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Abstract
In this paper, we consider the following sublinear fractional Schrödinger equation:

(–�)su + V(x)u = K (x)|u|p–1u, x ∈R
N ,

where s,p ∈ (0, 1), N > 2s, (–�)s is a fractional Laplacian operator, and K , V both
change sign in R

N . We prove that the problem has infinitely many solutions under
appropriate assumptions on K , V . The tool used in this paper is the symmetric
mountain pass theorem.
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1 Introduction and main result
In this paper, we consider the following sublinear fractional Schrödinger equation:

(–�)su + V (x)u = K(x)|u|p–1u, x ∈ R
N , (1.1)

where s, p ∈ (0, 1), N > 2s, (–�)s is a fractional Laplacian operator, K , V both change sign
in R

N and satisfy some conditions specified below.
Problem (1.1) gives the following nonlinear field equation:

i
∂Ψ

∂t
= (–�)sΨ + (1 + E)Ψ – K(x)|Ψ |p–1Ψ , x ∈R

N , t ∈R
+. (1.2)

The nonlinear field Eq. (1.2) reflects the stable diffusion process of Lévy particles in ran-
dom field. Later, people found that this stable diffusion of Lévy process has also a very
important application in the mechanical system, flame propagation, chemical reactions in
the liquid, and the anomalous diffusion of physics in the plasma. For more details, readers
can refer to [5, 25, 26, 45] and the references therein.
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Problem (1.1) involves the fractional Laplacian (–�)s, which is a nonlocal operator. After
this question was raised, it immediately aroused the interest of mathematicians (see [1, 4,
6–14, 16–22, 24, 27–29, 31, 33–44, 46–55] and the references therein).

For fractional equations on the whole space R
N , the main difficulty one may face is that

the Sobolev embedding Hs(RN ) ↪→ Lq(RN ) is not compact for q ∈ [2, 2∗
s ). To overcome

this difficulty, some authors [8, 10, 24, 31, 38, 50] considered fractional equations with the
potential V satisfying the following conditions:

(V ) V ∈ C(RN ,R), infx∈RN V (x) ≥ V0 > 0 and, for each M > 0, meas{x ∈ R
N : V (x) ≤

M} < ∞, where V0 is a constant and meas denotes Lebesgue measure in R
N .

Due to condition (V ), the subspace of Hs(RN ) embeds compactly into Lq(RN ) for q ∈
[2, 2∗

s ), which is crucial in their paper. In fact, condition (V ) is certain coercive condition.
In the case of coercive condition lim|x|→+∞ V (x) = +∞, some authors, for example [12, 33],
considered fractional equations on the whole space R

N .
To overcome the difficulties caused by the lack of compactness, on the other hand, some

authors restricted the energy functional to a subspace for Hs(RN ) of radially symmetric
functions, which embeds compactly into Ls(RN ), for example, [9, 21, 34, 44, 54].

However, in this paper, we do not need some conditions like (V ) or radially symmetric.
That is, our paper does not use any compact embedding on the whole space R

N .
It is worth noting that, for fractional equations on the whole spaceRN , most results need

condition V (x) ≥ 0 (see [1, 8–10, 12, 13, 16, 18, 20–22, 24, 28, 33, 34, 36–38, 44, 50, 52–54],
in which some results were obtained in case of V (x) = 1 [16, 18, 21, 28, 44]). To the best of
our knowledge, there are few results on the existence of solutions for fractional equations
with a sign-changing potential except [11, 51]. In fact, replaced infx∈RN V (x) ≥ V0 > 0 with
infx∈RN V (x) > –∞, condition similar to (V ) is needed in [11]. In [51], Xu, Wei, and Dong
considered the following p-Laplacian equation with positive nonlinearity:

(–�)s
pu + V (x)|u|p–2u – λ|u|p–2u = f (x, u) + g(x)|u|q–2u, x ∈R

N ,

where N , p ≥ 2, s ∈ (0, 1), λ is a parameter, (–�)s
p is the fractional p-Laplacian, and f :

R
N ×R →R is a Carathéodory function. In the case of λ = 0, they obtained the existence

of a nontrivial solution to this equation. Furthermore, they proved that this equation has
infinitely many nontrivial solutions when λ ≤ 0 or λ > 0 is small enough.

In this article, we are interested in the existence of infinitely many solutions for problem
(1.1) with potential function V (x) changing sign in R

N . Moreover, nonlinearity can be
allowed to change sign. To state our main result, we assume the following:

(V1) V ∈ L∞(RN ) and there exist α, R0 > 0 such that

V (x) ≥ α, ∀|x| ≥ R0.

(V2) ‖V –‖ N
2s

< 1
S , where V ±(x) = max{±V (x), 0} and S is the constant of Sobolev:

‖u‖2
2∗

s
≤ S‖u‖2

Hs
0(RN ), ∀u ∈ Hs(

R
N)

, where 2∗
s =

2N
N – 2s

.

(K) K ∈ L∞(RN ) and there exist β > 0, R1 > R2 > 0, y0 = (y1, . . . , yN ) ∈R
N such that

K(x) ≤ –β , ∀|x| > R1; K(x) > 0, ∀x ∈ B(y0, R2) ⊂ B(0, R1).
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Our main result of this paper can be stated as follows.

Theorem 1.1 Assume (V1)–(V2) and (K) hold. Then problem (1.1) possesses infinitely
many nontrivial solutions.

Remark 1.1 The ideas in this article come from the paper [3], where Schrödinger equa-
tions were considered. However, our proof is nontrivial since we present a simplified proof
for the PS condition by comparing to that in [3]. In fact, the PS condition was proved in
[3] by concentration compactness principle. It is noticed that the PS condition plays im-
portant role in the proof of the main results in [3].

2 Notations and preliminaries
In this paper, we use the following notations. Let

‖u‖q =
(∫

RN
|u|q dx

) 1
q

, 1 ≤ q < +∞.

Let E be a Banach space and ϕ : E →R be a functional of class C1. The Fréchet derivative
of ϕ at u, ϕ′(u) is an element of the dual space E∗, and we denote ϕ′(u) evaluated at v ∈ E
by 〈ϕ′(u), v〉.

Let s ∈ (0, 1), the fractional Sobolev space Hs(RN ) is defined by

Hs(
R

N)
=

{
u ∈ L2(

R
N)

:
|u(x) – u(y)|
|x – y| N

2 +s
∈ L2(

R
N ×R

N)}

and endowed with the natural norm

‖u‖Hs(RN ) =
(∫

RN
|u|2 dx +

∫

RN

∫

RN

|u(x) – u(y)|2
|x – y|N+2s dx dy

) 1
2

,

here

[u]Hs(RN ) =
(∫

RN

∫

RN

|u(x) – u(y)|2
|x – y|N+2s dx dy

) 1
2

is the so-called Gagliardo (semi) norm of u.
Using Fourier transform, the space Hs(RN ) can also be defined by

Hs(
R

N)
=

{
u ∈ L2(

R
N)

:
∫

RN

(
1 + |ξ |2s)|F u|2 dξ < +∞

}
,

where F u denotes the Fourier transform of u.
Let � be the Schwartz space of rapidly decreasing C∞ function on R

N , u ∈ �, one has

(–�)su(x) = C(N , s)P.V.
∫

RN

u(x) – u(y)
|x – y|N+2s dy,

the symbol P.V. stands for the Cauchy value, and C(N , s) is a constant dependent only on
the space dimension N and the order s.
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From the results of [15], we have

(–�)su = F –1(|ξ |2s(F u)
)

for any ξ ∈R
N .

Then, by Proposition 3.4 and Proposition 3.6 of [15], we have

[u]2
Hs =

2
C(N , s)

∫

RN
|ξ |2s|F u|2 dξ =

2
C(N , s)

∥
∥(–�)

s
2 u

∥
∥2

2.

From the above facts, the norms on Hs(RN ) defined as follows

u �→
(

‖u‖2
2 +

∫

RN
|ξ |2s|F u|2 dξ

) 1
2

,

u �→ (‖u‖2
2 +

∥
∥(–�)

s
2 u

∥
∥2

2

) 1
2 ,

u �→ ‖u‖Hs(RN )

are all equivalent.

Lemma 2.1 ([15, 30, 34]) Let 0 < s < 1 such that 2s < N . Then there exists C = C(n, s) such
that

‖u‖2∗
s ≤ C‖u‖Hs(RN )

for every u ∈ Hs(RN ). Moreover, the embedding Hs(RN ) ⊂ Lp(RN ) is continuous for any
p ∈ [2, 2∗

s ] and locally compact whenever p ∈ [2, 2∗
s ).

Let the homogeneous Sobolev space

Hs
0
(
R

N)
=

{
u ∈ L2∗

s
(
R

N)
: |ξ |sF u ∈ L2(

R
N)}

.

This space can be equivalently defined as the completion of C∞
0 (RN ) under the norm

‖u‖2
0 � ‖u‖2

Hs
0(RN ) �

∫

RN
|ξ |2s|F u|2 dξ .

The Sobolev space E = Hs(RN ) ∩ Lp+1(RN ) is endowed with the norm

‖u‖ = ‖u‖0 + ‖u‖p+1.

Obviously, E is a reflexive Banach space.
The energy functional ϕ : E →R corresponding to problem (1.1) is defined by

ϕ(u) =
1
2

∫

RN
|ξ |2s|F u|2 dξ +

1
2

∫

RN
V (x)u2 dx –

1
p + 1

∫

RN
K(x)|u|p+1 dx.

Under our conditions, ϕ ∈ C1(E) and its critical points are solutions of problem (1.1).



Guan et al. Journal of Inequalities and Applications         (2020) 2020:61 Page 5 of 12

Definition 2.1 ([32]) Let E be a Banach space and A be a subset of E. Set A is said to be
symmetric if u ∈ E implies –u ∈ E. For a closed symmetric set A which does not contain
the origin, we define a genus γ (A) of A by the smallest integer k such that there exists
an odd continuous mapping from A to R

k \ {0}. If there does not exist such k, we define
γ (A) = ∞. We set γ (∅) = 0. Let Γk denote the family of closed symmetric subsets A of E
such that 0 /∈ A and γ (A) ≥ k.

The following result is a version of the classical symmetric mountain pass theorem [2,
32]. For the proof, please see [23].

Theorem 2.1 ([23]) Let E be an infinite dimensional Banach space and I ∈ C1(E,R) sat-
isfy:

(I1) I is even, bounded from below, I(0) = 0, and I satisfies the Palais–Smale condition.
(I2) For each k ∈N, there exists Ak ∈ Γk such that

sup
u∈Ak

I(u) < 0.

Then either of the following two conditions holds:
(i) there exists a sequence uk such that I ′(uk) = 0, I(uk) < 0 and uk converges to zero; or

(ii) there exist two sequences uk and vk such that I ′(uk) = 0, I(uk) = 0, uk �= 0,
limk→+∞ uk = 0, I ′(vk) = 0, I(vk) < 0, limk→+∞ I(vk) = 0 and vk converges to a
non-zero limit.

3 Proof of Theorem 1.1
Lemma 3.1 Suppose that (V1)–(V2) and (K) hold. Then any PS sequence of ϕ is bounded
in E.

Proof Let {un} ⊂ E be such that

ϕ(un) is bounded and ϕ′(un) → 0 as n → ∞.

That is, there exists C > 0 such that ϕ(un) ≤ C. So, according to Hölder’s inequality and
Sobolev’s inequality, one has that

C ≥ ϕ(un) =
1
2

∫

RN
|ξ |2s|F un|2 dξ +

1
2

∫

RN
V (x)u2

n dx –
1

p + 1

∫

RN
K(x)|un|p+1 dx

≥ 1
2

∫

RN
|ξ |2s|F un|2 dξ –

1
2

∫

RN
V –(x)u2

n dx –
1

p + 1

∫

RN
K+(x)|un|p+1 dx

≥ 1
2
‖un‖2

0 –
1
2

(∫

RN

∣∣V –∣∣
N
2s dx

) 2s
N

(∫

RN

(|un|2
) 2∗s

2 dx
) 2

2∗s

–
1

p + 1

∫

RN
K+(x)|un|p+1 dx

≥
(

1
2

–
S
2
∥
∥V –∥

∥ N
2s

)
‖un‖2

0 –
S

p+1
2

p + 1
∥
∥K+∥

∥ 2∗s
2∗s –(p+1)

‖un‖p+1
0 .
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Since 0 < p < 1, there exists η > 0 such that

‖un‖2
0 ≤ η, ∀n ∈N. (3.1)

On the other hand, we have that

C +
‖un‖

2
≥ ϕ(un) –

1
2
〈
ϕ′(un), un

〉

≥
(

1
2

–
1

p + 1

)∫

RN
K(x)|un|p+1 dx

=
(

1
2

–
1

p + 1

)∫

RN
K+(x)|un|p+1 dx +

(
1

p + 1
–

1
2

)∫

RN
K–(x)|un|p+1 dx

=
(

1
2

–
1

p + 1

)∫

RN

(
K+(x) + χB(0,R1)(x)

)|un|p+1 dx

+
(

1
p + 1

–
1
2

)∫

RN

(
K–(x) + χB(0,R1)(x)

)|un|p+1 dx,

where ‖ · ‖ denotes the norm in E.
Thanks to (K), we have that

K+(x) = 0 for all |x| > R1.

Then, by K ∈ L∞(RN ), we get

∫

RN

∣
∣K+(x) + χB(0,R1)(x)

∣
∣

2∗s
2∗s –(p+1) dx =

∫

B(0,R1)

∣
∣K+(x) + χB(0,R1)(x)

∣
∣

2∗s
2∗s –(p+1) dx < ∞.

Hence, by Hölder’s inequality and Sobolev’s inequality, we have that

∫

RN

(
K+(x) + χB(0,R1)(x)

)|un|p+1 dx

≤
(∫

RN

(
K+(x) + χB(0,R1)(x)

) 2∗s
2∗s –(p+1) dx

) 2∗s –(p+1)
2∗s ×

(∫

RN

(|un|p+1) 2∗s
p+1 dx

) p+1
2∗s

≤ S
p+1

2
∥
∥K+ + χB(0,R1)

∥
∥ 2∗s

2∗s –(p+1)
‖un‖p+1

0 . (3.2)

Using (K) again, we know that K–(x) ≥ β for all |x| > R1. Then we have that

∫

RN

(
K–(x) + χB(0,R1)(x)

)|un|p+1 dx ≥ min(β , 1)‖un‖p+1
p+1. (3.3)

According to (3.1), (3.2), and (3.3), there exists a constant C1 > 0 such that

‖un‖p+1
p+1 ≤ C1 + C1‖un‖p+1 for all n ∈N.

Since 0 < p < 1, there exists a constant C2 > 0 such that

‖un‖p+1 ≤ C2, ∀n ∈ N. (3.4)
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Hence, it follows from (3.1) and (3.4) that {un} is bounded in E. �

Lemma 3.2 Suppose that (V1)–(V2) and (K) hold. Then ϕ satisfies the PS condition on E.

Proof Let {un} ⊂ E be such that

ϕ(un) is bounded and ϕ′(un) → 0 as n → ∞.

By Lemma 3.1, {un} is bounded in E. Going if necessary to a subsequence, from
Lemma 2.1 we can assume that

un ⇀ u in E; un → u in Lq
loc

(
R

N)
, 2 ≤ q < 2∗

s ; un → u a.e in R
N . (3.5)

So, ∀ψ ∈ C∞
0 (RN ), we have

∫

RN
|ξ |2sF unF ψ dξ +

∫

RN
V (x)unψ dx →

∫

RN
|ξ |2sF uF ψ dξ +

∫

RN
V (x)uψ dx.

By un → u in Lp+1(supp(ψ)) [15, 30] and Lebesgue’s dominated convergence theorem,
one has that

∫

RN
K(x)|un|p–1unψ dx →

∫

RN
K(x)|u|p–1uψ dx.

Hence, we have

0 = lim
n→+∞

〈
ϕ′(un),ψ

〉
=

〈
ϕ′(u),ψ

〉
, ∀ψ ∈ C∞

0
(
R

N)
.

Then

〈
ϕ′(u), u

〉
= 0.

Let vn = un – u, then un = vn + u, we have that

〈
ϕ′(un), un

〉
=

∫

RN
|ξ |2s|F un|2 dξ +

∫

RN
V (x)u2

n dx –
∫

RN
K(x)|un|p+1 dx

=
∫

RN
|ξ |2s(|F vn|2 + |F u|2 + 2F vnF u

)
dξ

+
∫

RN

(
V (x)v2

n + V (x)u2 + 2V (x)vnu
)

dx

–
∫

RN
K(x)|un|p+1 dx +

∫

RN
K(x)|u|p+1 dx –

∫

RN
K(x)|u|p+1 dx

=
〈
ϕ′(u), u

〉
+

∫

RN
|ξ |2s|F vn|2 dξ +

∫

RN
V (x)v2

n dx

–
∫

RN
K(x)|un|p+1 dx +

∫

RN
K(x)|u|p+1 dx + on(1)

≥
∫

RN
|ξ |2s|F vn|2 dξ –

∫

RN
V –(x)v2

n dx

–
∫

RN
K(x)

(|un|p+1 – |u|p+1)dx + on(1).
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Thanks to (3.5) and Lemma 4.2 in [3], we have that

lim
n→+∞

∫

RN
K(x)

[|un|p+1 – |u|p+1]dx = lim
n→+∞

∫

RN
K(x)|vn|p+1 dx.

So, we have that

〈
ϕ′(un), un

〉 ≥
∫

RN
|ξ |2s|F vn|2 dξ –

∫

RN
V –(x)v2

n dx

–
∫

RN
K(x)|vn|p+1 dx + on(1)

=
∫

RN
|ξ |2s|F vn|2 dξ –

∫

RN
V –(x)v2

n dx

–
∫

RN

(
K+(x) + χB(0,R1)(x)

)|vn|p+1 dx

+
∫

RN

(
K–(x) + χB(0,R1)(x)

)|vn|p+1 dx + on(1). (3.6)

Claim 1
∫
RN V –(x)v2

n dx → 0 as n → +∞.

In fact, by (V1), we have that V –(x) = 0 for all |x| ≥ R0. So, from vn → 0 in Lq
loc(RN ),

2 ≤ q < 2∗
s , and V ∈ L∞(RN ), we obtain

∫
RN V –(x)v2

n dx → 0 as n → +∞.

Claim 2
∫
RN (K+(x) + χB(0,R1)(x))|vn|p+1 dx → 0 as n → +∞.

In fact, thanks to (K), we have that K+(x) = 0 for all |x| > R1. So, by K ∈ L∞(RN ) and
vn → 0 in Lq

loc(RN ), 2 ≤ q < 2∗
s , we get

∫

RN

(
K+(x) + χB(0,R1)(x)

)|vn|p+1 dx → 0

as n → +∞.
From Claim 1, Claim 2, (3.3), and (3.6), we obtain that

0 = lim
n→+∞

(‖vn‖2
0 + min(β , 1)‖vn‖p+1

p+1
)
.

That is, vn → 0 in E. The proof is complete. �

Lemma 3.3 Assume that (V1)–(V2) and (K) hold. Then, for each k ∈N, there exists Ak ∈ Γk

such that

sup
u∈Ak

ϕ(u) < 0.

Proof The proof is based on some ideas of Kajikiya [23] and is very similar to the one
contained in [3]. For readers’ convenience, we give the proof. Let R2 and y0 be fixed as in
(K) and denote

D(R2) =
{

(x1, . . . , xn) ∈R
N : |xi – yi| < R2, 1 ≤ i ≤ N

}
.



Guan et al. Journal of Inequalities and Applications         (2020) 2020:61 Page 9 of 12

Let k ∈N be an arbitrary number and define n = min{n ∈N : nN ≥ k}. By planes parallel
to each face of D(R2), let D(R2) be equally divided into nN small parts Di with 1 ≤ i ≤ nN .
In fact, the length a of the edge Di is R2

n . Let Fi ⊂ Di be new cubes such that Fi has the
same center as that of Di. The faces of Fi and Di are parallel, and the length of the edge of
Fi is a

2 . Let φi, 1 ≤ i ≤ k, satisfy: supp(φi) ⊂ Di; supp(φi) ∩ supp(φj) = ∅ (i �= j); φi(x) = 1 for
x ∈ Fi; 0 ≤ φi(x) ≤ 1, for all x ∈R

N . Let

Sk–1 =
{

(t1, . . . , tk) ∈R
k : max

1≤i≤k
|ti| = 1

}
, (3.7)

Wk =

{ k∑

i=1

tiφi(x) : (t1, . . . , tk) ∈ Sk–1

}

⊂ E.

According to the fact that the mapping (t1, . . . , tk) → ∑k
i=1 tiφi from Sk–1 to Wk is odd

and homeomorphic, so γ (Wk) = γ (Sk–1) = k. Since Wk is compact in E, then ∃αk > 0 such
that

‖u‖2 ≤ αk , ∀u ∈ Wk .

On the other hand, by Hölder’s inequality and Sobolev’s embedding, we have that

‖u‖2 ≤ c‖u‖r
0‖u‖1–r

p+1 ≤ c‖u‖,

where r = 2∗
s (1–p)

2(2∗
s –p–1) .

According to the above facts, there exists ck > 0 such that

‖u‖2
2 ≤ ck for all u ∈ Wk .

Let t > 0 and u =
∑k

=1 tiφi(x) ∈ Wk ,

ϕ(tu) =
t2

2

∫

RN
|ξ |2s|F u|2 dξ +

t2

2

∫

RN
V (x)u2 dx –

1
p + 1

k∑

i=1

∫

Di

K(x)|ttiφi|p+1 dx

≤ t2

2
αk +

t2

2
‖V‖∞ck –

1
p + 1

k∑

i=1

∫

Di

K(x)|ttiφi|p+1 dx. (3.8)

From (3.7), there exists j ∈ [1, k] such that |tj| = 1 and |ti| ≤ 1 for i �= j. So

k∑

i=1

∫

Di

K(x)|ttiφi|p+1 dx =
∫

Fj

K(x)|ttjφj|p+1 dx

+
∫

Dj\Fj

K(x)
∣∣ttjφj(x)

∣∣p+1 dx +
∑

i�=j

∫

Di

K(x)|ttiφi|p+1 dx. (3.9)

According to φj(x) = 1 for x ∈ Fj and |tj| = 1, one has that

∫

Fj

K(x)|ttjφj|p+1 dx = |t|p+1
∫

Fj

K(x) dx. (3.10)
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By (K), one has that

∫

Dj\Fj

K(x)
∣∣ttjφj(x)

∣∣p+1 dx +
∑

i�=j

∫

Di

K(x)|ttiφi|p+1 dx ≥ 0. (3.11)

According to (3.8), (3.9), (3.10), and (3.11), we have that

ϕ(tu)
t2 ≤ 1

2
αk +

1
2
‖V‖∞ck –

|t|p+1

(p + 1)t2 inf
1≤i≤k

(∫

Fi

K(x) dx
)

.

So,

lim
t→0

sup
u∈Wk

ϕ(tu)
t2 = –∞.

Hence, we can fix t small enough such that sup{ϕ(u), u ∈ Ak} < 0, where Ak = tWk ∈ Γk .�

Lemma 3.4 Assume that (V1)–(V2) and (K) hold. Then ϕ is bounded from below.

Proof By (K), Hölder’s inequality and Sobolev’s embedding, as in the proof of Lemma 3.1,
we have that

ϕ(u) =
1
2

(∫

RN
|ξ |2s|F u|2 dξ +

∫

RN
V (x)u2 dx

)
–

1
p + 1

∫

RN
K(x)|u|p+1 dx

≥ 1
2

(∫

RN
|ξ |2s|F u|2 dξ –

∫

RN
V –(x)u2 dx

)
–

1
p + 1

∫

RN
K+(x)|u|p+1 dx

≥
(

1
2

–
S‖V –‖ N

2s

2

)
‖u‖2

0 –
S

p+1
2

p + 1
∥
∥K+∥

∥ 2∗s
2∗s –p–1

‖u‖p+1
0 .

Since 0 < p < 1, we conclude the proof. �

Proof of Theorem 1.1 In fact, ϕ(0) = 0 and ϕ is an even functional. Then by Lemmas 3.2,
3.3, and 3.4, conditions (I1) and (I2) of Theorem 2.1 are satisfied. Therefore, by Theo-
rem 2.1, problem (1.1) possesses infinitely many nontrivial solutions converging to 0 with
negative energy. �
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