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Abstract
The purpose of this work is to study the oscillation criteria for generalized
Emden–Fowler neutral differential equation. We establish new oscillation criteria
using both the technique of comparison with first order delay equations and the
technique of Riccati transformation. Our new criteria are interesting as they improve,
simplify, and complement some results that have been published recently in the
literature. Moreover, we present an illustrating example.
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1 Introduction
In aeromechanical systems, where they have a significant role, in the theory of automatic
control, in study of vibrating masses attached to an elastic bar (as the Euler equation), in
the networks that have lossless transmission lines (as is the case in high-speed computers),
and other applications, delay or neutral differential equations can be seen in the modeling
of the mentioned phenomena, see [1, 2, 5, 15]. As a result of these applications, research
groups including us still study the differential equations with delay. The theory of oscilla-
tion of delay differential equations comes at the forefront of topics that have received the
attention of researchers in recent times, see [1–29]. In the last decade, there has been a
research movement to improve and develop the oscillation criteria of solutions of second
order differential equations with delay (see [9, 10]), neutral (see [3, 7, 13]) and advanced
(see [4, 13]).

In this work, we present new oscillation criteria for second-order Emden–Fowler delay
differential equations of neutral type

(
r
(
υ ′)α)′(t) + q(t)f

(
u
(
σ (t)

))
= 0, t ≥ t0, (1.1)

where υ(t) = u(t) + p(t)u(τ (t)) and α is a ratio of odd positive integers. We also as-
sume that r ∈ C1([t0,∞), (0,∞)), τ ,σ , p, q ∈ C1([t0,∞),R), σ (t) ≤ t, τ (t) ≤ t, 0 ≤ p(t) <
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min{π (t)/π (τ (t)), 1}, q(t) ≥ 0, limt→∞ τ (t) = limt→∞ σ (t) = ∞, and

π (t0) :=
∫ ∞

t0

1
r 1

α (ν)
dν < ∞.

For the function f , we suppose that f ∈ C(R,R) and satisfies the following condition:

f (u) > kuβ for all u �= 0,

where k is a positive constant and β is a quotient of odd positive integers.
A solution of (1.1) means u ∈ C([t0,∞), [0,∞)) with ta = min{τ (tb),σ (tb)}, for some tb >

t0, which satisfies the property r(υ ′)α ∈ C1([ta,∞), [0,∞)) and satisfies (1.1) on [tb,∞). We
consider the nontrivial solutions of (1.1) existing on some half-line [tb,∞) and satisfying
the condition

{∣∣u(t)
∣
∣ : tc ≤ t < ∞}

> 0 for any tc ≥ tb.

If u is neither positive nor negative eventually, then u(t) is called oscillatory, or it will be
nonoscillatory.

For canonical form (if η(t0) = ∞), there have been some studies that consider the oscil-
lation and nonoscillation criteria of solutions of (1.1), see for example [19, 24].

For noncanonical form (if η(t0) < ∞), Liu et al. [18] got necessary and appropriate condi-
tions that ensure all solutions of (1.1) can be oscillatory, or they can tend to zero, following
the conditions limt→∞ p(t) = C,

p′(t) ≥ 0 and τ ′(t) ≥ 0. (1.2)

Furthermore, Saker [23] developed the results of [18] in the sense that they established
the conditions that assure all the solutions of Eq. (1.1) are oscillatory. The results of both
[23] as well as [18] follow an approach that does lead to two conditions, and they are re-
quested (1.2).

Wu et al. [28] established some criteria of oscillation for the neutral equation

(
r(t)

∣∣υ ′(t)
∣∣α–1

υ ′(t)
)′ + q(t)

∣∣u
(
σ (t)

)∣∣β–1u
(
σ (t)

)
= 0, (1.3)

under conditions (1.2),

r′(t) ≥ 0, and σ (t) ≤ τ (t). (1.4)

This work aims at developing the oscillation theory of second order quasi-linear equations
with delay argument. The use of the technique of comparison with first order delay equa-
tions and the technique of Riccati transformation helps us to get two various conditions,
ensuring oscillation of (1.1) without requiring (1.2). In this paper, in the first two theo-
rems, we simplify results in [18, 23, 28] and obtain new criteria for ensuring oscillation of
(1.1) without checking the additional conditions. Our criteria complement and extend the
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results in [7, 8]. In [7, Theorem 2.2], Bohner et al. proved that equation (1.1) with α = β is
oscillatory if

W := lim sup
t→∞

πα(t)
∫ t

t0

q(ν)
(

1 – p(ν)
π (τ (σ (ν)))
π (σ (ν))

)α

dν > 1.

In our paper, Theorems 2.5 and 2.6 substantially improve Theorem 2.2 in [7, Theorem 2.2],
when W ≤ 1.

The next lemma collects two useful inequalities that can be found in [29].

Lemma 1.1 Let α be a ratio of two odd positive integers. Then

DV – CV (α+1)/α ≤ αα

(α + 1)α+1
Dα+1

Cα
, C > 0, (1.5)

and

A(α+1)/α – (A – B)(α+1)/α ≤ 1
α

B1/α[
(1 + α)A – B

]
, α ≥ 1, AB ≥ 0. (1.6)

2 Main results
In this section, we shall establish new oscillation criteria for (1.1). Let us define

Q(t) := q(t)
(

1 – p(t)
π (τ (σ (t)))
π (σ (t))

)β

,

Q̂(t) :=
(

k
r(t)

∫ t

t1

Q(ν) dν

)1/α

,

and

η(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 if α = β ,

a1 if α > β ,

a2π
β–α(t) if α < β ,

where t1 ∈ [t0,∞) and a1, a2 are any positive constants.

Lemma 2.1 Assume that u is an eventually nonincreasing positive solution of (1.1). Then
υβ–α(t) ≥ η(t).

Proof Let υ be an eventually positive solution of (1.1) and υ ′(t) < 0. Then we have the
following cases:

In the case where α = β , it is easy to see that υβ–α(t) = 1.
Let α > β . Since υ(t) is a nonincreasing positive function, there exists M1 > 0 such that

υ(t) ≤ M1, which implies that

υβ–α(t) ≥ Mβ–α
1 = a1.

In the case α < β , by using the decreasing property of r(υ ′)α , we obtain

r(t)
(
υ ′(t)

)α ≤ r(t1)
(
υ ′(t1)

)α = –M2 < 0,
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hence

υ ′(t) ≤
(

–M2

r(t)

) 1
α

.

Integrating the last inequality from t to ∞, we get

–υ(t) ≤ –M
1
α
2 π (t).

Thus, we include that

υβ–α(t) ≥ M
β–α
α

2 πβ–α(t) = a2π
β–α(t).

Therefore, we have υβ–α(t) ≥ η(t). The proof of the lemma is complete. �

Lemma 2.2 Let u be a positive solution of (1.1) on [t0,∞). If

∫ ∞

t1

Q(ν) dν = ∞ (2.1)

for t1 ≥ t0, then
(H) υ is decreasing, r(υ ′)α is nonincreasing, eventually.

Proof Let u be a positive solution of (1.1) on [t0,∞). Then we suppose that there exists
t1 ∈ [t0,∞) such that u(t) > 0, u(τ (t)) > 0, and u(σ (t)) > 0 for all t ∈ [t1,∞). Obviously, we
find υ(t) ≥ u(t) and

(
r
(
υ ′)α)′(t) = –q(t)f

(
u
(
σ (t)

)) ≤ 0. (2.2)

Therefore, υ ′ is either eventually negative or eventually positive.
Suppose now that υ ′ > 0 on [t1,∞). Then u(t) ≥ (1 – p(t))υ(t), and (2.2) becomes

(
r
(
υ ′)α)′(t) ≤ –kq(t)

(
1 – p

(
σ (t)

))β
υβ

(
σ (t)

)
. (2.3)

Since π (τ (σ (t))) ≥ π (σ (t)), we get

1 – p
(
σ (t)

) ≥ 1 – p
(
σ (t)

)π (τ (σ (t)))
π (σ (t))

. (2.4)

Integrating (2.3) from t1 to t and using (2.4), we get

r(t)
(
υ ′(t)

)α ≤ r(t1)
(
υ ′(t1)

)α – k
∫ t

t1

q(ν)
(
1 – p

(
σ (ν)

))β
υβ

(
σ (t)

)
dν

≤ r(t1)
(
υ ′(t1)

)α – kυβ
(
σ (t1)

)∫ t

t1

q(ν)
(
1 – p

(
σ (ν)

))β dν

≤ r(t1)
(
υ ′(t1)

)α – kυβ
(
σ (t1)

)∫ t

t1

Q(ν) dν,

a contradiction with positivity of υ ′(t). The proof of this lemma is complete. �
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Lemma 2.3 Let u be a positive solution of (1.1) on [t0,∞). If

∫ ∞

t1

(
1

r(s)

∫ s

t2

Q(v) dv
)1/α

ds = ∞ (2.5)

for t1 ≥ t0, then (H) holds and

lim
t→∞υ(t) = ∞. (2.6)

Proof Let u be a positive solution of (1.1) on [t0,∞). From π (t0) < ∞ and (2.5), we have
that (2.1) holds. Hence, from Lemma 2.2, we have that υ ′(t) < 0, (2.3) and (2.4) hold.

Now, since υ > 0 and υ ′ < 0, we get that limt→∞ υ(t) = c ≥ 0. Suppose that c > 0. Then
there exists t2 ≥ t1 such that υ(σ (t)) ≤ c. From (2.3) and (2.4), we obtain

(
r
(
υ ′)α)′(t) ≤ –kcβQ(t)

for t ≥ t2. Integrating two times this inequality from t2 to t, we get, after the first integra-
tion,

υ ′(t) ≤ –
(
kcβ

)1/α
(

1
r(t)

∫ t

t2

Q(s) ds
)1/α

.

After the second integration, we obtain

υ(t) – υ(t2) ≤ –
(
kcβ

)1/α
∫ t

t2

(
1

r(s)

∫ s

t2

Q(v) dv
)1/α

ds.

This implies that limt→∞ υ(t) = –∞, which contradicts υ > 0. The proof of this lemma is
complete. �

Theorem 2.1 If

∫ ∞

t1

(
1

r(t)

∫ t

t1

Q(ν)πβ
(
σ (ν)

)
dν

)1/α

dt = ∞ (2.7)

for t1 ≥ t0, then (1.1) is oscillatory.

Proof Let u be a positive solution of (1.1) on [t0,∞) (assume the converse). Then we
suppose that there exists t1 ∈ [t0,∞) such that u(t) > 0, u(τ (t)) > 0 and u(σ (t)) > 0 for
all t ∈ [t1,∞). Since π (t0) < ∞ and (2.7), we have that

∫ t
t1

Q(ν)πβ (σ (ν)) dν must be un-
bounded. Thus, and from the fact π ′(t) < 0, it is easy to see that (2.1) holds. Hence, from
Lemma 2.2, we have that υ ′(t) < 0 and (2.2) holds. Since

υ(t) ≥ –
∫ ∞

t
υ ′(ν) dν = –

∫ ∞

t

r1/α(ν)υ ′(ν)
r1/α(ν)

dν ≥ –π (t)r1/α(t)υ ′(t), (2.8)

it follows that

d
dt

(
υ(t)
π (t)

)
≥ 0.
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In view of the definition of υ , we deduce

u(t) = υ(t) – p(t)
(
u
(
τ (t)

)) ≥ υ(t) – p(t)
(
υ
(
τ (t)

))

≥ υ(t)
(

1 – p(t)
π (τ (t))
π (t)

)
.

Consequently, (2.2) becomes

(
r
(
υ ′)α)′(t) ≤ –kq(t)

(
1 – p(t)

π (τ (σ (t)))
π (σ (t))

)β

υβ
(
σ (t)

)

= –kQ(t)υβ
(
σ (t)

)
. (2.9)

From the monotonicity property of r(t)(υ ′(t))α , we have

–r(t)
(
υ ′(t)

)α ≥ –r(t1)
(
υ ′(t1)

)α =: L > 0,

which in view of (2.8) implies

υβ (t) ≥ L
β
α πβ (t). (2.10)

From (2.10), (2.9) becomes

(
r
(
υ ′)α)′(t) ≤ –kL

β
α Q(t)πβ

(
σ (t)

)
. (2.11)

Integrating (2.11) from t1 to t, we obtain

r(t)
(
υ ′(t)

)α ≤ r(t1)
(
υ ′(t1)

)α – kL
β
α

∫ t

t1

Q(ν)πβ
(
σ (ν)

)
dν

≤ –kL
β
α

∫ t

t1

Q(ν)πβ
(
σ (ν)

)
dν. (2.12)

Integrating (2.12) from t1 to t and using (2.7), we get

υ(t) ≤ υ(t1) – k
1
α Lβ

∫ t

t1

(
1

r(ν)

∫ ν

t1

Q(v)πβ
(
σ (v)

)
dv

) 1
α

dν,

which in view of (2.7) contradicts the positivity of υ(t). The proof of the theorem is com-
plete. �

Theorem 2.2 Assume that σ ′(t) > 0. If

lim sup
t→∞

πα(t)η(t)
∫ t

t1

Q(ν) dν > 1 (2.13)

for t1 ≥ t0, then (1.1) is oscillatory.
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Proof To the contrary, we suppose that u is a positive solution of (1.1) on [t0,∞). Then
there exists t1 ≥ t0 such that u(τ (t)) > 0 and u(σ (t)) > 0 for all t ≥ t1. From (2.13) and
π (t0) < ∞, we get (2.1) holds. Using Lemma 2.2, we get that υ ′ < 0 on [t1,∞). As in the
proof of Theorem 2.1, we get (2.8) and (2.9) hold. By integrating (2.9) from t1 to t, we get

r(t)
(
υ ′(t)

)α ≤ r(t1)
(
υ ′(t1)

)α – k
∫ t

t1

Q(ν)υβ
(
σ (ν)

)
dν

≤ –kυβ
(
σ (t)

)∫ t

t1

Q(ν) dν. (2.14)

Since σ (t) ≤ t and υ ′(t) < 0, we obtain

r(t)
(
υ ′(t)

)α ≤ –kυα(t)υβ–α(t)
∫ t

t1

Q(ν) dν.

By Lemma 2.1 and (2.8) we arrive at

–r(t)
(
υ ′(t)

)α ≥ –r(t)
(
υ ′(t)

)α
πα(t)η(t)

∫ t

t1

Q(ν) dν,

and so

πα(t)η(t)
∫ t

t1

Q(ν) dν ≤ 1, (2.15)

a contradiction with (2.13). Then the proof is complete. �

Theorem 2.3 Assume that (2.1) holds. If the first order delay differential equation

υ ′(t) + Q̂(t)υβ/α(
σ (t)

)
= 0 (2.16)

is oscillatory, then (1.1) is oscillatory.

Proof To the contrary, we suppose that u is a positive solution of (1.1) on [t0,∞). Then
there exists t1 ≥ t0 such that u(τ (t)) > 0 and u(σ (t)) > 0 for all t ≥ t1. Using (2.1) and
Lemma 2.2, we get that υ ′ < 0 on [t1,∞). As in the proof of Theorem 2.2, we get (2.14)
holds. From (2.14), it is clear that υ is a positive solution of the first order differential
inequality

υ ′(t) + Q̂(t)υβ/α(
σ (t)

) ≤ 0.

In view of [25, Lemma 1], we see that the first-order delay differential equation (2.16) has
a positive solution, a contradiction. Then the proof is complete. �

Corollary 2.1 Assume that α = β . If

lim inf
t→∞

∫ t

σ (t)
Q̂(ν) dν >

1
e

, (2.17)

then (1.1) is oscillatory.
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Proof In view of [16, Theorem 2], condition (2.17) implies oscillation of (2.16). On the
other hand, if suffices to note that

∫ ∞

t0

Q̂(ν) dν = ∞

is necessary for the validity of (2.1). Therefore, the proof is complete. �

Corollary 2.2 Assume that α > β > 0. If

∫ ∞

t0

Q̂(ν) dν = ∞, (2.18)

then (1.1) is oscillatory.

Proof Since β/α ∈ (0, 1), it is shown that all the solutions of (2.16) oscillate if and only if
(2.18) holds, see [12] and [17]. On the other hand, we see that (2.18) is necessary for the
validity of (2.1). Therefore, the proof is complete. �

Corollary 2.3 Assume that α < β , σ (t) is continuously differentiable, σ ′(t) > 0 and
(2.1) holds. If there exists a continuously differentiable function ξ (t) such that ξ ′(t) > 0,
limt→∞ ξ (t) = ∞,

lim sup
t→∞

βξ ′(σ (t))σ ′(t)
αξ ′(t)

< 1,

and

lim inf
t→∞

[
Q̂(t)
ξ ′(t)

e–ξ (t)
]

> 0, (2.19)

then (1.1) is oscillatory.

Proof In view of [25, Theorem 1], condition (2.19) implies oscillation of (2.16). �

The following results serve as an improvement of Theorems 2.2, when α = β and

lim sup
t→∞

πα(t)η(t)
∫ t

t1

Q(ν) dν ≤ 1.

For the simplicity, we define the following notations:

m := lim inf
t→∞

k
π (t)

∫ ∞

t
πα+1(s)Q(s) ds

and

M := lim sup
t→∞

π (t)
(

k
∫ t

t0

Q(s) ds
)1/α

.
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Theorem 2.4 Assume that α = β and (2.5) is satisfied. If

m > α (2.20)

or

m ≤ α and M > 1 –
m
α

, (2.21)

then (1.1) is oscillatory.

Proof Suppose against the assumption of theorem that equation (1.1) has a nonoscillatory
solution u on [t0,∞). Without loss of generality, we may assume that u(t) > 0 and u(σ (t)) >
0 for t ≥ t1 ≥ t0. Let

g ′(t) =
(
υ(t) + r1/α(t)υ ′(t)π (t)

)′ = π (t)
(
r1/α(t)υ ′(t)

)′, (2.22)

then

((
r1/α(t)υ ′(t)

)α)′ = α
(
r1/α(t)υ ′(t)

)α–1(r1/α(t)υ ′(t)
)′. (2.23)

Combining (2.22) and (2.23), and using inequality (2.9), we get

g ′(t) =
1
α

π (t)
(
r1/α(t)υ ′(t)

)1–α((
r(t)

(
υ ′(t)

)α))′

≤ –
k
α

π (t)
(
r1/α(t)υ ′(t)

)1–αQ(t)υα
(
σ (t)

)
. (2.24)

Integrating (2.24) from t to ∞, we get

g(t) ≥ k
α

∫ ∞

t
π (s)Q(s)

(
r1/α(s)υ ′(s)

)1–α
υα(s) ds

≥ –
k
α

∫ ∞

t
π (t)Q(s)

(
r

1
α (s)υ ′(s)

)1–α(
–π (t)r1/α(s)υ ′(s)

)α–1
υ(s) ds

≥ k
α

υ(t)
π (t)

∫ ∞

t
πα+1(s)Q(s) ds.

It follows that

υ(t) + r1/α(t)υ ′(t)π (t) ≥ k
α

υ(t)
π (t)

∫ ∞

t
πα+1(s)Q(s) ds,

and so

υ(t)
(

1 –
k
α

1
π (t)

∫ ∞

t
πα+1(s)Q(s) ds

)
≥ –r1/α(t)υ ′(t)π (t) > 0. (2.25)

Now, let (2.20) hold. It follows from (2.20) that there exists ε > 0 such that

m – ε > α.
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By virtue of definition of m, we see that

1 –
k
α

1
π (t)

∫ ∞

t
πα+1(s)Q(s) ds ≤ 1 –

1
α

(m – ε) < 0,

this contradicts the positivity of υ .
Assume next that the case m ≤ α holds. Proceeding as in the proof of Theorem 2.2, we

get (2.14). Thus, by (2.25), we get

–r1/α(t)
(
υ ′(t)

)(
1 –

k
απ (t)

∫ ∞

t
πα+1(s)Q(s) ds

)

≥ kυ(t)
(

1 –
k

απ (t)

∫ ∞

t
πα+1(s)Q(s) ds

)(∫ t

t0

Q(s) ds
)1/α

≥ –kr1/α(t)υ ′(t)π (t)
(∫ t

t0

Q(s) ds
)1/α

,

that is,

(
1 –

k
απ (t)

∫ ∞

t
πα+1(s)Q(s) ds

)
≥ kπ (t)

(∫ t

t0

Q(s) ds
) 1

α

.

Hence,

lim sup
t→∞

π (t)
(

k
∫ t

t0

Q(s) ds
) 1

α

≤ 1 – lim inf
t→∞

k
απ (t)

∫ ∞

t
πα+1(s)Q(s) ds,

which implies

M ≤ α – m
α

,

this contradicts (2.21). Then the proof is complete. �

Lemma 2.4 Assume that (1.1) has an eventually positive solution u on [t0,∞). Then there
exist T ≥ t1 and ε > 0 such that

(
υ

πN

)
is nonincreasing on [T ,∞), (2.26)

where N = M – ε.

Proof Assume that u is a positive solution of (1.1) on [T ,∞). By Lemma 2.3, u(t) satisfies
(H) and (2.6). Proceeding as in the proof of Theorem 2.2, we have (2.14) holds. Now, we
see that

d
dt

(
υ(t)

πN (t)

)
=

r1/α(t)υ ′(t)πN (t) + Nυ(t)πN–1(t)
r1/α(t)π2N (t)

≤ υ(t)
r1/α(t)πN+1(t)

(
N +

r1/α(t)υ ′(t)π (t)
υ(t)

)
. (2.27)
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In view of (2.14), we note that

–r1/α(t)υ ′(t)
υ(t)

≥
(

k
∫ t

t0

Q(s) ds
)1/α

,

which implies

N +
r1/α(t)υ ′(t)π (t)

υ(t)
≤ N – π (t)

(
k
∫ t

t0

Q(s) ds
)1/α

< 0.

Therefore, (2.27) becomes

d
dt

(
υ(t)

πN (t)

)
< 0.

Then the proof is complete. �

Theorem 2.5 Assume that α = β and (2.5) holds. If there is a constant κ such that

π (σ (t))
π (t)

≥ κ > 1 (2.28)

for all t ≥ t0 and

MκM > 1, (2.29)

then (1.1) is oscillatory.

Proof Proceeding as in the proof of Theorem 2.2, we get that (2.14) holds. By Lemma 2.4,
we see that

υ
(
σ (t)

) ≥ υ(t)κN . (2.30)

From (2.14), we get

–r(t)
(
υ ′(t)

)α ≥ kυα(t)καN
∫ t

t0

Q(s) ds. (2.31)

In view of (2.8), we obtain

–r(t)
(
υ ′(t)

)α ≥ –kr(t)
(
υ ′(t)

)α
πα(t)καN

∫ t

t0

Q(s) ds.

It follows that

1 ≥ κNπ (t)
(

k
∫ t

t0

Q(s) ds
)1/α

.

Taking the lim sup on both sides, we obtain a contradiction. Then the proof is com-
plete. �
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Theorem 2.6 Assume that α = β , (2.5) holds, and there is a constant κ such that (2.28)
holds. If (2.20) or

m ≤ α and MκM > 1 –
m
α

,

then (1.1) is oscillatory.

Proof As in the proof of Theorem 2.4, if we replace (2.14) by (2.31), then we get

–r1/α(t)
(
υ ′(t)

)
(

1 –
k

απ (t)

∫ ∞

t
πα+1(s)Q(s) ds

)

≥ υ(t)κN
(

1 –
k

απ (t)

∫ ∞

t
πα+1(s)Q(s) ds

)(
k
∫ t

t0

Q(s) ds
)1/α

,

and so

(
1 –

k
απ (t)

∫ ∞

t
πα+1(s)Q(s) ds

)
≥ π (t)κN

(
k
∫ t

t0

Q(s) ds
) 1

α

.

Taking lim sup on both sides, we obtain

lim sup
t→∞

π (t)κN
(

k
∫ t

t0

Q(s) ds
) 1

α

≤ 1 – lim inf
t→∞

k
απ (t)

∫ ∞

t
πα+1(s)Q(s) ds.

Therefore,

κN M ≤ 1 –
m
α

.

Then the proof is complete. �

In the next theorems, by using a generalized Riccati substitution, we establish new os-
cillation criteria of (1.1).

Theorem 2.7 Assume that σ ′(t) > 0 and α ≥ 1. If there exist functions δ,ϕ ∈ C1([t0,∞),
(0,∞)) such that

lim sup
t→∞

∫ t

t0

(
Ψ (ν) –

δ(ν)r(ν)(Φ+(ν))α+1

(α + 1)α+1

)
dν = ∞ (2.32)

and

lim sup
t→∞

∫ t

t0

(
ϕ(ν)G(ν) –

r(σ (ν))(ϕ′
+(ν))α+1

(α + 1)α+1(ϕ(ν)σ ′(ν))α

)
dν = ∞, (2.33)

where

Φ(t) :=
δ′(t)
δ(t)

+
1 + α

r1/α(t)π (t)
,
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Ψ (t) := δ(t)
(

kη(t)Q(t) +
1 – α

r1/α(t)πα+1(t)

)
,

G(t) := kη
(
σ (t)

)
q(t)

(
1 – p

(
σ (t)

))β

and H+(t) = max{H(t), 0}, then (1.1) is oscillatory.

Proof To the contrary, we suppose that u is a positive solution of (1.1) on [t0,∞). Thus,
there exists t1 ≥ t0 such that u(τ (t)) > 0 and u(σ (t)) > 0 for all t ≥ t1. Then we get that υ ′

has one sign eventually.
Now, we let υ ′(t) < 0 for t ≥ t1. As in the proof of Theorem 2.1, we get (2.9) holds. Define

the function ω(t) by

ω(t) = δ(t)
[

r(t)(υ ′(t))α

υα(t)
+

1
πα(t)

]
. (2.34)

From (2.8), we see that ω(t) ≥ 0. By differentiating (2.34), we get

ω′(t) =
δ′(t)
δ(t)

ω(t) + δ(t)
(r(t)(υ ′(t))α)′

υα(t)
– αδ(t)r(t)

(
υ ′(t)
υ(t)

)α+1

+
αδ(t)

r 1
α (t)πα+1(t)

=
δ′(t)
δ(t)

ω(t) + δ(t)
(r(t)(υ ′(t))α)′

υα(t)
+

αδ(t)
r 1

α (t)πα+1(t)

– αδ(t)r(t)
(

ω(t)
δ(t)r(t)

–
1

r(t)πα(t)

)(α+1)/α

. (2.35)

Using inequality (1.6) with

A :=
ω(t)

δ(t)r(t)
and B :=

1
r(t)πα(t)

,

we obtain

[
ω(t)

δ(t)r(t)
–

1
r(t)πα(t)

] α+1
α

≥
(

ω(t)
δ(t)r(t)

) α+1
α

–
1

αr(t) 1
α π (t)

[
(α + 1)ω(t)

δ(t)r(t)
–

1
r(t)πα(t)

]
. (2.36)

Using Lemma 2.1 with (2.9), we have

(r(t)(υ ′(t))α)′

υα(t)
≤ –kQ(t)

υβ (σ (t))
υα(t)

≤ –kη(t)Q(t). (2.37)

From (2.35)–(2.37), we find

ω′(t) ≤ δ′(t)
δ(t)

ω(t) – kδ(t)η(t)Q(t) – αδ(t)r(t)
((

ω(t)
δ(t)r(t)

) α+1
α

–
1

αr(t) 1
α π (t)

[
(α + 1)

ω(t)
δ(t)r(t)

–
1

r(t)πα(t)

])
+

αδ(t)
r 1

α (t)πα+1(t)

= Φ(t)ω(t) – Ψ (t) – α
1

(δ(t)r(t)) 1
α

ω(t)
α+1
α . (2.38)
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By inequality 1.5 with C := α(δ(t)r(t))–1/α , D := Φ(t), and V := ω(t), we obtain

ω′(t) ≤ –Ψ (t) +
δ(t)r(t)(Φ(t))α+1

(α + 1)α+1 .

Integrating from t2 to t, we obtain

∫ t

t2

(
Ψ (ν) –

δ(ν)r(ν)(Φ+(ν))α+1

(α + 1)α+1

)
dν ≤ ω(t2) – ω(t) ≤ ω(t2),

which contradicts (2.32).
On the other hand, let υ ′(t) > 0 for all t ≥ t2. It is easy to prove that u(t) ≥ (1 – p(t))υ(t)

and

(
r(t)

(
υ ′(t)

)α)′ ≤ –kq(t)
(
1 – p

(
σ (t)

))β
υβ

(
σ (t)

)
. (2.39)

Since (r(υ ′)α)′(t) < 0, we find

υ ′(σ (t)
) ≥ υ ′(t)

(
r(t)

r(σ (t))

)1/α

. (2.40)

Define the function

R(t) = ϕ(t)
r(t)(υ ′(t))α

υα(σ (t))
.

Hence, R(t) ≥ 0. By differentiating R(t) and using (2.39) and (2.40), we get

R′(t) ≤ –ϕ(t)G(t) +
ϕ′(t)
ϕ(t)

R(t) –
ασ ′(t)

r1/α(σ (t))ϕ1/α(t)
R1+1/α(t).

Proceeding as in the proof of the previous case, we obtain

∫ t

t0

(
ϕ(ν)G(ν) –

r(σ (ν))(ϕ′
+(ν))α+1

(α + 1)α+1(ϕ(ν)σ ′(ν))α

)
dν ≤ R(t2),

which contradicts (2.33). This completes the proof. �

Theorem 2.8 Assume that σ ′(t) > 0. If there exist functions δ,ϕ ∈ C1([t0,∞), (0,∞)) such
that (2.33) holds and

lim sup
t→∞

(
πα(t)
δ(t)

∫ t

t

(
kδ(ν)η(ν)Q(ν) –

r(ν)(δ′(ν))α+1

(α + 1)α+1δα(ν)

)
dν

)
> 1 (2.41)

for any t ∈ [t0,∞), then (1.1) is oscillatory.

Proof Proceeding as in the proof of Theorem 2.7, we obtain that υ ′ has one sign eventually.
For the case where υ ′(t) < 0 for all t ≥ t1, let us define the function ω as in (2.34). From
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(2.35) we have

ω′(t) =
δ′(t)
δ(t)

ω(t) + δ(t)
(r(t)(υ ′(t))α)′

υα(t)
–

α

(δ(t)r(t)) 1
α

(
ω(t) –

δ(t)
πα(t)

) α+1
α

+
αδ

r 1
α (t)πα+1(t)

.

Using Lemma 1.1 with C = δ′(t)/δ(t), D = α(δ(t)r(t)) –1
α , and V = δ(t)/πα(t), we obtain

ω′(t) ≤ –kδ(t)η(t)Q(t) +
δ′(t)
πα(t)

+
r(t)(δ′(t))α+1

(α + 1)α+1δα(t)
+

αδ

r 1
α (t)πα+1(t)

≤ –kδ(t)η(t)Q(t) +
(

δ(t)
πα(t)

)′
+

r(t)(δ′(t))α+1

(α + 1)α+1δα(t)
. (2.42)

Integrating (2.42) from t2 to t, we get

∫ t

t2

(
kδ(ν)η(ν)Q(ν) –

r(ν)(δ′(ν))α+1

(α + 1)α+1δα(ν)

)
dν –

δ(t)
πα(t)

+
δ(t2)

πα(t2)

≤ ω(t2) – ω(t).

In view of the definition of ω(t), we get

∫ t

t2

(
kδ(ν)η(ν)Q(ν) –

r(ν)(δ′(ν))α+1

(α + 1)α+1δα(ν)

)
dν

≤ δ(t2)
r(t2)(υ ′(t2))α

υα(t2)
– δ(t)

r(t)(υ ′(t))α

υα(t)
. (2.43)

Therefore, from (2.8), it follows that

r(t)(υ ′(t))α

υα(t)
≥ –

1
πα(t)

.

Substituting the above inequality into (2.43), we are led to

πα(t)
δ(t)

∫ t

t2

(
kδ(ν)η(ν)Q(ν) –

r(ν)(δ′(ν))α+1

(α + 1)α+1δα(ν)

)
dν ≤ 1.

Now, taking the lim supt→∞ on both sides of this inequality, we are led to contradiction.
On the other hand, let υ ′(t) > 0 for all t ≥ t1. The proof of this case is similar to that of

Theorem 2.7, and so we omit it. Then the proof is complete. �

Example 2.1 Consider the equation

(
t2α

[(
u(t) + p0u(λt)

)′]α)′ + q0tγ –1uβ (δt) = 0, (2.44)

where α > 0, λ, δ ∈ (0, 1), p0 ∈ [0,λ), q0 > 0, and γ = max{α,β}. We note that

r(t) := t2α , p(t) := p0, τ (t) := λt, σ (t) := δt, q(t) := q0tγ –1,
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and f (u) = uβ . It is easy to calculate that

π (t) =
1
t

and Q(t) = q0

(
1 –

p0

λ

)β

tγ –1.

From Theorem 2.3, equation (2.44) is oscillatory if the first order delay differential equa-
tion

υ ′(t) +
K

t2–γ /α υβ/α(δt) = 0

is oscillatory, where

K =
(

q0

γ

(
1 –

p0

λ

)β)1/α

> 0.

For α > β , we see that γ = α and hence

∫ ∞

t0

K
t2–γ /α dν = ∞.

Then, by Corollary 2.2, equation (2.44) is oscillatory.
For α < β , we have (2.13) holds if

q0

(
1 –

p0

λ

)β

a2 > β .

But this condition is not feasible as a result of constant a2. However, according to Theo-
rem 2.2, if we take γ = β + 1, then (2.13) holds and hence equation (2.44) is oscillatory.

For α = β , we have the following criteria for oscillation:
– By Theorem 2.2, we get the condition

q0

(
1 –

p0

λ

)α

> α. (C1)

– By Corollary 2.1, we get the condition

q1/α
0

(
1 –

p0

λ

)
ln

1
δ

>
α1/α

e
. (C2)

– By Theorem 2.6, we get the condition

q0

(
1 –

p0

λ

)(
1
δ

)q0(1–p0/λ)

> 1 – q0

(
1 –

p0

λ

)
if α = 1. (C3)

– By Theorem 2.8 with δ(t) := t–α , we have that condition (2.41) holds if

q0

(
1 –

p0

λ

)α

>
αα+1

(α + 1)α+1 . (C4)
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Table 1 Test of the strength of criteria for (E1) and (E2)

Condition (C1) Condition (C2) Condition (C4)

For (E1) q0 > 2.00000 q0 > 1.06150 q0 > 0.50000
For (E2) q0 > 1.25990 q0 > 0.18087 q0 > 0.19843

As special cases, we consider the equations

(
t2

[(
u(t) +

1
3

u
(

2
3

t
))′])′

+ q0u
(

1
2

t
)

= 0 (E1)

and

(
t2/3

[(
u(t) +

1
3

u
(

2
3

t
))′]1/3)′

+ q0u1/3(0.01t) = 0. (E2)

From Table 1, we note that Condition (C4) supports the most efficient condition for (E1)
and Condition (C2) supports the most efficient condition for (E2).

Moreover, for (E1), we see that Condition (C3) provides an improvement of Conditions
(C1) and (C2), namely q0 > 0.8532.

Also, for Euler differential equation, if p0 = 0 and α = 1, then condition (C4) reduces to
q0 > 1/4, which is sharp for oscillation.
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