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Abstract
This paper deals with the numerical analysis of parabolic variational inequalities with
nonlinear source terms, where the existence and uniqueness of the solution is
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1 Introduction
We consider the following parabolic variational inequality: Find u ∈ L2(0, T ; H1

0 (Ω)) such
that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t + Lu – f (u) ≤ 0; u ≤ ψ ,
( ∂u

∂t + Lu – f (u))(u – ψ) = 0 in QT := ]0, T[×Ω ,
u = 0 on

∑
T := ]0, T[×∂Ω ,

u(0, ·) = u0, on Ω ,

(1.1)

where Ω is a bounded smooth and regular domain of Rd , d ≥ 1, with smooth boundary
∂Ω ; the f (·) and u0 = u0(x) are given data; the ψ is a regular function in L2(0, T ; W 2,∞(Ω)),
and the L is a second-order, uniformly elliptic operator of the form

L = –
d∑

j,k=1

ajk(x)
∂2

∂xj∂xk
+

d∑

j=1

bj(x)
∂

∂xj
+ a0(x), (1.2)
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Parabolic variational inequality (1.1) has arisen from many scientific, engineering, and
economic problems such as heat control problem, Stefan problem, and American option
problem (see [3, 5–13, 16, 18, 19, 21]).

In this paper, we give an L∞-error estimate for the numerical approximation of the so-
lution of problem (1.1). From [2] (see also [8]), we know that (1.1) can be approximated
by the following parabolic variational inequality with nonlinear source terms (PVI): Find
u(x, t) such that u ∈ L2(0, T ; H1

0 (Ω)), ∂u
∂t ∈ L2(0, T ; L2(Ω)), and

⎧
⎪⎪⎨

⎪⎪⎩

( ∂u
∂t , v – u) + a(u, v – u) ≥ (f (u), v – u), for all v ∈ H1

0 (Ω), t ∈ (0, T],

u ≤ ψ , v ≤ ψ ,

u(x, 0) = u0(x) in Ω ,

(1.3)

where a(·, ·) is a bilinear form continuous on H1(Ω) × H1(Ω) corresponding to elliptic
operator L of second order defined as follows:

a(u, v) =
∫

Ω

( d∑

j,k=1

ajk(x)
∂u
∂xj

∂v
∂xk

+
d∑

k=1

bk(x)
∂u
∂xk

v + a0(x)uv

)

dx, (1.4)

with ajk(·), bj(·), a0(·), smooth coefficients satisfying the following conditions:

⎧
⎨

⎩

ajk(x) = akj(x),

a0(x) ≥ β > 0, β is a constant,
(1.5)

and for each ξ ∈R
d and for almost every x ∈ Ω ,

d∑

j,k=1

ajk(x)ξjξk ≥ α0|ξ |2 with constant α0 > 0. (1.6)

According to Theorem 2.3 in [8], there exists γ > 0 such that

a(ϕ,ϕ) + λ‖ϕ‖2
L2(Ω) ≥ γ ‖ϕ‖2

H1
0 (Ω), ∀ϕ ∈ H1

0 (Ω), with γ > 0. (1.7)

The function f (·) is a nondecreasing and Lipschitz continuous nonlinearity

f ∈ L2(0, T ; L∞(Ω)
) ∩ C1(0, T ; H–1(Ω)

)
, f ≥ 0, (1.8)

with Lipschitz constant α > 0, satisfying the following assumption:

α < β , (1.9)

where β is the constant defined in (1.3). The symbol (·, ·) is the inner product in L2(Ω).
Error estimates for piecewise linear finite element approximations of parabolic varia-

tional inequalities with linear source terms have been established in various papers: in
[20] and [9] an L2-error estimate is given by using a backward differencing in time. Also
an L2-error estimate is given in [23] by using a general finite difference discretization in
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time. Reference [4] gives an L2-error estimate using the discretized truncation method. In
[1] and [22] a posteriori error estimates have been proved. An L∞-error estimate has been
proved in [15] and [17]. Recently an L∞-asymptotic behavior has been considered in [2]
by using a semi-implicit time scheme combined with the finite element spatial approxi-
mation.

In this paper, we introduce a new approach to derive optimal L∞-asymptotic behavior
for parabolic variational inequality with nonlinear source terms. This approach is based on
Bensoussan–Lions algorithm for evolutionary free boundary problems using the concepts
of subsolutions.

The paper is organized as follows. In Sect. 2, we state the continuous problem and study
some qualitative properties. In Sect. 3, we consider the discrete problem and set up anal-
ogous discrete qualitative properties. In Sect. 4, we derive an L∞-error estimate of the
approximation and we give the main result of the paper.

2 Semi continuous problem
2.1 Time discretization
In order to obtain a full discretization of (1.3), we consider a uniform mesh for the time
variable t and define

tn = n�t, n = 0, 1, . . . ,N , (2.1)

�t > 0 being the time-step, and N = [ T
�t ], the integral part of T

�t .
Next, we replace the time derivative by means of suitable difference quotients, thus con-

structing a sequence un(x) ∈ H1
0 (Ω) that approaches u(tn, x). For simplicity, we confine

ourselves to the so-called semi-implicit scheme, which consists in replacing (1.3) by the
following scheme: Find un ∈ H1

0 (Ω) such that

⎧
⎨

⎩

( 1
�t (un – un–1), v – un) + a(un, v – un) ≥ (f (un), v – un), v ∈ H1

0 (Ω),

un ≤ ψ , v ≤ ψ , n = 1, . . . ,N ,
(2.2)

where

�t =
T
N . (2.3)

By adding ( un–1

�t , v – un) to both parties of inequalities (2.2), we get

⎧
⎨

⎩

1
�t (un, v – un) + a(un, v – un) ≥ (f (un) + 1

�t un–1, v – un),

un ≤ ψ , v ≤ ψ , n = 0, 1, . . . ,N .
(2.4)

As the bilinear form a(·, ·) is noncoercive in H1
0 (Ω).

Set

b(u, v) = a(u, v) + λ(u, v). (2.5)
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Then the bilinear form b(u, v) is an elliptic, and therefore (2.4) can be written as the
following coercive elliptic variational inequalities: Find un ∈ H1

0 (Ω) such that

⎧
⎨

⎩

b(un, v – un) ≥ (f (un) + λun–1, v – un), v ∈ H1
0 (Ω),

un ≤ ψ , v ≤ ψ , n = 0, 1, . . . ,N ,
(2.6)

where

⎧
⎨

⎩

b(un, v – un) = a(un, v – un) + λ(un, v – un), v ∈ H1
0 (Ω),

λ = 1
�t > 0.

(2.7)

Remark 1 Equation (2.6) is called the coercive continuous problem of elliptic variational
inequalities (VI).

Notation 1 We denote by un = ∂(f (un),ψ) the solution of problem (2.6).

2.2 Existence and uniqueness
Next, using the preceding assumptions, we prove the existence of a unique solution for
problem (2.6) by means of Banach’s fixed point theorem.

2.2.1 A fixed point mapping associated with continuous problem (2.6)
We consider the following mapping:

T : L∞(Ω) −→ L∞(Ω),

w → Tw = ζ n,
(2.8)

where ξn = σ (f (w),ψ) is the solution to the following variational inequalities:

⎧
⎨

⎩

b(ζ n, v – ζ n) ≥ (f (w) + λw, v – ζ n), v ∈ H1
0 (Ω),

ζ n ≤ ψ , v ≤ ψ .
(2.9)

Problem (2.10) being a coercive VI, thanks to [3] and [10], has one and only one solution.

Theorem 1 Under the preceding hypotheses and notation, the mapping T is a contraction
in L∞(Ω) with a contraction constant ( α�t+1

β�t+1 ). Therefore, T admits a unique fixed point
which coincides with the solution of problem (2.6).

Proof In [13], by taking λ = 1
�t , we can easily get

‖Tw – Tw̃‖∞ ≤
(

α�t + 1
β�t + 1

)

‖w – w̃‖∞. �

The mapping T clearly generates the following continuous algorithm.
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2.3 A continuous iterative scheme
A continuous iterative scheme for the solution of problem (2.6) is given as follows.

Starting from u0 = u0 the solution of the following equation:

b(u0, v) =
(
f (u0) + λu0, v

)
, ∀v ∈ H1

0 (Ω). (2.10)

Now, we give the following algorithm:

un = Tun–1, n = 1, . . . ,N – 1, (2.11)

where un is the solution to (2.6).
Making use of the propriety of mapping T, we have the following geometric convergence

result.

Proposition 1 Let ρ = α�t+1
β�t+1 , under conditions of Theorem 1, we have

∥
∥un – u∞∥

∥∞ ≤ ρn∥∥u0 – u∞∥
∥∞, (2.12)

where u∞ is the asymptotic solution of the problem of variational inequalities: Find u∞ ∈
H1

0 (Ω) such that

⎧
⎨

⎩

b(u∞, v – u∞) ≥ (f (u∞) + λu∞, v – u∞), v ∈ H1
0 (Ω),

u∞ ≤ ψ , v ≤ ψ .
(2.13)

Proof We adapt [2]. �

In what follows, we give some qualitative properties of the solution of problem (2.6).

2.4 Some qualitative properties of the solution of (2.6)
The solution un of (2.6) possesses the following properties.

2.4.1 A monotonicity property
Let un = ∂(F(un),ψ) (resp. ũn = ∂(F̃(ũn), ψ̃)) be the solution of problem (2.6) with right-
hand side F(un) = f (un) + λun–1 (resp. F̃(ũn) = f̃ (ũn) + λũn–1). Then we have the following.

Lemma 1 (cf. [6] and [10]) If F(un) ≥ F̃(ũn) and ψ ≥ ψ̃ , then

∂
(
F
(
un),ψ

) ≥ ∂
(
F̃
(
ũn), ψ̃

)
. (2.14)

2.4.2 A continuous L∞-stability property
Proposition 2 Under conditions of Lemma 1, we have

∥
∥∂

(
F
(
un),ψ

)
– ∂

(
F̃
(
ũn), ψ̃

)∥
∥∞ ≤ 1

β

∥
∥f

(
un) – f̃

(
ũn)∥∥∞. (2.15)

Proof Let

φ =
1

λ + β

∥
∥f

(
un) – f̃

(
ũn)∥∥∞.
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Then, from (1.5), it is easy to see that

F̃
(
ũn) ≤ F

(
un) +

λ + a0

λ + β

∥
∥f

(
un) – f̃

(
ũn)∥∥∞ = F

(
un) + (λ + a0).φ.

So, due to Lemma 1, it follows that

∂
(
F̃
(
ũn), ψ̃

) ≤ ∂
(
F
(
un) + (λ + a0).φ,ψ + φ

) ≤ ∂
(
F
(
un),ψ

)
+ φ,

hence

∂
(
F̃
(
ũn), ψ̃

)
– ∂

(
F
(
un),ψ

) ≤ φ.

Interchanging the role of F(un) and F̃n, we also get

∂
(
F
(
un),ψ

)
– ∂

(
F̃n, ψ̃

) ≤ φ.

Then, from (2.8), it is easy to see that

∥
∥∂

(
F
(
un),ψ

)
– ∂

(
F̃
(
ũn), ψ̃

)∥
∥∞ ≤ �t

β�t + 1
∥
∥f

(
un) – f̃

(
ũn)∥∥∞

≤ 1
β(1 + 1

β�t )
∥
∥f

(
un) – f̃

(
ũn)∥∥∞

≤ 1
β

∥
∥f

(
un) – f̃

(
ũn)∥∥∞,

which completes the proof. �

2.4.3 The concept of continuous subsolution property
Definition 1 zn ∈ H1

0 (Ω) is said to be a continuous subsolution for the problem of VI (2.6)
if

⎧
⎨

⎩

b(zn, v) ≤ (f (zn) + λzn, v), v ∈ H1
0 (Ω),

zn ≤ ψ , v ≥ 0, n = 1, . . . ,N – 1.
(2.16)

Theorem 2 (cf. [6]) Let X denote the set of such subsolutions, then the solution of (2.6) is
the least upper bound of X.

3 The discrete problem
Let Ω be decomposed into triangles, and let τh denote the set of all those elements; h > 0
is the mesh size. We assume that the family τh is regular and quasi-uniform. We consider
φl , l = 1, 2, . . . , m(h), the usual basis of affine functions defined by φl(Ms) = δl,s, where Ms is
a vertex of the considered triangulation.

Let us Vh denote the standard piecewise linear finite element space such that

Vh =

⎧
⎨

⎩

vh ∈ C0(Ω̄), vh = 0 on ∂Ω such that:

vh|Ki ∈ P1, K ∈ τh, vh ≤ rhψ , vh(·, 0) = v0h in Ω

⎫
⎬

⎭
. (3.1)
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The interpolation operator is applied to the function v continuous, defined by

rhv =
m(h)∑

l=1

v(Ml)φl(x) (3.2)

and B is the matrix with generic entries

(B)l,s = a(φl,φs), 1 ≤ l, s ≤ m(h). (3.3)

In the sequel of the paper, we use the discrete maximum assumption (d.m.p.). In other
words, we assume that the matrix B is an M-matrix (cf. [14]).

Remark 2 Under the d.m.p., we achieve a similar study to that devoted to the continuous
problem; therefore the qualitative properties and results stated in the continuous case are
conserved in the discrete case.

As in the continuous situation, one can tackle the discrete problem by considering the
equivalent formulation: Find un

h ∈Vh such that

⎧
⎨

⎩

b(un
h, vh – un

h) ≥ (f (un
h) + λun

h, vh – un
h), vh ∈ Vh,

un
h ≤ rhψ , vh ≤ rhψ .

(3.4)

Notation 2 We denote by un
h = ∂h(f n(un

h), rhψ) the solution of problem (3.4).

Existence and uniqueness of a solution of problem (3.4) can be shown similarly to that
of the continuous case provided the discrete maximum principle is satisfied.

3.1 Existence and uniqueness
3.1.1 A fixed point mapping associated with discrete problem (3.4)
We consider the following mapping:

T : L∞(Ω) −→Vh,

w → Thw = ξn
h ,

(3.5)

where ξn
h = σh(f n(w), rhψ) is a solution of the following discrete coercive VI:

⎧
⎨

⎩

b(ξn
h , v – ξn

h ) ≥ (f (w) + λw, v – ξn
h ), vh ∈Vh,

ξn
h ≤ rhψ , v ≤ rhψ .

(3.6)

Theorem 3 Under the d.m.p. assumption and the preceding hypotheses and notation, the
mapping Th is a contraction in L∞(Ω) with a contraction constant ( α�t+1

β�t+1 ). Therefore, Th

admits a unique fixed point which coincides with the solution of problem (3.4).

As in the continuous situation, one can define the following discrete iterative scheme.
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3.2 A discrete iterative scheme
A discrete iterative scheme for the solution of problem (3.4) is given as follows.

Starting from u0
h = u0,h, the solution of the following equation:

b(u0,h, vh) =
(
f (u0,h) + λu0,h, vh

)
, vh ∈ Vh. (3.7)

Now, we give the following algorithm:

un
h = Thun–1

h , n = 1, . . . ,N – 1, (3.8)

where un
h is a solution of problem (3.4).

Using the above result, we are able to establish the following geometric convergence of
sequence un

h .

Proposition 3 Let ρ = α�t+1
β�t+1 , under the d.m.p. assumption and Theorem 3, we have

∥
∥un

h – u∞
h

∥
∥∞ ≤ ρn∥∥uh,0 – u∞

h
∥
∥∞, (3.9)

where u∞
h is the asymptotic solution of problem of variational inequalities: Find u∞

h ∈ Vh

such that
⎧
⎨

⎩

b(u∞
h , v – u∞

h ) ≥ (f (u∞
h ) + λu∞

h , vh – u∞
h ), vh ∈Vh,

u∞
h ≤ rhψ , vh ≤ rhψ .

(3.10)

Proof It is very similar to that of the continuous case. �

Under the d.m.p., the solution of discrete problem (3.4) possesses analogous properties
to those of the continuous problem.

3.3 Some qualitative properties of the solution of (3.4)
As in the continuous situation, the solution un

h of system (3.4) possesses the following
properties.

3.3.1 A monotonicity property
Let un

h = ∂h(Fn, rhψ) (resp. ũn
h = ∂h(F̃n, rhψ̃)) the solution to (3.4) with right-hand side Fn.

Lemma 2 If Fn ≥ F̃n and ψ ≥ ψ̃ , then

∂h
(
Fn, rhψ

) ≥ ∂h
(
F̃n, rhψ̃

)
. (3.11)

3.3.2 A discrete L∞-stability
Proposition 4 Under the d.m.p. assumption and conditions of Lemma 2, we have

∥
∥∂h

(
F
(
un), rhψ

)
– ∂h

(
F̃
(
ũn), rhψ̃

)∥
∥∞ ≤ 1

β

∥
∥f

(
un

h
)

– f̃
(
ũn

h
)∥
∥∞. (3.12)

Proof It is very similar to that of the continuous case. �



Boulaaras et al. Journal of Inequalities and Applications         (2020) 2020:78 Page 9 of 18

3.3.3 The concept of discrete subsolution
Definition 2 zn

h ∈Vh is said to be a discrete subsolution for the system of quasi-variational
inequalities (3.4) if

⎧
⎨

⎩

b(zh,ϕs) ≤ (f (zh) + λzh,ϕs), ∀s = 1, . . . , m(h),

zh ≤ rhψ , ϕs ≥ 0.
(3.13)

Theorem 4 Let Xh be the set of such subsolutions, then under the d.m.p., the solution of
(3.4) is the least upper bound of the set Xh.

4 Finite element error analysis
This section is devoted to deriving an error estimate, in the maximum norm, between the
nth iterates un and their finite element counterpart un

h . For that we first introduce two
auxiliary sequences.

4.1 Two auxiliary sequences
4.1.1 A discrete sequence
We define the following discrete sequence {ūn

h}n≥1, where ūn
h is a solution to the following

discrete problem of variational inequalities (VI):

⎧
⎨

⎩

b(ūn
h, vh – ūn

h) ≥ (f (un) + λ.un, vh – ūn
h), vh ∈Vh,

ūn
h ≤ rhψ , vh ≤ rhψ ,

(4.1)

where un is the solution to (2.6).

Lemma 3 (cf. [13]) There exists a constant C independent of h, n, and �t such that

∥
∥ūn

h – un∥∥∞ ≤ C h2| log h|2. (4.2)

Proposition 5 There exists a sequence of discrete subsolutions {αn
h}n≥1 such that

⎧
⎪⎪⎨

⎪⎪⎩

αn
h ≤ un

h,

and

‖αn
h – un‖∞ ≤ C h2| log h|2,

(4.3)

where the constant C is independent of h, �t, and n.

Proof For n = 1, we consider the discrete problem of VI:

⎧
⎨

⎩

b(ū1
h, vh – ū1

h) ≥ (f (u0) + λu0, vh – ū1
h), vh ∈Vh,

ū1
h ≤ rhψ , vh ≤ rhψ .

Then as ū1
h is a solution to a discrete VI, it is also a subsolution, i.e.,

⎧
⎨

⎩

b(ū1
h,ϕs) ≤ (f (u0) + λu0,ϕs), ∀ϕs,

ū1
h ≤ rhψ
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or
⎧
⎨

⎩

b(ū1
h,ϕs) ≤ (f (u0) + f (u0,h) – f (u0,h) + λu0 – λu0,h + λu0,h,ϕs),

ū1
h ≤ rhψ .

Then
⎧
⎨

⎩

b(ū1
h,ϕs) ≤ (f (u0,h) + ‖f (u0) – f (u0,h)‖∞ + λ‖u0 – u0,h‖∞ + λu0,h,ϕs),

ū1
h ≤ rhψ .

Using the Lipschitz continuity of f (·), we have
⎧
⎨

⎩

b(ū1
h,ϕs) ≤ (f (u0,h) + α‖u0 – u0,h‖∞ + λ‖u0 – u0,h‖∞ + λu0,h,ϕs),

ū1
h ≤ rhψ .

On the other hand, due to [11]

‖u0 – u0,h‖∞ ≤ C h2| log h|.

Then
⎧
⎨

⎩

b(ū1
h,ϕs) ≤ (f (u0,h) + C h2| log h| + λu0,h,ϕs),

ū1
h ≤ rhψ .

So, ū1
h is a discrete subsolution for the VI whose solution is Ū1

h = ∂h(f (u0,h) + C h2| log h|,
rhψ). Then u1

h = ∂h(f (u0,h), rhψ), and making use of Proposition 4, we have

∥
∥Ū1

h – u1
h
∥
∥∞ ≤ 1

β

∥
∥f (u0,h) + C h2| log h| – f (u0,h)

∥
∥∞

≤ C h2| log h|.

Hence, making use of Theorem 4, we have

ū1
h ≤ Ū1

h ≤ u1
h + C h2| log h|.

Putting

α1
h = ū1

h – C h2| log h|,

we get

α1
h ≤ u1

h

and

∥
∥α1

h – u1∥∥∞ =
∥
∥ū1

h – C h2| log h| – u1∥∥∞

≤ ∥
∥ū1

h – u1∥∥∞ + C h2| log h|.
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Using Lemma 3, we get

∥
∥α1

h – u1∥∥∞ ≤ C h2| log h|2 + C h2| log h|.

For n + 1, let us now assume that

⎧
⎪⎪⎨

⎪⎪⎩

αn
h ≤ un

h,

and

‖αn
h – un‖∞ ≤ C h2| log h|2,

and we consider the discrete problem
⎧
⎨

⎩

b(ūn+1
h , vh – ūn

h) ≥ (f (un) + λun, vh – ūn+1
h ), vh ∈Vh,

ūn+1
h ≤ rhψ , vh ≤ rhψ .

Then
⎧
⎨

⎩

b(ūn+1
h ,ϕs) ≤ (f (un) + λun,ϕs), ∀ϕs,

ūn+1
h ≤ rhψ

or
⎧
⎨

⎩

b(ūn+1
h ,ϕs) ≤ (f (un) + f (ūn

h) – f (ūn
h) + λun – λūn

h + λūn
h,ϕs),

ūn+1
h ≤ rhψ .

Then
⎧
⎨

⎩

b(ūn+1
h ,ϕs) ≤ (f (ūn

h) + ‖f (un) – f (ūn
h)‖∞ + λ‖un – ūn

h‖∞ + λūn
h,ϕs),

ūn+1
h ≤ rhψ .

Using the Lipschitz continuity of f (·), we have

⎧
⎨

⎩

b(ūn+1
h ,ϕs) ≤ (f (ūn

h) + α‖un – ūn
h‖∞ + λ‖un – ūn

h‖∞ + λūn
h,ϕs),

ūn+1
h ≤ rhψ .

Using (4.2), we have

⎧
⎨

⎩

b(ūn+1
h ,ϕs) ≤ (f (ūn

h) + C h2| log h|2 + λūn
h,ϕs),

ūn+1
h ≤ rhψ .

So, ūn+1
h is a discrete subsolution for the VI whose solution is Ūn+1

h = ∂h(f (ūn
h) +

C h2| log h|2, rhψ). Then un+1
h = ∂h(f (ūn

h), rhψ), making use of Proposition 4, we have

∥
∥ūn+1

h – un+1
h

∥
∥∞ ≤ 1

β

∥
∥f

(
ūn

h
)

+ C h2| log h|2 – f
(
ūn

h
)∥
∥∞

≤ C h2| log h|2.
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Hence, applying Theorem 4, we get

ūn+1
h ≤ un+1

h + C h2| log h|2.

Putting

αn+1
h = ūn+1

h – C h2| log h|2,

we get

αn+1
h ≤ un+1

h

and

∥
∥αn+1

h – un+1∥∥∞ =
∥
∥ūn+1

h – C h2| log h|2 – un+1∥∥∞

≤ ∥
∥ūn+1

h – un+1∥∥∞ + C h2| log h|2.

Using Lemma 3, we obtain

∥
∥αn+1

h – un+1∥∥∞ ≤ C h2| log h|2,

which completes the proof. �

4.1.2 A continuous sequence
We define the following continuous sequence {ūn

(h)}n≥1, where ūn
(h) is a solution to the fol-

lowing continuous problem of variational inequalities (VI):

⎧
⎨

⎩

b(ūn
(h), v – ūn

(h)) ≥ (f (un
h) + λ.un

h, v – ūn
(h)), v ∈ H1

0 (Ω),

ūn
(h) ≤ ψ , v ≤ ψ ,

(4.4)

where un
h is the solution of discrete problem (3.4).

Lemma 4 (cf. [13]) There exists a constant C independent of h, k, and n such that

∥
∥ūn

(h) – un
h
∥
∥∞ ≤ C h2| log h|2, (4.5)

where the constant C is independent of h, n, and �t.

Proposition 6 There exists a sequence of continuous subsolutions {βn
(h)}n≥1 such that

⎧
⎪⎪⎨

⎪⎪⎩

βn
(h) ≤ un

and

‖βn
(h) – un

h‖∞ ≤ C h2| log h|2,

(4.6)

where the constant C is independent of h, �t, and n.
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Proof For n = 1, we consider the continuous problem of VI

⎧
⎨

⎩

b(ū1
(h), v – ū1

(h)) ≥ (f (u0,h) + λu0,h, v – ū1
(h)), v ∈ H1

0 (Ω),

ū1
(h) ≤ ψ , v ≤ ψ .

Then, as ū1
(h) is a solution to a continuous VI, it is also a subsolution, i.e.,

⎧
⎨

⎩

b(ū1
(h), v) ≤ (f (u0,h) + λu0,h, v),

ū1
(h) ≤ ψ

or
⎧
⎨

⎩

b(ū1
(h), v) ≤ (f (u0,h) + f (u0) – f (u0) + λu0,h – λu0 + λu0, v),

ū1
(h) ≤ ψ .

Then
⎧
⎨

⎩

b(ū1
(h), v) ≤ (f (u0) + ‖f (u0) – f (u0,h)‖∞ + λ‖u0 – u0,h‖∞ + λu0, v),

ū1
(h) ≤ ψ .

Using the Lipschitz continuity of f (·), we have

⎧
⎨

⎩

b(ū1
(h), v) ≤ (f (u0) + α‖u0 – u0,h‖∞ + λ‖u0 – u0,h‖∞ + λu0, v),

ū1
(h) ≤ ψ .

On the other hand, due to [11]

‖u0 – u0,h‖∞ ≤ C h2| log h|.

Then
⎧
⎨

⎩

b(ū1
(h), v) ≤ (f (u0) + C h2| log h| + λu0, v),

ū1
(h) ≤ ψ .

So, ū1
(h) is a continuous subsolution for the VI whose solution is Ū1

(h) = ∂(f (u0) +
C h2| log h|,ψ). Then u1 = ∂(f (u0),ψ), and making use of Proposition 2, we have

∥
∥Ū1

(h) – u1∥∥ ≤ 1
β

∥
∥f (u0) + C h2| log h| – f (u0)

∥
∥∞

≤ C h2| log h|.

Hence, making use of Theorem 2, we have

ū1
(h) ≤ Ū1

(h) ≤ u1 + C h2| log h|2.
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Putting

β1
(h) = ū1

(h) – C h2| log h|2,

we get

β1
(h) ≤ u1

and

∥
∥β1

(h) – u1
h
∥
∥∞ =

∥
∥ū1

(h) – C h2| log h|2 – u1
h
∥
∥∞

≤ ∥
∥ū1

(h) – u1
h
∥
∥∞ + C h2| log h|2.

Using Lemma 4, we obtain

∥
∥β1

(h) – u1
h
∥
∥∞ ≤ C h2| log h|2.

For n + 1, let us now assume that

⎧
⎪⎪⎨

⎪⎪⎩

βn
(h) ≤ un

and

‖βn
(h) – un

h‖∞ ≤ C h2| log h|2

and consider the continuous problem
⎧
⎨

⎩

b(ūn+1
(h) , v – ūn+1

(h) ) ≥ (f (un
h) + λun

h, v – ūn+1
(h) ), v ∈ H1

0 (Ω),

ūn+1
(h) ≤ ψ , v ≤ ψ .

Then
⎧
⎨

⎩

b(ūn+1
(h) , v) ≤ (f (un

h) + λun
h, v), v ∈ H1

0 (Ω),

ūn+1
(h) ≤ ψ

or
⎧
⎨

⎩

b(ūn+1
(h) , v) ≤ (f (un

h) + f (ūn
(h)) – f (ūn

(h)) + λūn
(h) – λūn

(h) + λun
h, v),

ūn+1
(h) ≤ ψ .

Then
⎧
⎨

⎩

b(ūn+1
(h) , v) ≤ (f (ūn

(h)) + ‖f (un
h) – f (ūn

(h))‖∞ + λ‖ūn
(h) – un

h‖∞ + λūn
(h), v),

ūn+1
(h) ≤ ψ .

Using the Lipschitz continuity of f (·), we have
⎧
⎨

⎩

b(ūn+1
(h) , v) ≤ (f (ūn

(h)) + α‖ūn
(h) – un

h‖∞ + λ‖ūn
(h) – un

h‖∞ + λūn
(h), v),

ūn+1
(h) ≤ ψ .
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Using (4.4), we have
⎧
⎨

⎩

b(ūn+1
(h) , v) ≤ (f (ūn

(h)) + C h2| log h|2 + λūn
(h), v),

ūn+1
(h) ≤ ψ .

So, ūn+1
(h) is a continuous subsolution for the VI whose solution is Ūn+1

(h) = ∂(f (ūn
(h)) +

C h2| log h|2,ψ). Then un+1 = ∂(f (ūn
(h)),ψ), and making use of Proposition 2, we have

ūn+1
(h) – un+1 ≤ C

(∥
∥f

(
ūn

(h)
)

+ C h2| log h|2 – f
(
ūn

(h)
)∥
∥∞

)

≤ C h2| log h|2

and, making use of Theorem 2, we obtain

ūn+1
(h) ≤ un+1 + C h2| log h|2.

Now, taking

βn+1
(h) = ūn+1

(h) – C h2| log h|2,

we have

βn+1
(h) ≤ un+1

and

∥
∥βn+1

(h) – un+1
h

∥
∥∞ =

∥
∥ūn+1

(h) – C h2| log h|2 – un+1
h

∥
∥∞

≤ ∥
∥ūn+1

(h) – un+1
h

∥
∥∞ + C h2| log h|2.

Using Lemma 4, we obtain

∥
∥βn+1

(h) – un+1
h

∥
∥∞ ≤ C h2| log h|2,

which completes the proof. �

4.2 L∞-Error estimate
Now, guided by Propositions 5 and 6, we are in a position to prove the following.

Theorem 5 Under the conditions of Propositions 5 and 6, we have

∥
∥un – un

h
∥
∥∞ ≤ C h2| log h|2, (4.7)

where the constant C is independent of h, �t, and n.

Proof Using (4.3), we have

un ≤ αn
h + C h2| log h|2

≤ un
h + C h2| log h|2,
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thus

un – un
h ≤ C h2| log h|2,

and using (4.6), we have

un
h ≤ βn

(h) + C h2| log h|2

≤ un + C h2| log h|2.

Thus, we get

un
h – un ≤ C h2| log h|2.

Therefore

∥
∥un – un

h
∥
∥∞ ≤ C h2| log h|2,

which completes the proof. �

Corollary 1 In (4.7), passing to the limit, as n → +∞, we get

∥
∥u∞ – u∞

h
∥
∥∞ ≤ C h2| log h|2. (4.8)

4.3 L∞-Asymptotic behavior
Now we estimate the order of the difference between uh(T , ·), the discrete solution calcu-
lated at the moment T = n�t, and u∞, the solution of problem (2.13).

Theorem 6 (The main result) Under the conditions of Proposition 3 and Corollary 1, the
following inequality holds:

∥
∥uh(T , ·) – u∞(·)∥∥∞ ≤ C

(

h2| log h|2 +
(

α�t + 1
β�t + 1

)N)

. (4.9)

Proof We have

un
h(t, ·) = uh(t, ·) for all t ∈ (

(n – 1)�t, n�t
)
,

thus

∥
∥uh(T , ·) – u∞(·)∥∥∞ =

∥
∥uN

h (·) – u∞(·)∥∥∞

≤ ∥
∥uN

h – u∞
h

∥
∥∞ +

∥
∥u∞

h – u∞∥
∥∞.

Indeed, applying the previous results of Proposition 3 and Corollary 1, we get

∥
∥uh(T , ·) – u∞(·)∥∥∞ ≤

(
α�t + 1
β�t + 1

)N∥
∥u0

h – u∞
h

∥
∥∞ + C h2| log h|2.
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Then the following result can be deduced:

∥
∥uh(T , x) – u∞(x)

∥
∥∞ ≤ C

(

h2| log h|2 +
(

α�t + 1
β�t + 1

)N)

,

which completes the proof. �
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