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Abstract
In this paper, we consider nonlinear density-dependent mortality Nicholson’s
blowflies system involving patch structures and asymptotically almost periodic
environments. By developing an approach based on differential inequality techniques
coupled with the Lyapunov function method, some criteria are demonstrated to
guarantee the global attractivity of the addressed systems. Finally, we give a
numerical example to illustrate the effectiveness and feasibility of the obtain results.
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1 Introduction
Recently, the following nonlinear density-dependent mortality Nicholson’s blowflies sys-
tem with patch structure:

x′
i(t) = –aii(t) + bii(t)e–xi(t) +

n∑

j=1,j �=i

(
aij(t) – bij(t)e–xj(t))

+
m∑

j=1

βij(t)xi
(
t – τij(t)

)
e–γij(t)xi(t–τij(t)), i ∈ Q := {1, 2, . . . , n}, (1.1)

has been used in [1, 2] to describe the dynamics of recruitment-delayed model with
the Rickers-type birth function and the harvesting strategy Type II (cyrtoid). In the ith
patch, aii(t) – bii(t)e–xi(t) is a nonlinear density-dependent mortality term which repre-
sents the death rate of the current population level xi(t); the birth rate function βij(t)xi(t –
τij(t))e–γij(t)xi(t–τij(t)) depends on maturation delays τij(t) and the maximum reproduction
rate 1

γij(t) ; for i, j ∈ Q and j �= i, aij(t) – bij(t)e–xj(t) denote cooperative connection weights of
the populations ith and jth patch [2–6].

Because the almost-periodic oscillation is an important dynamic characteristic in popu-
lation dynamics, more attention has been paid to the almost-periodic problems for delayed
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Nicholson’s blowflies equation and and its variants [7–9]. Furthermore, a recent study in
[10] established the existence and global stability of almost-periodic solutions for Nichol-
son’s blowflies system (1.1) involving a positive constant M > κ obeying

γij(t)M ≤ κ̃ , for all t ∈R, i ∈ Q, j ∈ I = {1, 2, . . . , m}, (1.2)

sup
t∈R

{
–aii(t) + bii(t)e–M +

n∑

j=1,j �=i

aij(t) +
m∑

j=1

βij(t)
γij(t)

1
e

}
< 0, (1.3)

inf
t∈R,s∈[0,κ]

{
–aii(t) + bii(t)e–s +

n∑

j=1,j �=i

(
aij(t) – bij(t)

)
+

m∑

j=1

βij(t)
γij(t)

se–s

}
> 0, (1.4)

sup
t∈R

{
–bii(t)e–M +

n∑

j=1,j �=i

bij(t)e–κ +
1
e2

m∑

j=1

βij(t)

}
< 0, (1.5)

where

κ ∈ (0, 1),
1 – κ

eκ
=

1
e2 , κ̃ ∈ (1, +∞), κe–κ = κ̃e–κ̃ , i ∈ Q. (1.6)

Alas, the additional assumptions (1.2)–(1.5) are all defined onR, which are evidently not in
accord with the biological interpretation in the considered systems. Apparently, according
to the biological background of (1.2) in [8, 9], one needs to relax the above additional
assumptions as follows:

M lim sup
t→+∞

γij(t) ≤ κ̃ , (1.7)

sup
t∈[t0,+∞)

{
–aii(t) + bii(t)e–M +

n∑

j=1,j �=i

aij(t) +
m∑

j=1

βij(t)
γij(t)

1
e

}
< 0, (1.8)

inf
s∈[0,κ]

lim inf
t→+∞

{
–aii(t) + bii(t)e–s +

n∑

j=1,j �=i

(
aij(t) – bij(t)

)
+

m∑

j=1

βij(t)
γij(t)

se–s

}
> 0, (1.9)

lim sup
t→+∞

{
–bii(t)e–M +

n∑

j=1,j �=i

bij(t)e–κ +
1
e2

m∑

j=1

βij(t)

}
< 0, (1.10)

for all i ∈ Q, j ∈ I .
Inspired by the above analysis, in this paper, under the weaker assumptions (1.7)–(1.10),

we develop a novel approach to demonstrate the global stability of positive asymptotically
almost-periodic solutions for system (1.1).

This paper is organized as follows: In Sect. 2, some necessary preparations are provided.
In Sect. 3, the existence and global convergence of asymptotically almost-periodic solu-
tions are demonstrated by developing an approach based on differential inequality tech-
niques coupled with the Lyapunov function method. To verify our theoretical findings,
a numerical experiment is carried out in Sect. 4. And concluding remarks are stated in
Sect. 5.
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2 Preliminary results
Notations R

+ = [0, +∞), and C+ =
∏n

i=1 C([–σi, 0],R+). For J,J1,J2 ⊆R, define

W0
(
R

+,J
)

=
{
ν : ν ∈ C

(
R

+,J
)
, lim

t→+∞ν(t) = 0
}

,

and let BC(J1,J2) be the set of bounded and continuous functions from J1 to J2. Also, we
label the set of all almost-periodic functions from R to J by AP(R,J). The collection of the
asymptotically almost-periodic functions will be labeled by AAP(R,J). For more details
on the above definitions, we refer the readers to [8, 9, 11, 12].

It will be supposed that

σi = max
j∈I

sup
t∈R

τij(t) > 0, lim inf
t→+∞ γij(t) ≥ 1, i ∈ Q, j ∈ I (2.1)

which is a weaker condition than the inft∈R γij(t) ≥ 1 adopted in [7, 10]. For x = (x1, . . . , xn) ∈
R

n, define |x| = (|x1|, . . . , |xn|) and ‖x‖ = maxi∈Q |xi|.
Throughout this paper, we assume that aii, bii,γij ∈ AAP(R, (0, +∞)), aij (i �= j), bij (i �= j),

βij, τij ∈ AAP(R,R+) and

aij = ah
ij + ag

ij, bij = bh
ij + bg

ij, βij = βh
ij + β

g
ij , γij = γ h

ij + γ
g
ij , τij = τ h

ij + τ
g
ij ,

where ah
ii, bh

ii,γ h
ij ∈ AP(R, (0, +∞)), ah

ij (i �= j), bh
ij (i �= j),βh

ij , τ h
ij ∈ AP(R,R+), ag

ij, bg
ij,β

g
ij ,γ

g
ij , τ g

ij ∈
W0(R+,R+), and i ∈ Q, j ∈ I .

In what follows, we need to set up a nonlinear almost-periodic differential system:

x′
i(t) = –ah

ii(t) + bh
ii(t)e–xi(t) +

n∑

j=1,j �=i

(
ah

ij(t) – bh
ij(t)e–xj(t))

+
m∑

j=1

βh
ij (t)xi

(
t – τ h

ij (t)
)
e–γ h

ij (t)xi(t–τh
ij (t)), i ∈ Q. (1.1)h

With the biological meaning in mind, we consider the initial condition:

xi(t0 + θ ) = ϕi(θ ), θ ∈ [–σi, 0],ϕ = (ϕ1, . . . ,ϕn) ∈ C+ and ϕi(0) > 0, i ∈ Q. (2.2)

Lemma 2.1 Let x(t; t0,ϕ) be a solution of the initial value problem (1.1)h and (2.2). Assume
that there exists a positive constant M > κ such that (1.7), (1.9) and

sup
t∈[t0,+∞)

{
–ah

ii(t) + bh
ii(t)e–M +

n∑

j=1,j �=i

ah
ij(t) +

m∑

j=1

βh
ij (t)

γ h
ij (t)

1
e

}
< 0, i ∈ Q, (2.3)

hold. Then, x(t) = x(t; t0,ϕ) exists on [t0, +∞), and there is a tϕ ∈ [t0, +∞) such that

κ < xi(t) < M for all t ∈ [tϕ , +∞), i ∈ Q. (2.4)

Proof First, we state that

xi(t) > 0 for all t ∈ [
t0,η(ϕ)

)
, i ∈ Q, (2.5)
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where [t0,η(ϕ)) is the maximal right existence interval of x(t). Suppose that, on the con-
trary, we can take i0 ∈ Q and t̄i0 ∈ (t0,η(ϕ)) such that

xi0 (t̄i0 ) = 0, xj(t) > 0 for all t ∈ [t0, t̄i0 ), j ∈ Q.

Apparently, (1.1)h and (2.3) yield

0 ≥ x′
i0 (t̄i0 )

= –ah
i0i0 (t̄i0 ) + bh

i0i0 (t̄i0 )e–xi0 (t̄i0 ) +
n∑

j=1,j �=i0

(
ah

i0j(t̄i0 ) – bh
i0j(t̄i0 )e–xj(t̄i0 ))

+
m∑

j=1

βh
i0j(t̄i0 )xi0

(
t̄i0 – τ h

i0j(t̄i0 )
)
e–γ h

i0 j(t̄i0 )xi0 (t̄i0 –τh
i0 j(t̄i0 ))

≥ –ah
i0i0 (t̄i0 ) + bh

i0i0 (t̄i0 ) +
n∑

j=1,j �=i0

(
ah

i0j(t̄i0 ) – bh
i0j(t̄i0 )

)

> 0,

a contradiction. This yields the stated results.
Now, we demonstrate that x(t) is bounded on [t0,η(ϕ)). For t ∈ [t0 – σi,η(ϕ)) and i ∈ Q,

we define

Mi(t) = max
{
ξ : ξ ≤ t, xi(ξ ) = max

t0–σi≤s≤t
xi(s)

}
.

Suppose that x(t) is unbounded on [t0,η(ϕ)). Then, we can choose i∗ ∈ Q and a strictly
monotone increasing sequence {ζn}+∞

n=1 such that

⎧
⎨

⎩
xi∗ (Mi∗ (ζn)) = maxj∈Q{xj(Mj(ζn))},
limn→+∞ xi∗ (Mi∗ (ζn)) = +∞, limn→+∞ ζn = η(ϕ),

(2.6)

and then

lim
n→+∞ Mi∗ (ζn) = η(ϕ).

By virtue of the fact that supu≥0 ue–u = 1
e , it follows from (1.1)h and (2.6) that

0 ≤ x′
i∗
(
Mi∗ (ζn)

)

= –ah
i∗i∗

(
Mi∗ (ζn)

)
+ bh

i∗i∗
(
Mi∗ (ζn)

)
e–xi∗ (Mi∗ (ζn))

+
n∑

j=1,j �=i∗

(
ah

i∗j
(
Mi∗ (ζn)

)
– bh

i∗j
(
Mi∗ (ζn)

)
e–xj(Mi∗ (ζn)))

+
m∑

j=1

βh
i∗j(Mi∗ (ζn))

γ h
i∗j(Mi∗ (ζn))

γ h
i∗j

(
Mi∗ (ζn)

)
xi∗

(
Mi∗ (ζn) – τ h

i∗j
(
Mi∗ (ζn)

))

× e–γ h
i∗ j(Mi∗ (ζn))xi∗ (Mi∗ (ζn)–τh

i∗ j(Mi∗ (ζn)))
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≤ –ah
i∗i∗

(
Mi∗ (ζn)

)
+ bh

i∗i∗
(
Mi∗ (ζn)

)
e–xi∗ (Mi∗ (ζn))

+
n∑

j=1,j �=i∗

(
ah

i∗j
(
Mi∗ (ζn)

)
– bh

i∗j
(
Mi∗ (ζn)

)
e–xi∗ (Mi∗ (ζn)))

+
m∑

j=1

βh
i∗j(Mi∗ (ζn))

γ h
i∗j(Mi∗ (ζn))

1
e

, for all Mi∗ (ζn) > t0.

According to (2.3), taking n → +∞ leads to

0 ≤ lim
n→+∞

[
–ah

i∗i∗
(
Mi∗ (ζn)

)
+

n∑

j=1,j �=i∗
ah

i∗j
(
Mi∗ (ζn)

)
+

m∑

j=1

βh
i∗j(Mi∗ (ζn))

γ h
i∗j(Mi∗ (ζn))

1
e

]

≤ sup
t∈[t0,+∞)

[
–ah

i∗i∗ (t) +
n∑

j=1,j �=i∗
ah

i∗j(t) +
m∑

j=1

βh
i∗j(t)

γ h
i∗j(t)

1
e

]

< 0,

which is absurd and implies that x(t) is bounded on [t0,η(ϕ)). By Theorem 2.3.1 in [13],
we easily show η(ϕ) = +∞.

Next, we validate that (2.4) is true. Designate il, iL ∈ Q such that

l = lim inf
t→+∞ xil (t) = min

i∈Q
lim inf
t→+∞ xi(t), L = lim sup

t→+∞
xiL (t) = max

i∈Q
lim sup

t→+∞
xi(t).

By the fluctuation lemma [14, Lemma A.1], we can select two sequences {t∗
k }+∞

k=1 and
{t∗∗

k }+∞
k=1 satisfying

lim
k→+∞

t∗
k = +∞, lim

k→+∞
xil

(
t∗
k
)

= l, and lim
k→+∞

x′
il
(
t∗
k
)

= 0, (2.7)

and

lim
k→+∞

t∗∗
k = +∞, lim

k→+∞
xiL

(
t∗∗
k

)
= L, and lim

k→+∞
x′

iL
(
t∗∗
k

)
= 0, (2.8)

respectively. From the almost-periodicity of (1.1)h, we can take a subsequence of {k}k≥1,
still denoted by {k}k≥1, such that

lim
k→+∞

ah
ilj

(
t∗
k
)
, lim

k→+∞
bh

ilj

(
t∗
k
)
, lim

k→+∞
βh

ilq

(
t∗
k
)
, lim

k→+∞
γ h

ilq

(
t∗
k
)
,

lim
k→+∞

xj
(
t∗
k
)
, lim

k→+∞
xil

(
t∗
k – τ h

ilq

(
t∗
k
))

, lim
k→+∞

ah
iLj

(
t∗∗
k

)
, lim

k→+∞
bh

iLj

(
t∗∗
k

)
,

lim
k→+∞

βh
iLq

(
t∗∗
k

)
, lim

k→+∞
γ h

iLq

(
t∗∗
k

)
, lim

k→+∞
xj

(
t∗∗
k

)
and lim

k→+∞
xiL

(
t∗∗
k – τ h

iLq

(
t∗∗
k

))

exist for all j ∈ Q, q ∈ I . Furthermore, by taking limits, we have from (2.3) and (2.8) that

sup
t∈[t0,+∞)

{
–ah

iLiL (t) + bh
iLiL (t)e–M +

n∑

j=1,j �=iL
ah

iLj(t) +
m∑

j=1

βh
iLj(t)

γ h
iLj(t)

1
e

}

< 0
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= lim
k→+∞

x′
iL
(
t∗∗
k

)

= – lim
k→+∞

ah
iLiL

(
t∗∗
k

)
+ lim

k→+∞
bh

iLiL
(
t∗∗
k

)
e–L

+
n∑

j=1,j �=iL

(
lim

k→+∞
ah

iLj

(
t∗∗
k

)
– lim

k→+∞
bh

iLj

(
t∗∗
k

)
e– limk→+∞ xj(t∗∗

k )
)

+
m∑

j=1

lim
k→+∞

βh
iLj(t

∗∗
k )

γ h
iLj(t

∗∗
k )

lim
k→+∞

γ h
iLj

(
t∗∗
k

)
xiL

(
t∗∗
k – τ h

iLj

(
t∗∗
k

))

× e
– limk→+∞ γ h

iLj
(t∗∗

k ) limk→+∞ xiL (t∗∗
k –τh

iLj
(t∗∗

k ))

≤ – lim
k→+∞

ah
iLiL

(
t∗∗
k

)
+ lim

k→+∞
bh

iLiL
(
t∗∗
k

)
e–L

+
n∑

j=1,j �=iL

(
lim

k→+∞
ah

iLj

(
t∗∗
k

)
– lim

k→+∞
bh

iLj

(
t∗∗
k

)
e–L

)
+

m∑

j=1

lim
k→+∞

βh
iLj(t

∗∗
k )

γ h
iLj(t

∗∗
k )

1
e

≤ lim
k→+∞

[
–ah

iLiL
(
t∗∗
k

)
+ bh

iLiL
(
t∗∗
k

)
e–L +

n∑

j=1,j �=iL
ah

iLj

(
t∗∗
k

)
+

m∑

j=1

βh
iLj(t

∗∗
k )

γ h
iLj(t

∗∗
k )

1
e

]

≤ sup
t∈[t0,+∞)

{
–ah

iLiL (t) + bh
iLiL (t)e–L +

n∑

j=1,j �=iL
ah

iLj(t) +
m∑

j=1

βh
iLj(t)

γ h
iLj(t)

1
e

}
,

which entails that

⎧
⎨

⎩
L < M, l ≤ limk→+∞ xj(t∗

k ) < M,

l ≤ limk→+∞ γ h
ilq(t∗

k ) limk→+∞ xil (t∗
k – τilq(t∗

k )) ≤ κ̃ ,
where j ∈ Q, q ∈ I. (2.9)

Next, we show that l > κ . By way of contradiction, we assume that 0 ≤ l ≤ κ . With the
help of (1.6), (1.9), (2.7), and (2.9), we gain

0 = lim
k→+∞

x′
il
(
t∗
k
)

≥ – lim
k→+∞

ah
ilil

(
t∗
k
)

+ lim
k→+∞

bh
ilil

(
t∗
k
)
e–l +

n∑

j=1,j �=il

(
lim

k→+∞
ah

ilj

(
t∗
k
)

– lim
k→+∞

bh
ilj

(
t∗
k
)
e–l

)

+
m∑

j=1

limk→+∞ βh
il j(t

∗
k )

limk→+∞ γ h
il j(t

∗
k )

lim
k→+∞

γ h
il j

(
t∗
k
)
xil

(
t∗
k – τ h

ilj

(
t∗
k
))

e
– limk→+∞ γ h

il j
(t∗k )xil (t∗k –τh

il j
(t∗k ))

≥ – lim
k→+∞

ah
ilil

(
t∗
k
)

+ lim
k→+∞

bh
ilil

(
t∗
k
)
e–l +

n∑

j=1,j �=il

(
lim

k→+∞
ah

ilj

(
t∗
k
)

– lim
k→+∞

bh
ilj

(
t∗
k
)
e–l

)

+
m∑

j=1

limk→+∞ βh
il j(t

∗
k )

limk→+∞ γ h
il j(t

∗
k )

le–l

≥ lim inf
t→+∞

{
–ah

ilil (t) + bh
ilil (t)e–l +

n∑

j=1,j �=il

(
ah

ilj(t) – bh
ilj(t)

)
+

m∑

j=1

βh
il j(t)

γ h
il j(t)

le–l

}
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= lim inf
t→+∞

{
–ailil (t) + bilil (t)e–l +

n∑

j=1,j �=il

(
ailj(t) – bilj(t)

)
+

m∑

j=1

βil j(t)
γil j(t)

le–l

}

≥ inf
s∈[0,κ]

lim inf
t→+∞

{
–ailil (t) + bilil (t)e–s +

n∑

j=1,j �=il

(
ailj(t) – bilj(t)

)
+

m∑

j=1

βil j(t)
γil j(t)

se–s

}

> 0,

which results in a contradiction. This entails that l > κ . Hence, from L < M, we can choose
tϕ > t0 such that

κ < xi(t; t0,ϕ) < M for all t ≥ tϕ , i ∈ Q.

The proof is now completed. �

By using a similar argument as in Lemma 2.1, we can show the following lemma:

Lemma 2.2 Let x(t; t0,ϕ) be a solution of the initial value problem (1.1) and (2.2). Suppose
that there exists a positive constant M > κ such that (1.7), (1.8), and (1.9) hold. Then, x(t) =
x(t; t0,ϕ) exists on [t0, +∞),

κ < min
i∈Q

lim inf
t→+∞ xi(t) ≤ max

i∈Q
lim sup

t→+∞
xi(t) < M,

and there is t∗
ϕ ∈ [t0, +∞) such that

κ < xi(t) < M for all t ∈ [
t∗
ϕ , +∞)

, i ∈ Q. (2.10)

Lemma 2.3 Suppose that M > κ satisfies (1.7), and (1.9), (1.10) and (2.3) hold. Moreover,
assume that x(t) = x(t; t0,ϕ) is a solution of equation (1.1)h and (2.2). Then, for any ε > 0,
we can make a relatively dense subset Pε of R with the property that, for each δ ∈ Pε , there
exists T = T(δ) > 0 satisfying

∥∥x(t + δ) – x(t)
∥∥ <

ε

2
, for all t > T . (2.11)

Proof By virtue of Lemma 2.1, with the help of (1.10), (2.1) and the fact that bg
ij,β

g
ij ∈

W0(R+,R+), we can pick T1 > max{0, tϕ} and ζ to satisfy that, for all t ≥ T1,

γ h
ij (t)xi

(
t – τ h

ij (t)
)

> κ , –bh
ii(t)e–M +

n∑

j=1,j �=i

bh
ij(t)e–κ +

1
e2

m∑

j=1

βh
ij (t) < –ζ ,

which results in that there exist two constants η > 0 and λ ∈ (0, 1] such that

sup
t∈[T1,+∞)

{
–
[
bh

ii(t)e–M – λ
]

+
n∑

j=1,j �=i

bh
ij(t)e–κ +

m∑

j=1

βh
ij (t)

1
e2 eλσi

}
< –η. (2.12)

Label

xi(t) ≡ xi(t0 – σi), for all t ∈ (–∞, t0 – σi], i ∈ Q, (2.13)
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and

Ai(δ, t) =
[
bh

ii(t + δ) – bh
ii(t)

]
e–xi(t+δ) –

n∑

j=1,j �=i

[
bh

ij(t + δ) – bh
ij(t)

]
e–xj(t+δ)

+
m∑

j=1

[
βh

ij (t + δ) – βh
ij (t)

]
xi

(
t + δ – τ h

ij (t + δ)
)
e–γ h

ij (t+δ)xi(t+δ–τh
ij (t+δ))

+
m∑

j=1

βh
ij (t)

[
xi

(
t + δ – τ h

ij (t + δ)
)
e–γ h

ij (t+δ)xi(t+δ–τh
ij (t+δ))

– xi
(
t – τ h

ij (t) + δ
)
e–γ h

ij (t+δ)xi(t–τh
ij (t)+δ)]

+
m∑

j=1

βh
ij (t)

[
xi

(
t – τ h

ij (t) + δ
)
e–γ h

ij (t+δ)xi(t–τh
ij (t)+δ)

– xi
(
t – τ h

ij (t) + δ
)
e–γ h

ij (t)xi(t–τh
ij (t)+δ)] –

[
ah

ii(t + δ) – ah
ii(t)

]

+
n∑

j=1,j �=i

[
ah

ij(t + δ) – ah
ij(t)

]
, for all t ∈R, i ∈ Q. (2.14)

The boundedness of the right-hand side of (1.1)h and (2.13) entails that x(t) is uniformly
continuous on R. Therefore, for any ε > 0, we can take a small enough constant ε∗ > 0 such
that

⎧
⎨

⎩
|ah

ij(t) – ah
ij(t + δ)| < ε∗, |bh

ij(t) – bh
ij(t + δ)| < ε∗,

|βh
ij (t) – βh

ij (t + δ)| < ε∗, |γ h
ij (t) – γ h

ij (t + δ)| < ε∗, |τ h
ij (t) – τ h

ij (t + δ)| < ε∗,

and it follows that

∣∣Ai(δ, t)
∣∣ <

1
2
ηε, (2.15)

where t ∈R, i ∈ Q, j ∈ I .
Furthermore, for ε∗ > 0, from the uniformly almost-periodic family theory in [12, p. 19,

Corollary 2.3], one can make a relatively dense subset Pε∗ of R such that

⎧
⎪⎪⎨

⎪⎪⎩

|ah
ij(t) – ah

ij(t + δ)| < ε∗, |bh
ij(t) – bh

ij(t + δ)| < ε∗,

|βh
ij (t) – βh

ij (t + δ)| < ε∗,

|γ h
ij (t) – γ h

ij (t + δ)| < ε∗, |τ h
ij (t) – τ h

ij (t + δ)| < ε∗,

δ ∈ Pε∗ , (2.16)

where t ∈R, i ∈ Q, j ∈ I .
Relabeling Pε = Pε∗ , for any δ ∈ Pε , from (2.15) and (2.16), we have

∣∣Ai(δ, t)
∣∣ <

1
2
ηε, for all t ∈R, i ∈ Q. (2.17)

Let Λ0 ≥ max{|t0| + T1 + maxi∈Q σi, |t0| + T1 + maxi∈Q σi – δ}. For t ∈R, label

u(t) =
(
u1(t), u2(t), . . . , un(t)

)
, ui(t) = xi(t + δ) – xi(t),



Qian and Hu Journal of Inequalities and Applications         (2020) 2020:13 Page 9 of 18

and

U(t) =
(
U1(t), U2(t), . . . , Un(t)

)
, Ui(t) = eλtui(t),

where i ∈ Q. Let it be such an index that

∣∣Uit (t)
∣∣ =

∥∥U(t)
∥∥. (2.18)

Then, for all t ≥ Λ0, we gain

u′
i(t) = bh

ii(t)
[
e–xi(t+δ) – e–xi(t)] –

n∑

j=1,j �=i

bh
ij(t)

[
e–xj(t+δ) – e–xj(t)]

+
m∑

j=1

βh
ij (t)

[
xi

(
t – τ h

ij (t) + δ
)
e–γ h

ij (t)xi(t–τh
ij (t)+δ)

– xi
(
t – τ h

ij (t)
)
e–γ h

ij (t)xi(t–τh
ij (t))] + Ai(δ, t). (2.19)

From (2.4), (2.19) and the inequalities

(
e–x – e–y) sgn(x – y) ≤ –e–M|x – y| for all x, y ∈ [κ , M], (2.20)

and

∣∣αe–α – βe–β
∣∣ ≤ 1

e2 |α – β| where α,β ∈ [κ , +∞), (2.21)

we obtain

D–(∣∣Uis (s)
∣∣)∣∣

s=t

≤ λeλt∣∣uit (t)
∣∣ + eλt

{
bh

it it (t)
[
e–xit (t+δ) – e–xit (t)] sgn

(
xit (t + δ) – xit (t)

)

+
n∑

j=1,j �=it

bh
it j(t)

∣∣e–xj(t+δ) – e–xj(t)∣∣ +
m∑

j=1

βh
it j(t)

× ∣∣xit
(
t – τ h

it j(t) + δ
)
e–γ h

it j(t)xit (t–τh
it j(t)+δ) – xit

(
t – τ h

it j(t)
)
e–γ h

it j(t)xit (t–τh
it j(t))∣∣

+
∣∣Ait (δ, t)

∣∣
}

= λeλt∣∣uit (t)
∣∣ + eλt

{
bh

it it (t)
[
e–xit (t+δ) – e–xit (t)] sgn

(
xit (t + δ) – xit (t)

)

+
n∑

j=1,j �=it

bh
it j(t)

∣∣e–xj(t+δ) – e–xj(t)∣∣ +
m∑

j=1

βh
it j(t)

γ h
it j(t)

× ∣∣γ h
it j(t)xit

(
t – τ h

it j(t) + δ
)
e–γ h

it j(t)xit (t–τh
it j(t)+δ)

– γ h
it j(t)xit

(
t – τ h

it j(t)
)
e–γ h

it j(t)xit (t–τh
it j(t))∣∣ +

∣∣Ait (δ, t)
∣∣
}
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≤ λeλt∣∣uit (t)
∣∣ + eλt

{
–bh

it it (t)e–M∣∣uit (t)
∣∣ +

n∑

j=1,j �=it

bh
it j(t)e–κ

∣∣uj(t)
∣∣

+
m∑

j=1

βh
it j(t)

1
e2

∣∣uit
(
t – τ h

it j(t)
)∣∣ +

∣∣Ait (δ, t)
∣∣
}

= –
[
bh

it it (t)e–M – λ
]∣∣Uit (t)

∣∣ +
n∑

j=1,j �=it

bh
it j(t)e–κ

∣∣Uj(t)
∣∣

+
m∑

j=1

βh
it j(t)

1
e2 eλτh

it j(t)∣∣Uit
(
t – τ h

it j(t)
)∣∣ + eλt∣∣Ait (δ, t)

∣∣ for all t ≥ Λ0. (2.22)

Let

E(t) = sup
–∞<s≤t

{
eλs∥∥u(s)

∥∥}
.

It is obvious that eλt‖u(t)‖ ≤ E(t), and E(t) is non-decreasing.
Now, the remaining proof will be divided into two steps.
Step 1. If E(t) > eλt‖u(t)‖ for all t ≥ Λ0, we assert that

E(t) ≡ ∥∥U(Λ0)
∥∥ for all t ≥ Λ0. (2.23)

In the contrary case, one can pick Λ1 > Λ0 such that E(Λ1) > E(Λ0). Because

eλt∥∥u(t)
∥∥ ≤ E(Λ0) for all t ≤ Λ0,

there must exist β∗ ∈ (Λ0,Λ1) such that

eλβ∗∥∥u
(
β∗)∥∥ = E(Λ1) ≥ E

(
β∗),

which contradicts the fact that E(β∗) > eλβ∗‖u(β∗)‖ and proves the above assertion. Then,
we can make Λ2 > Λ0 satisfying

∥∥u(t)
∥∥ ≤ e–λtE(t) = e–λtE(Λ0) <

ε

2
for all t ≥ Λ2. (2.24)

Step 2. If there exists ς ≥ Λ0 such that E(ς ) = eλς‖u(ς )‖, we can have from (2.22) and
the definition of E(t) that

0 ≤ D–(∣∣Uis (s)
∣∣)∣∣

s=ς

≤ –
[
bh

iς iς (ς )e–M – λ
]∣∣Uiς (ς )

∣∣ +
n∑

j=1,j �=iς

bh
iς j(ς )e–κ

∣∣Uj(ς )
∣∣

+
m∑

j=1

βh
iς j(ς )

1
e2 eλτh

iς j(ς )∣∣Uiς
(
ς – τ h

iς j(ς )
)∣∣ + eλς

∣∣Aiς (δ,ς )
∣∣

≤
{

–
[
bh

iς iς (ς )e–M – λ
]

+
n∑

j=1,j �=iς

bh
iς j(ς )e–κ
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+
m∑

j=1

βh
iς j(ς )

1
e2 eλτh

iς j(ς )
}

E(ς ) +
1
2
ηεeλς

< –ηE(ς ) +
1
2
ηεeλς , (2.25)

which leads to

eλς
∥∥u(ς )

∥∥ = E(ς ) <
ε

2
eλς , and

∥∥u(ς )
∥∥ <

ε

2
. (2.26)

For any t > ς satisfying E(t) = eλt‖u(t)‖, by the same method as that in the derivation of
(2.26), we can show

eλt∥∥u(t)
∥∥ <

ε

2
eλt and

∥∥u(t)
∥∥ <

ε

2
. (2.27)

In addition, if E(t) > eλt‖u(t)‖ and t > ς , one can pick Λ3 ∈ [ς , t) such that

E(Λ3) = eλΛ3
∥∥u(Λ3)

∥∥ and E(s) > eλs∥∥u(s)
∥∥ for all s ∈ (Λ3, t],

which, together with (2.26) and (2.27), indicates that

∥∥u(Λ3)
∥∥ <

ε

2
. (2.28)

With a similar reasoning as that in the proof of Step 1, we can validate that

E(s) ≡ E(Λ3) is a constant for all s ∈ (Λ3, t],

which, together with (2.28), implies that

∥∥u(t)
∥∥ < e–λtE(t) = e–λtE(Λ3) =

∥∥u(Λ3)
∥∥e–λ(t–Λ3) <

ε

2
.

Finally, from the above discussion we infer that there exists Λ̂ > max{ς ,Λ0,Λ2} obeying

∥∥u(t)
∥∥ ≤ ε

2
< ε for all t > Λ̂, (2.29)

which finishes the proof of Lemma 2.3. �

3 Main result
Theorem 3.1 Let M > κ satisfy (1.7), (1.8), (1.9), (1.10) and (2.3). Then, for system (1.1)h,
there exists exactly one positive almost-periodic solution x∗(t), and every solution of (1.1)
with initial condition (2.2) converges to x∗(t) as t → +∞, which is asymptotically almost-
periodic on R

+.

Proof Let v(t) be a solution of system (1.1)h with the initial function ϕ satisfying (2.2),

vi(t) ≡ vi(t0 – σi), for all t ∈ (–∞, t0 – σi], i ∈ Q.
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We also define

Bi(q, t) =
[
bh

ii(t + tq) – bh
ii(t)

]
e–vi(t+tq) –

n∑

j=1,j �=i

[
bh

ij(t + tq) – bh
ij(t)

]
e–vj(t+tq)

+
m∑

j=1

[
βh

ij (t + tq) – βh
ij (t)

]
vi

(
t + tq – τ h

ij (t + tq)
)
e–γ h

ij (t+tq)vi(t+tq–τh
ij (t+tq))

+
m∑

j=1

βh
ij (t)

[
vi

(
t + tq – τ h

ij (t + tq)
)
e–γ h

ij (t+tq)vi(t+tq–τh
ij (t+tq))

– vi
(
t – τ h

ij (t) + tq
)
e–γ h

ij (t+tq)vi(t–τh
ij (t)+tq)]

+
m∑

j=1

βh
ij (t)

[
vi

(
t – τ h

ij (t) + tq
)
e–γ h

ij (t+tq)vi(t–τh
ij (t)+tq)

– vi
(
t – τ h

ij (t) + tq
)
e–γ h

ij (t)vi(t–τh
ij (t)+tq)] –

[
ah

ii(t + tq) – ah
ii(t)

]

+
n∑

j=1,j �=i

[
ah

ij(t + tq) – ah
ij(t)

]
, for all t ∈R, i ∈ Q. (3.1)

where {tq}q≥1 ⊆ R is a sequence. Then

v′
i(t + tq) = –ah

ii(t) + bh
ii(t)e–vi(t+tq) +

n∑

j=1,j �=i

(
ah

ij(t) – bh
ij(t)e–vj(t+tq))

+
m∑

j=1

βh
ij (t)vi

(
t – τ h

ij (t) + tq
)
e–γ h

ij (t)vi(t–τh
ij (t)+tq) + Bi(q, t), (3.2)

for all t + tq ≥ t0, i ∈ Q. By using a similar proof as in Lemma 2.3, we can take {tq}q≥1 such
that

∣∣Bi(q, t)
∣∣ <

1
q

for all i, q, t. (3.3)

Based on Arzela–Ascoli Lemma coupled with the fact that the function sequence {v(t +
tq)}q≥1 is uniformly bounded and equiuniformly continuous, we can choose a subsequence
{tqj}j≥1 of {tq}q≥1, such that {v(t +tqj )}j≥1 (for convenience, we still denote it by {v(t +tq)}q≥1)
uniformly converges to a continuous function x∗(t) = (x∗

1(t), x∗
2(t), . . . , x∗

n(t)) on any com-
pact set of R. Then, Lemma 2.1 gives us

κ < min
i∈Q

lim inf
t→+∞ vi(t) ≤ x∗

i (t) ≤ max
i∈Q

lim sup
t→+∞

vi(t) < M for all t ∈R, i ∈ Q, (3.4)

and

⎧
⎪⎪⎨

⎪⎪⎩

–ah
ij(t) + bh

ij(t)e–vj(t+tq) ⇒ –ah
ij(t) + bh

ij(t)e–x∗
j (t),

∑m
j=1 βh

ij (t)vi(t – τ h
ij (t) + tq)e–γ h

ij (t)vi(t–τh
ij (t)+tq)

⇒ ∑m
j=1 βh

ij (t)x∗
i (t – τ h

ij (t))e–γ h
ij (t)x∗(t–τh

ij (t)),

as q → +∞, (3.5)
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on any compact set of R for all i, j ∈ Q, where “⇒” denotes “uniformly converge”. Thus, for
i ∈ Q, (3.2), (3.3) and (3.5) imply that {v′

i(t + tq)}q≥1 uniformly converges to

–ah
ii(t) + bh

ii(t)e–x∗
i (t) +

n∑

j=1,j �=i

(
ah

ij(t) – bh
ij(t)e–x∗

j (t))

+
m∑

j=1

βh
ij (t)x∗

i
(
t – τ h

ij (t)
)
e–γ h

ij (t)x∗(t–τh
ij (t))

on any compact set of R. This suggests that x∗(t) is a solution of (1.1)h and

(
x∗

i (t)
)′ = –ah

ii(t) + bh
ii(t)e–x∗

i (t) +
n∑

j=1,j �=i

(
ah

ij(t) – bh
ij(t)e–x∗

j (t))

+
m∑

j=1

βh
ij (t)x∗

i
(
t – τ h

ij (t)
)
e–γ h

ij (t)x∗(t–τh
ij (t)), for all t ∈R, i ∈ Q. (3.6)

Furthermore, from Lemma 2.3, for any ε > 0, we can get a relatively dense subset Pε of
R with the property that, for each δ ∈ Pε , there exists T = T(δ) > 0 satisfying

∥∥v(s + tq + δ) – v(s + tq)
∥∥ <

ε

2
, for all s + tq > T ,

and

lim
q→+∞

∥∥v(s + tq + δ) – v(s + tq)
∥∥ =

∥∥x∗(s + δ) – x∗(s)
∥∥ ≤ ε

2
< ε for all s ∈R,

which implies that x∗(t) is a positive almost-periodic solution of (1.1)h.
Now, we show that all solutions of (1.1) converge to x∗(t) as t → +∞. Let x(t) be an

arbitrary solution of system (1.1) with the initial value ϕ satisfying (2.2). Define y(t) =
x(t) – x∗(t), add the definition of xi(t) with xi(t) ≡ xi(t0 – σi) for all t ∈ (–∞, t0 – σi], and let

Fi(t) = –
[((

ah
ii(t) + ag

ii(t)
)

+
(
bh

ii(t) + bg
ii(t)

)
e–xi(t)) –

(
ah

ii(t) + bh
ii(t)e–xi(t))]

+
n∑

j=1,j �=i

[(
ah

ij(t) + ah
ij(t) –

(
bh

ij(t) + bg
ij(t)

)
e–xj(t)) –

(
ah

ij(t) – bh
ij(t)e–xj(t))]

+
m∑

j=1

[(
βh

ij (t) + β
g
ij(t)

)
xi

(
t –

(
τ h

ij (t) + τ
g
ij (t)

))
)e–(γ h

ij (t)+γ
g
ij (t))xi(t–(τh

ij (t)+τ
g
ij (t)))

– βh
ij (t)xi

(
t – τ h

ij (t)
)
e–γ h

ij (t)xi(t–τh
ij (t))].

Then

y′
i(t) = bh

ii(t)
[
e–xi(t) – e–x∗

i (t)] –
n∑

j=1,j �=i

bh
ij(t)

[
e–xj(t) – e–x∗

j (t)]

+
m∑

j=1

βh
ij (t)

[
xi

(
t – τ h

ij (t)
)
e–γ h

ij (t)xi(t–τh
ij (t))

– x∗
i
(
t – τ h

ij (t)
)
e–γ h

ij (t)x∗
i (t–τh

ij (t))] + Fi(t), for all t ≥ t0, i ∈ Q. (3.7)
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For any ε > 0, in view of the global existence and uniform continuity of x and the fact that
ag

ij, bg
ij,β

g
ij ,γ

g
ij , τ g

ij ∈ W0(R+,R+), we can choose a constant T∗∗
ϕ > max{T1, t∗

ϕ} such that

∣∣Fi(t)
∣∣ < η

ε

2
, for all t > T∗∗

ϕ . (3.8)

Set

G(t) = sup
–∞<s≤t

{
eλs∥∥y(s)

∥∥}
, for all t ∈R,

and let it be such an index that

eλt∣∣yit (t)
∣∣ =

∥∥eλty(t)
∥∥.

By virtue of (1.7), (2.1), (3.4) and Lemma 2.2, one can find Tϕ,x∗ > T∗∗
ϕ such that

κ < xi(t), x∗
i (t),γ h

ij (t)xi
(
t – τ h

ij (t)
) ≤ κ̃ for all t > Tϕ,x∗ , i ∈ Q. (3.9)

With the help of (2.20), (2.21), (3.7) and (3.9), we gain

D–(
eλs∣∣yis (s)

∣∣)∣∣
s=t

≤ –
[
bh

it it (t)e–M – λ
]
eλt∣∣yit (t)

∣∣ +
n∑

j=1,j �=it

bh
it j(t)e–κeλt∣∣yj(t)

∣∣

+
m∑

j=1

βh
it j(t)

1
e2 eλτh

it j(t)eλ(t–τh
it j(t))∣∣yit

(
t – τ h

it j(t)
)∣∣

+ eλt∣∣Fit (t)
∣∣ for all t ≥ Tϕ,x∗ , i ∈ Q. (3.10)

Then, from (2.12), (3.8) and (3.10), by employing a similar approach as when proving
Lemma 2.3, we know that there is a constant T̃ ≥ Tϕ,x∗ such that

∥∥y(t)
∥∥ <

ε

2
for all t ≥ T̃ ,

which yields

lim
t→+∞ x(t) = x∗(t) and x(t) ∈ AAP

(
R,Rn).

It follows from the uniqueness of the limit function that (1.1)h has exactly one positive
almost-periodic solution x∗(t). The proof is complete. �

Remark 3.1 If the assumptions in Lemma 2.3 are satisfied, according to Lemmas 2.1 and
2.3, by utilizing a similar argument as in Theorem 3.1 of [10], one can show that the solu-
tion x(t; t0,ϕ) of (1.1)h converges exponentially fast to x∗(t) as t → +∞. Here, all assump-
tions in (1.7)–(1.10) are weaker than those in (1.2)–(1.5), and one can easily find that all
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conclusions about (1.1)h in [10] are special cases of Theorem 3.1 in this paper. Evidently,
for n = 1, (1.9) is weaker than

inf
t∈[t0,+∞),s∈[0,κ]

{
–a11(t) + b11(t)e–s +

m∑

j=1

β1j(t)
γ1j(t)

se–s

}
> 0,

which has been considered as fundamental in the most recently paper [9]. This implies
that the results in [9] are also special cases of this present article.

4 An example
In this section, a numerical example is presented to justify the effectiveness of the pro-
posed asymptotically almost-periodic stability results. The simulation is performed by
using Matlab software.

Example 4.1 Consider the following class of nonlinear density-dependent mortality
Nicholson’s blowflies system subject to asymptotically almost-periodic environments:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = –e–(1+0.08| sin

√
2t|) + (1 + 0.001 sin t)e–x1(t)

+ 0.1e–(1+0.08 sin2 √
2t) + 1

20+|t|
– (0.1 + 0.0001 cos t + 1

20.5+|t| )e
–x2(t)

+ 1+cos2 t
2000 x1(t – 2 sin2 t – 1

1+t2 )

× e–(0.001+ |t|+| sin t|
10+|t| )x1(t–2 sin2 t– 1

1+t2 )

+ 1+cos2 2t
2000 x1(t – 2| cos t| – 2

1+t2 )

× e–(0.002+ |t|+| sin 2t|
10+|t| )x1(t–2| cos t|– 2

1+t2 ),

x′
2(t) = –e–(1+0.08| cos

√
2t|) + (1 + 0.001 cos t)e–x2(t)

+ 0.1e–(1+0.08 cos2 √
2t) + 1

21+|t|
– (0.1 + 0.0001 sin t + 1

20.2+|t| )e
–x1(t)

+ 1+sin2 t
2000 x2(t – 2 sin2 t – t2

20+t4 )

× e–(0.003+ |t|+| sin 3t|
10+|t| )x2(t–2 sin2 t– t2

20+t4 )

+ 1+sin2 2t
2000 x2(t – 2 cos4 t – t2

30+t4 )

× e–(0.0015+ |t|+| sin 4t|
10+|t| )x2(t–2 cos4 t– t2

30+t4 ).

(4.1)

It is easy to obtain that κ̃ ≈ 1.342276, κ ≈ 0.7215355. Setting M = 1.31, one can verify
that system (4.1) satisfies all the assumptions adopted in Theorem 3.1. Consequently, all
solutions of (4.1) are asymptotically almost-periodic functions on R

+, and converge to the
same almost-periodic function as t → +∞. This fact can be revealed in Fig. 1.

Remark 4.1 It should be mentioned that system (4.1) is not almost-periodic, and

inf
t∈R+

γij(t) < 0.05,

so that it does not satisfy inft∈R γij(t) ≥ 1 which was adopted as fundamental in [7, 10].
In particular, the results in [1–6, 8, 9, 15–46] give no conclusion about the problem of
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Figure 1 Trajectories of system (4.1) involving differential initial values

asymptotically almost-periodic dynamics of Nicholson’s blowflies models involving such
a patch structure. Hence, all results in [1–10] and [15–62] cannot be straightforwardly
employed to validate that all solutions of (4.1) converge globally to the almost-periodic
function.

5 Conclusions
In this article, we addressed the asymptotic almost-periodicity in the nonlinear density-
dependent mortality Nicholson’s blowflies system with patch structures. With some del-
icate applications of differential inequality techniques, some sufficient conditions on the
global convergence were obtained to reveal that all solutions of the considered systems are
convergent to the same almost-periodic function when t → +∞. In addition, the approach
developed here is applicable in studying the asymptotic almost-periodic dynamics of other
nonlinear density-dependent mortality population dynamic systems involving asymptotic
almost-periodic environments.
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