =
1 + 2α

1 – 2α
.

Then p ∈ P̃(α).

Proof If we suppose that there exists a point z0 ∈U such that

∣∣arg
(
p(z)

)∣∣ <
απ

2
for |z| < |z0|

and

∣∣arg
(
p(z0)

)∣∣ =
απ

2
,

we find from Lemma 1.1 that

zp′(z0)
p(z0)

= ikα,

where

[
p(z0)

] 1
α = ±ia (a > 0)

and k is given by (1.2) or (1.3) for m = 1.
For the case when

p(z0)
1
α = ia (a > 0),

we have
∣∣∣∣p(z0) +

zp′(z0)
[p(z0)]2

∣∣∣∣ =
∣∣p(z0)

∣∣ ·
∣∣∣∣1 +

zp′(z0)
p(z0)

1
[p(z0)]2

∣∣∣∣ =
∣∣p(z0)

∣∣ ·
∣∣∣∣1 + ikα

1
(ia)2α

∣∣∣∣

=
∣∣p(z0)

∣∣ ·
∣∣∣∣1 +

kα

a2α
eiπ (1–2α)/2

∣∣∣∣. (2.5)

Now, from (2.5) for α = 1
2 , we get

∣∣∣∣p(z0) +
zp′(z0)
[p(z0)]2

∣∣∣∣ =
∣∣p(z0)

∣∣
∣∣∣∣1 – i

k
a

∣∣∣∣ =
∣∣p(z0)

∣∣
√

1 +
(

k
a

)2

�
√

5
4
∣∣p(z0)

∣∣.

Also, from (2.5) for 0 < α < 1
2 , we deduce that

∣∣∣∣p(z0) +
zp′(z0)
[p(z0)]2

∣∣∣∣

=
∣∣p(z0)

∣∣
∣∣∣∣1 +

kα

a2α
eiπ (1–2α)/2

∣∣∣∣
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=
∣∣p(z0)

∣∣
√

1 +
(

kα

a2α

)2

+ 2
kα

a2α
cos

(
π

2
(1 – 2α)

)

�
∣∣p(z0)

∣∣
√

1 +
(

α

2
(
a1–2α + a–1–2α

))2

+ α
(
a1–2α + a–1–2α

)
cos

(
π

2
(1 – 2α)

)
.

We now define a real function h by

h(a) = a1–2α + a–1–2α (a > 0).

Then this function takes the minimum value for a given by

a =
√

1 + 2α

1 – 2α
.

Therefore, from the above equality, when

0 < α <
1
2

for α̃ =
1 + 2α

1 – 2α
,

we obtain
∣∣∣∣p(z0) +

zp′(z0)
[p(z0)]2

∣∣∣∣

�
∣∣p(z0)

∣∣

×
√

1 +
α2

4
(
α̃(1–2α)/2 + α̃(–1–2α)/2

)2 + α
(
α̃(1–2α)/2 + α̃(–1–2α)/2

)
cos

(
π

2
(1 – 2α)

)
,

which contradicts our hypothesis in Theorem 2.2.
Next, for the case when

[
p(z0)

] 1
α = –ia (a > 0),

using the same method as before, we can obtain a contradiction to the assumption in
Theorem 2.2.

From the two above-discussed contradictions, it follows that

∣∣arg
(
p(z)

)∣∣ <
απ

2
(∀z ∈U).

This completes the proof of Theorem 2.2. �

Corollary 2.3 Let the function f ∈A, with f ′′(0) 
= 0, satisfy the following inequality:

∣∣∣∣
f (z)

zf ′(z)

(
1 +

zf ′′(z)
f ′(z)

)
+

zf ′(z)
f (z)

– 1
∣∣∣∣ < B(α)

∣∣∣∣
zf ′(z)
f (z)

∣∣∣∣,

where B(α) is given by (2.4). Then f ∈ S̃∗(α).
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Theorem 2.3 Let p be an analytic function in U, with p(0) = 1, p′(0) 
= 0, and p(z) 
= 0 for
z ∈U, that satisfies the following inequality:

∣∣∣∣arg

(
p(z) +

zp′(z)
[p(z)]2

)∣∣∣∣ <
δπ

2
,

where

δ = α +
2
π

arctan

( α
2 (̃α(1–2α)/2 + α̃(–1–2α)/2) cos(πα)

1 + α
2 (̃α(1–2α)/2 + α̃(–1–2α)/2) sin(πα)

)
(2.6)

and

α̃ =
1 + 2α

1 – 2α

(
0 < α <

1
2

)
.

Then p ∈ P̃(α).

Proof Using similar arguments as in the proof of Theorem 2.1, for the case when

[
p(z0)

] 1
α = ia (a > 0),

we have

arg

(
p(z0) +

zp′(z0)
[p(z0)]2

)
= arg

(
p(z0)

(
1 +

zp′(z0)
p(z0)

1
[p(z0)]2

))

= arg
(
p(z0)

)
+ arg

(
1 + ikα

1
(ia)2α

)

= arg
(
p(z0)

)
+ arg

(
1 +

kα

a2α
eiπ (1–2α)/2

)
.

Since

kα

a2α
� α

2
(
a1–2α + a–1–2α

)
,

we now define a real function h by

h(a) = a1–2α + a–1–2α (a > 0).

Then this function takes on the minimum value for a given by

a =
√

1 + 2α

1 – 2α
.

Therefore, from the above inequality, when

0 < α <
1
2

for α̃ =
1 + 2α

1 – 2α
,
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we obtain

kα

a2α
� α

2
(
α̃(1–2α)/2 + α̃(–1–2α)/2).

Therefore

arg

(
p(z0) +

zp′(z0)
[p(z0)]2

)
� απ

2
+ arctan

( α
2 (̃α(1–2α)/2 + α̃(–1–2α)/2) cos(πα)

1 + α
2 (̃α(1–2α)/2 + α̃(–1–2α)/2) sin(πα)

)

=
δπ

2
,

which contradicts our hypothesis in Theorem 2.3.
Next, for the case when

[
p(z0)

] 1
α = –ia (a > 0),

with

kα

a2α
� –

α

2
(
a1–2α + a–1–2α

)
,

using the same method as before, we can obtain

arg

(
p(z0) +

zp′(z0)
[p(z0)]2

)
= arg

(
p(z0)

)
+ arg

(
1 + ikα

1
(–ia)2α

)

= arg
(
p(z0)

)
+ arg

(
1 +

kα

a2α
eiπ (1+2α)/2

)

= –
απ

2
+ arctan

( kα

a2α sin( π
2 (1 + 2α))

1 + kα

a2α cos( π
2 (1 + 2α))

)

= –
απ

2
+ arctan

( kα

a2α cos(πα)
1 – kα

a2α sin(πα)

)

� –
απ

2
– arctan

( α
2 (̃α(1–2α)/2 + α̃(–1–2α)/2) cos(πα)

1 + α
2 (̃α(1–2α)/2 + α̃(–1–2α)/2) sin(πα)

)

= –
δπ

2
,

which is a contradiction to the assumption of Theorem 2.3.
From the two above-discussed contradictions, it follows that

∣∣arg
(
p(z)

)∣∣ <
απ

2
(∀z ∈U).

This completes the proof of Theorem 2.3. �

Corollary 2.4 Let the function f ∈A, with f ′′(0) 
= 0, satisfy the following inequality:
∣∣∣∣arg

(
f (z)

zf ′(z)

(
1 +

zf ′′(z)
f ′(z)

)
+

zf ′(z)
f (z)

– 1
)∣∣∣∣ <

δπ

2
,

where δ is given by (2.6). Then f ∈ S̃∗(α).
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Theorem 2.4 Let p be an analytic function in U, with p(0) = 1, p′(0) 
= 0, and p(z) 
= 0 for
z ∈U, that satisfies the following inequality:

∣∣∣∣arg

([
p(z)

]2 +
zp′(z)
p(z)

)∣∣∣∣ <
γπ

2
,

where

γ = 2α +
2
π

arctan

( α
2 (̃α(1–2α)/2 + α̃(–1–2α)/2) cos(πα)

1 + α
2 (̃α(1–2α)/2 + α̃(–1–2α)/2) sin(πα)

)
(2.7)

and

α̃ =
1 + 2α

1 – 2α

(
0 < α <

1
2

)
.

Then p ∈ P̃(α).

Proof By using a similar method as in the proof of Theorem 2.1, for the case when

[
p(z0)

] 1
α = ia (a > 0),

with

kα

a2α
� α

2
(
a1–2α + a–1–2α

)
,

we have

arg

([
p(z0)

]2 +
z0p′(z0)

p(z0)

)
= arg

([
p(z0)

]2
(

1 +
zp′(z0)
p(z0)

1
[p(z0)]2

))

= arg
([

p(z0)
]2) + arg

(
1 + ikα

1
(ia)2α

)

= 2 arg
(
p(z0)

)
+ arg

(
1 +

kα

a2α
eiπ (1–2α)/2

)

= απ + arctan

( kα

a2α sin( π
2 (1 – 2α))

1 + kα

a2α cos( π
2 (1 – 2α))

)
.

We now define a real function h by

h(a) = a1–2α + a–1–2α (a > 0).

Then this function takes on the minimum value for a given by

a =
√

1 + 2α

1 – 2α
.

Therefore, from the above equality, when

0 < α <
1
2

for α̃ =
1 + 2α

1 – 2α
,
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we obtain

arg

([
p(z0)

]2 +
zp′(z0)
p(z0)

)
� απ + arctan

( α
2 (̃α(1–2α)/2 + α̃(–1–2α)/2) cos(πα)

1 + α
2 (̃α(1–2α)/2 + α̃(–1–2α)/2) sin(πα)

)

=
γπ

2
,

which contradicts our hypothesis in Theorem 2.4.
For the case when

[
p(z0)

] 1
α = –ia (a > 0),

by using the same method as before, we can obtain

arg

([
p(z0)

]2 +
zp′(z0)
p(z0)

)
� –

γπ

2
,

which is a contradiction to the assumption in Theorem 2.4.
From the two above-discussed contradictions, it follows that

∣∣arg
(
p(z)

)∣∣ <
απ

2
(∀z ∈U).

This completes the proof of Theorem 2.4. �

Corollary 2.5 Suppose that the function f ∈ A, with f ′′(0) 
= 0, satisfies the following in-
equality:

∣∣∣∣arg

(
1 +

zf ′′(z)
f ′(z)

+
zf ′(z)
f (z)

(
zf ′(z)
f (z)

– 1
))∣∣∣∣ <

γπ

2
,

where γ is given by (2.7). Then f ∈ S̃∗(α).

Remark 2.3 For g ∈ S∗ and f ∈A such that 2f ′′(0) 
= g ′′(0), by setting

p(z) :=
zf ′(z)
g(z)


= 0

in the above theorems, we will obtain a sufficient condition for strong close-to-convexity.

3 Conclusion
In the present paper, we have derived some sufficient conditions (or criteria) for the
Carathéodory functions as a certain class of analytic functions in the open unit disk U.
We have also deduced various sufficient conditions for the univalence, strong starlike-
ness, and strong close-to-convexity of functions in the normalized analytic function class
A. We have considered several other related results as well. Also, with a view to motivating
further research on the subject-matter of this investigation, we have included the citations
of other closely-related recent developments as well.
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