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Abstract
In this paper, we will establish some new Lyapunov-type inequalities for some
higher-order superlinear–sublinear difference equations with boundary conditions.
Our results not only complement the existing results established in the literature, but
also furnish a handy tool for the study of qualitative properties of solutions of some
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1 Introduction
In recent years, there has been an increasing interest in obtaining various classes of in-
equalities, which play an important role in qualitative analysis of solutions to differen-
tial and difference equations; see [1–27]. In the field of inequalities, the Lyapunov-type
inequality is one of the fundamental inequalities, which was initially investigated by Lya-
punov in 1907. After having been discovered, the Lyapunov inequality and its various gen-
eralizations were extensively studied by numerous mathematicians. This is due to the fact
that these inequalities have proved to be useful tools in the study of oscillation theory,
disconjugacy, eigenvalue problems, and many directions of mathematics research areas.
For some recent work, the reader is referred to [28–45] and the references therein. In
particular, Liu and Tang [37] studied the following m-order p-Laplace difference equa-
tion:

∣
∣�mu(n)

∣
∣
p–2

�mu(n) + r(n)
∣
∣u(n)

∣
∣
p–2u(n) = 0, (1)

where m ∈ N, n ∈ Z and r(n) is a real-valued function defined on Z, p > 1 is a constant,
� denotes the forward difference operator defined by �x(n) = x(n + 1) – x(n), and u(n)
satisfies the following anti-periodic boundary conditions:

�iu(a) + �iu(b) = 0, i = 0, 1, . . . , m – 1; u(n) �≡ 0, n ∈ Z[a, b]. (2)
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Recently, Liu [43] established a new discrete Lyapunov-type inequality for the following
generalized m-order p-Laplace difference equation with mixed non-linearities:

∣
∣�mu(n)

∣
∣
p–2

�mu(n) +
m–1
∑

i=0

ri(n)
∣
∣�iu(n)

∣
∣
p–2

�iu(n) = 0, (3)

with the anti-periodic boundary conditions (2), where m ∈ N, n ∈ Z, p > 1 is a constant
and ri(n) (i = 0, 1, . . . , m – 1) are real-valued functions defined on Z.

However, to the best of our knowledge, Lyapunov-type inequalities for the superlinear–
sublinear difference equation have received less attention. The main goal of this paper is
to use the Hölder inequality and other inequalities to establish Lyapunov-type inequalities
for superlinear–sublinear difference equation of the form

∣
∣�mu(n)

∣
∣
α–2

�mu(n) + q(n)
∣
∣�mu(n)

∣
∣
β–2

�mu(n) – r(n)
∣
∣u(n)

∣
∣
γ –2u(n) = 0,

n ∈ Z[a, b], (4)

with the anti-periodic boundary conditions (2), and superlinear–sublinear difference
equation of the form

∣
∣�2mu(n)

∣
∣
α–2

�2mu(n) + q(n)
∣
∣�2mu(n)

∣
∣
β–2

�2mu(n) – r(n)
∣
∣u(n)

∣
∣
γ –2u(n) = 0,

n ∈ Z[a, b], (5)

with the following boundary conditions:

�2iu(a) = �2iu(b) = 0, i = 0, 1, . . . , m – 1; u(n) �≡ 0, n ∈ Z[a, b], (6)

where m ∈ N, 1 < α < γ < β are constants, r(n) and q(n) are real-valued functions defined
on Z with q(n) > 0.

Our results not only complement the existing results established in the literature, such
as those in [37, 39, 43], but also furnish a handy tool for the study of qualitative properties
of solutions of some difference equations.

2 Main results
In what follows, we always assume that a, b ∈ N,Z[a, b] = {a, a+1, . . . , b–1, b} and Z(a, b) =
{a + 1, a + 2, . . . , b – 2, b – 1}.

Lemma 2.1 Let M > 0, N > 0, λ > 0 and θ > 0 be given and 1 < λ < θ . Then, for each x ≥ 0,

Mxλ – Nxθ ≤ M(θ – λ)
θ – 1

(
(θ – 1)N
(λ – 1)M

)(λ–1)/(λ–θ )

x (7)

holds.

Proof If x = 0, then it is easy to see that the inequality (7) holds. So we only prove the
inequality (7) holds in the case of x > 0. Set F(x) = Mxλ–1 – Nxθ–1, x > 0. Let F ′(x) = 0, we
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get x0 = ( M(λ–1)
N(θ–1) )1/(θ–λ). Since ∀x ∈ (0, x0), F ′(x) > 0; ∀x ∈ (x0, +∞), F ′(x) < 0, F obtains its

maximum at x0 = ( M(λ–1)
N(θ–1) )1/(θ–λ) and Fmax = F(x0) = M(θ–λ)

θ–1 ( (θ–1)N
(λ–1)M )(λ–1)/(λ–θ ). Hence we get

Mxλ–1 – Nxθ–1 ≤ M(θ – λ)
θ – 1

(
(θ – 1)N
(λ – 1)M

)(λ–1)/(λ–θ )

,

i.e.,

Mxλ – Nxθ ≤ M(θ – λ)
θ – 1

(
(θ – 1)N
(λ – 1)M

)(λ–1)/(λ–θ )

x,

then (7) holds. The proof is complete. �

Lemma 2.2 ([39]) Assume that u(n) is a real-valued function on Z[a, b], u(a) = u(b) = 0.
Then

∣
∣u(n)

∣
∣ ≤ (n – a)(b – n)

b – a

b–1
∑

s=a

∣
∣�2u(s)

∣
∣, ∀n ∈ Z[a, b – 1], (8)

b–1
∑

n=a

∣
∣u(n)

∣
∣ ≤ 1

2

b–1
∑

n=a

[

(n – a + 1)(b – n – 1)
∣
∣�2u(n)

∣
∣
] ≤ (b – a)2

8

b–1
∑

n=a

∣
∣�2u(n)

∣
∣,

∀n ∈ Z[a, b – 1]. (9)

Theorem 2.1 If u(n) is a nonzero solution of Eq. (4) satisfying the anti-periodic boundary
conditions (2), then

1 ≤ Θ

(
γ – α

q0(β – α)

)(γ –α)/(β–γ ) (β – γ )
β – α

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)(β–α)/[α(β–γ )]

, (10)

where

q0 = min
n∈Z[a,b]

{

q(n)
}

, (11)

Θ = (b – a)(β–α)(mαγ –mα+1–α)/[α(β–γ )]2m(γ –1)(α–β)/(β–γ ). (12)

Proof Since the nonzero solution u(n) of Eq. (4) satisfies the anti-periodic boundary con-
ditions (2), then u(a) + u(b) = 0. For n ∈ Z[a, b], we have

u(n) = u(n) –
1
2
[

u(a) + u(b)
]

=
1
2

n–1
∑

k=a

[

u(k + 1) – u(k)
]

–
1
2

b–1
∑

k=n

[

u(k + 1) – u(k)
]

=
1
2

n–1
∑

k=a

�u(k) –
1
2

b–1
∑

k=n

�u(k). (13)

Then

∣
∣u(n)

∣
∣ ≤ 1

2

b–1
∑

k=a

∣
∣�u(k)

∣
∣. (14)
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Similarly, we get

∣
∣�iu(n)

∣
∣ ≤ 1

2

b–1
∑

k=a

∣
∣�i+1u(k)

∣
∣, i = 1, 2, . . . , m – 1. (15)

Then, from (14) and (15), we have

∣
∣u(n)

∣
∣ ≤

(
1
2

)m

(b – a)m–1
b–1
∑

k=a

∣
∣�mu(k)

∣
∣. (16)

Multiplying (4) by �mu(n), we obtain

∣
∣�mu(n)

∣
∣
α = r(n)

∣
∣u(n)

∣
∣
γ –2u(n)�mu(n) – q(n)

∣
∣�mu(n)

∣
∣
β , n ∈ Z[a, b]. (17)

Then we get

∣
∣�mu(n)

∣
∣
α = r(n)

∣
∣u(n)

∣
∣
γ –2u(n)�mu(n) – q(n)

∣
∣�mu(n)

∣
∣
β

≤ ∣
∣r(n)

∣
∣
∣
∣u(n)

∣
∣
γ –1∣

∣�mu(n)
∣
∣ – q(n)

∣
∣�mu(n)

∣
∣
β . (18)

Summing (18) from a to b – 1, we have

b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α ≤

b–1
∑

n=a

∣
∣r(n)

∣
∣
∣
∣u(n)

∣
∣
γ –1∣

∣�mu(n)
∣
∣ –

b–1
∑

n=a
q(n)

∣
∣�mu(n)

∣
∣
β . (19)

For the first summation on the right-hand side of (19), from (16) we obtain

b–1
∑

n=a

∣
∣r(n)

∣
∣
∣
∣u(n)

∣
∣
γ –1∣

∣�mu(n)
∣
∣

≤
(

1
2

)m(γ –1)

(b – a)(m–1)(γ –1)

( b–1
∑

n=a

∣
∣�mu(n)

∣
∣

)γ –1 b–1
∑

n=a

∣
∣r(n)

∣
∣
∣
∣�mu(n)

∣
∣. (20)

On the other hand, from the discrete Hölder inequality,

b–1
∑

n=a

∣
∣f (n)g(n)

∣
∣ ≤

( b–1
∑

n=a

∣
∣f (n)

∣
∣
ρ

)1/ρ( b–1
∑

n=a

∣
∣g(n)

∣
∣
ν

)1/ν

, (21)

with f (n) = 1, g(n) = |�mu(n)|, ρ = α/(α – 1) and ν = α, we have

b–1
∑

n=a

∣
∣�mu(n)

∣
∣ ≤

( b–1
∑

n=a
1α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)1/α

= (b – a)(α–1)/α

( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)1/α

, (22)
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and, with f (n) = |r(n)|, g(n) = |�mu(n)|, ρ = α/(α – 1) and ν = α, we get

b–1
∑

n=a

∣
∣r(n)

∣
∣
∣
∣�mu(n)

∣
∣ ≤

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)1/α

. (23)

Then, from (20), (22) and (23), we obtain

b–1
∑

n=a

∣
∣r(n)

∣
∣
∣
∣u(n)

∣
∣
γ –1∣

∣�mu(n)
∣
∣

≤
(

1
2

)m(γ –1)

(b – a)(m–1/α)(γ –1)

( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)(γ –1)/α

·
( b–1

∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)1/α

=
(

1
2

)m(γ –1)

(b – a)(m–1/α)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)γ /α

. (24)

Combining (11), (19) with (24), we get

b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

≤
(

1
2

)m(γ –1)

(b – a)(m–1/α)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)γ /α

–
b–1
∑

n=a
q(n)

∣
∣�mu(n)

∣
∣
β

≤
(

1
2

)m(γ –1)

(b – a)(m–1/α)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)γ /α

– q0

b–1
∑

n=a

∣
∣�mu(n)

∣
∣
β . (25)

On the other hand, by Hölder inequality (21) with f (n) = 1, g(n) = |�mu(n)|α , ρ = β/(β –α)
and ν = β/α, we have

b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α ≤

( b–1
∑

n=a
1β/(β–α)

)(β–α)/β( b–1
∑

n=a

(∣
∣�mu(n)

∣
∣
α)β/α

)α/β

= (b – a)(β–α)/β

( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
β

)α/β

. (26)

Therefore,

(b – a)(α–β)/α

( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)β/α

≤
b–1
∑

n=a

∣
∣�mu(n)

∣
∣
β . (27)
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From (25) and (27), we get

b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

≤
(

1
2

)m(γ –1)

(b – a)(m–1/α)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)γ /α

– (b – a)(α–β)/αq0

( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)β/α

. (28)

For the right-hand of (28), from the inequality (7) in Lemma 2.1, with

M =
(

1
2

)m(γ –1)

(b – a)(m–1/α)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α

,

x =
∑b–1

n=a |�mu(n)|α , N = (b – a)(α–β)/αq0, λ = γ

α
, and θ = β

α
, we get

(
1
2

)m(γ –1)

(b – a)(m–1/α)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣

α
α–1

)(α–1)/α( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)γ /α

– (b – a)(α–β)/αq0

( b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

)β/α

≤ Θ

(
γ – α

q0(β – α)

)(γ –α)/(β–γ ) (β – γ )
β – α

·
( b–1

∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)(β–α)/[α(β–γ )] b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α , (29)

where Θ is defined as in (12). From (28) and (29), we have

b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α

≤ Θ

(
γ – α

q0(β – α)

)(γ –α)/(β–γ ) (β – γ )
β – α

·
( b–1

∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)(β–α)/[α(β–γ )] b–1
∑

n=a

∣
∣�mu(n)

∣
∣
α . (30)

Now, we claim that
∑b–1

n=a |�mu(n)|α > 0. In fact, if the above inequality is not true, we
have

∑b–1
n=a |�mu(n)|α = 0. From (16) and (22), we obtain u(n) = 0 for n ∈ Z[a, b], which

contradicts u(n) �≡ 0, n ∈ Z[a, b]. Thus dividing both sides of (30) by
∑b–1

n=a |�mu(n)|α , we
obtain (10) holds. This completes the proof of Theorem 2.1. �

Next, we establish a Lyapunov-type inequality for Eq. (5) under the boundary condi-
tion (6).
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Theorem 2.2 If u(n) is a nonzero solution of Eq. (5) satisfying the boundary conditions (6),
then

1 ≤ Υ

(
γ – α

q0(β – α)

)(γ –1)/(β–γ )
β – γ

β – α

·
( b–1

∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)(β–1)/[α(β–γ )]

, (31)

where q0 is defined as in (11) and

Υ =
(b – a)(γ –1)(2m–2mβ+α–1)/[α(γ –β)]

2(3m–1)(γ –1)(β–1)/(β–γ ) . (32)

Proof Choose c ∈ Z[a, b] such that |u(c)| = maxn∈Z[a,b] |u(n)|. Since (6), it follows from
Lemma 2.2 that

∣
∣u(c)

∣
∣ ≤ (c – a)(b – c)

b – a

b–1
∑

n=a

∣
∣�2u(n)

∣
∣ ≤ b – a

4

b–1
∑

n=a

∣
∣�2u(n)

∣
∣ (33)

and

b–1
∑

n=a

∣
∣�2iu(n)

∣
∣ ≤ (b – a)2

8

b–1
∑

n=a

∣
∣�2i+2u(n)

∣
∣, i = 1, 2, . . . , m – 1. (34)

From (33) and (34), we obtain

∣
∣u(c)

∣
∣ ≤ b – a

4

b–1
∑

n=a

∣
∣�2u(n)

∣
∣

≤ b – a
4

(b – a)2

8

b–1
∑

n=a

∣
∣�4u(n)

∣
∣

≤ b – a
4

(b – a)4

82

b–1
∑

n=a

∣
∣�6u(n)

∣
∣

≤ · · ·

≤ b – a
4

(b – a)2(m–1)

8m–1

b–1
∑

n=a

∣
∣�2mu(n)

∣
∣. (35)

Multiplying (5) by �2mu(n), we have

∣
∣�2mu(n)

∣
∣
α = r(n)

∣
∣u(n)

∣
∣
γ –2u(n)�2mu(n) – q(n)

∣
∣�2mu(n)

∣
∣
β , n ∈ Z[a, b]. (36)

Then we get

∣
∣�2mu(n)

∣
∣
α = r(n)

∣
∣u(n)

∣
∣
γ –2u(n)�2mu(n) – q(n)

∣
∣�2mu(n)

∣
∣
β

≤ ∣
∣r(n)

∣
∣
∣
∣u(n)

∣
∣
γ –1∣

∣�2mu(n)
∣
∣ – q(n)

∣
∣�2mu(n)

∣
∣
β . (37)
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Summing (37) from a to b – 1, we have

b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α ≤

b–1
∑

n=a

∣
∣r(n)

∣
∣
∣
∣u(n)

∣
∣
γ –1∣

∣�2mu(n)
∣
∣ –

b–1
∑

n=a
q(n)

∣
∣�2mu(n)

∣
∣
β . (38)

For the first summation on the right-hand side of (38), from (35) we obtain

b–1
∑

n=a

∣
∣r(n)

∣
∣
∣
∣u(n)

∣
∣
γ –1∣

∣�2mu(n)
∣
∣

≤
(

b – a
4

)γ –1 (b – a)2(m–1)(γ –1)

8(m–1)(γ –1)

( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣

)γ –1 b–1
∑

n=a

∣
∣r(n)

∣
∣
∣
∣�2mu(n)

∣
∣. (39)

On the other hand, from the discrete Hölder inequality (21) with f (n) = 1, g(n) = |�2mu(n)|,
ρ = α/(α – 1) and ν = α, we have

b–1
∑

n=a

∣
∣�2mu(n)

∣
∣ ≤

( b–1
∑

n=a
1α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)1/α

= (b – a)(α–1)/α

( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)1/α

, (40)

and with f (n) = |r(n)|, g(n) = |�2mu(n)|, ρ = α/(α – 1) and ν = α, we get

b–1
∑

n=a

∣
∣r(n)

∣
∣
∣
∣�2mu(n)

∣
∣ ≤

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)1/α

. (41)

From (39)–(41), we have

b–1
∑

n=a

∣
∣r(n)

∣
∣
∣
∣u(n)

∣
∣
γ –1∣

∣�2mu(n)
∣
∣

≤ (b – a)(γ –1)[2m–1+(α–1)/α]

4γ –18(m–1)(γ –1)

( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)(γ –1)/α

·
( b–1

∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)1/α

=
(b – a)(γ –1)[2m–1+(α–1)/α]

4γ –18(m–1)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)γ /α

. (42)

By (38) and (42), we get

b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

≤ (b – a)(γ –1)[2m–1+(α–1)/α]

4γ –18(m–1)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)γ /α
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–
b–1
∑

n=a
q(n)

∣
∣�2mu(n)

∣
∣
β

≤ (b – a)(γ –1)[2m–1+(α–1)/α]

4γ –18(m–1)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)γ /α

– q0

b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
β , (43)

where q0 is defined as in (11). On the other hand, by using Hölder inequality (21) with
f (n) = 1, g(n) = |�2mu(n)|, ρ = β/(β – α) and ν = β/α, we obtain

b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α ≤

( b–1
∑

n=a
1β/(β–α)

)(β–α)/β( b–1
∑

n=a

(∣
∣�2mu(n)

∣
∣
α)β/α

)α/β

= (b – a)(β–α)/β

( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
β

)α/β

. (44)

Therefore,

(b – a)(α–β)/α

( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)β/α

≤
b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
β . (45)

From (43) and (45), we get

b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

≤ (b – a)(γ –1)[2m–1+(α–1)/α]

4γ –18(m–1)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)γ /α

– (b – a)(α–β)/αq0

( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)β/α

. (46)

For the right-hand of (46), from the inequality (7) in Lemma 2.1 with

M =
(b – a)(γ –1)[2m–1+(α–1)/α]

4γ –18(m–1)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α

,

x =
∑b–1

n=a |�2mu(n)|α , N = (b – a)(α–β)/αq0, λ = γ /α, and θ = β/α, we have

(b – a)(γ –1)[2m–1+(α–1)/α]

4γ –18(m–1)(γ –1)

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)/α( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)γ /α

– (b – a)(α–β)/αq0

( b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

)β/α
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≤ Υ

(
γ – α

q0(β – α)

)(γ –1)/(β–γ )
β – γ

β – α

·
( b–1

∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)(β–1)/[α(β–γ )] b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α , (47)

where Υ is defined as in (32). From (46) and (47), we have

b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α

≤ Υ

(
γ – α

q0(β – α)

)(γ –1)/(β–γ )
β – γ

β – α

·
( b–1

∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)(β–1)/[α(β–γ )] b–1
∑

n=a

∣
∣�2mu(n)

∣
∣
α . (48)

Now, we claim that
∑b–1

n=a |�2mu(n)|α > 0. In fact, if the above inequality is not true, we have
∑b–1

n=a |�2mu(n)|α = 0, then |�2mu(n)| = 0 for n ∈ Z[a, b – 1]. So we get
∑b–1

n=a |�2mu(n)| = 0.
From (35), we obtain u(c) = 0, then we have u(n) = 0 for n ∈ Z[a, b], which contradicts
u(n) �≡ 0, n ∈ Z[a, b]. Thus dividing both sides of (48) by

∑b–1
n=a |�2mu(n)|α , we obtain (31)

holds. This completes the proof of Theorem 2.2. �

3 Applications
In this section, we present some examples and applications of our main results. First, we
consider the nonexistence for solutions of the BVP consisting of Eq. (4) and the boundary
conditions (2).

Theorem 3.1 Assume

Θ

(
γ – α

q0(β – α)

)(γ –α)/(β–γ ) (β – γ )
β – α

( b–1
∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(α–1)(β–α)/[α(β–γ )]

< 1, (49)

where q0 and Θ are defined as in (11) and (12). Then BVP (4), (2) has no nontrivial solution.

Proof Assume the contrary. Then BVP (4), (2) has a nontrivial solution u(n). By Theo-
rem 2.1, inequality (10) holds. This contradicts assumption (49). This completes the proof
of Theorem 3.1. �

Next, we give an application of the obtained Lyapunov-type inequality for the following
eigenvalue problem:

∣
∣�2mu(n)

∣
∣
α–2

�2mu(n) + q(n)
∣
∣�2mu(n)

∣
∣
β–2

�2mu(n) – λr(n)
∣
∣u(n)

∣
∣
γ –2u(n) = 0,

n ∈ Z[a, b], (50)

with the following boundary conditions:

�2iu(a) = �2iu(b) = 0, i = 0, 1, . . . , m – 1; u(n) �≡ 0, n ∈ Z[a, b], (51)
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where m ∈ N, λ > 0 is a parameter, 1 < α < γ < β are constants, r(n) and q(n) are real-
valued functions defined on Z with q(n) > 0. Thus, if there exists a nontrivial solution u(n)
of BVP (50), (51), from Theorem 2.2, we have

λ ≥
( b–1

∑

n=a

∣
∣r(n)

∣
∣
α/(α–1)

)(1–α)/α(
γ – α

q0(β – α)

)(1–γ )/(β–1)

·
(

β – γ

Υ (β – α)

)(β–γ )/(β–1)

, (52)

where q0 and Υ are defined as in (11) and (32).
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