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1 Introduction

Consider the following partially linear or semiparametric regression model:

yi=xiB+gt)+e, 1<i<n, (1.1)

where 8 is an unknown slope parameter, ¢; = o;e;, 02 =

7 = f(u;), (x;,t;,u;) are nonrandom

design points, y; are the response variables, f and g are unknown functions defined on the
closed interval [0, 1], and {e;} are random errors.

It is well known that model (1.1) and its particular cases have been widely studied by
many authors when the errors e; are independent identically distributed (i.i.d.). For in-
stance, when o7 = 0%, model (1.1) is reduced to the usual partial linear model, which was
first introduced by Engle et al. [1], and then various estimation methods have been used
to obtain estimators of the unknown quantities in (1.1) and their asymptotic properties,
(see [2-5]). Under the mixing assumption, the asymptotic normality of the estimators for
B and g were derived in [6-9]. When o = f(;), model (1.1) becomes the heteroscedastic
semiparametric model, Back and Liang [10], Zhang and Liang [11], and Wei and Li [12] es-
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tablished the strong consistency and the asymptotic normality, respectively, for the least-
squares estimators (LSEs) and weighted least-squares estimators (WLSEs) of 8, based on
nonparametric estimators of f and g. If g(¢) = 0 and o} = f (1), model (1.1) is reduced to
the heteroscedastic linear model; when 8 = 0 and af = f(u;), model (1.1) boils down to
the heteroscedastic nonparametric regression model, whose asymptotic properties of un-
known quantities were studied by Robinson [13], Carroll and Hérdle [14], and Liang and
Qi [15].

In recent years, wavelets techniques, owing to their ability to adapt to local features
of curves, have been used extensively in statistics, engineering, and technological fields.
Many authors have considered employing wavelet methods to estimate nonparametric
and semiparametric models. See Antoniadis et al. [16], Sun and Chai [17], Li et al. [18—
20], Xue [21], Zhou et al. [22], among others.

In this paper, we consider NA for the model errors. Let us recall the definition of NA
random variables. A finite collection of random variables {X;,1 < i < n} is said to be neg-
atively associated (NA) if for all disjoint subsets A,B C {1,2,...,n},

Cov(f(X;i€ A),g(X;,j € B)) <0,

where f and g are real coordinatewise nondecreasing functions such that their covariance
exists. An infinite sequence of random variables {X,,,n > 1} is said to be NA if for every
n>2,X;,X,...,X, are NA. The definition of NA random variables was introduced by
Alam and Saxena [23] and carefully studied by Joag-Dev and Proschan [24]. Although
i.i.d. random variables are NA, NA variables may be non-i.i.d. according to the definitions.
Because of its wide applications in systems reliability and multivariate statistical analysis,
recently the notion of NA received a lot of attention. We refer to Matula [25] and Shao
[26], amongst others.

In this paper, we aim to derive the least squares estimators, weighted least squares esti-
mators of 8, and their strong consistency for the wavelet estimators of f and g. At the same
time, Berry—Esséen-type bounds of their wavelet estimators of § and g are investigated for
the heteroscedastic semiparametric model under NA random errors.

The structure of the rest is as follows. Some basic assumptions and estimators are listed
in Sect. 2. Some notations and main results are given in Sect. 3. Proofs of the main results
are provided in Sect. 4. In the Appendix, some preliminary lemmas are stated.

Throughout the paper, C,C;, C,,... denote some positive constants not depending on
n, which may be different in various places. By |x] we denote the largest integer not
exceeding #; (j1,j2,...,ju) stands for any permutation of (1,2,...,n); a, = O(b,) means
|a,| < C|b,|, and a, = o(b,) means that a,,/b, — 0. By I(A) we denote the indicator func-
tion of a set A, ®@(x) is the standard normal distribution function, and a* = max(0, a),
a~ =min(0, —a). All limits are taken as the sample size n tends to oo, unless specified oth-

erwise.

2 Estimators and assumptions
In model (1.1), if B is known to be the true parameter, then since Ee; = 0, we have g(¢;) =
E(y; — x;8), 1 <i < n. Hence a natural wavelet estimator of g is

gn(t’ ﬁ) = ;(yz _xiﬁ) /,‘41- Em(t,S) dS,
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where the wavelet kernel E,,,(t, s) can be defined by E,,(¢,5) = 2" ) ", ., ¢(2"t - k)p(2"'s - k),
¢ is a scaling function, m = m(n) > 0 is an integer depending only on #, and A; = [s;_1,s;)
are intervals that partition [0,1] with ¢, € A;,i=1,2,...,n,and 0 <t; <, <--- <t, = 1.

To estimate 8, we minimize

n

SB) =D [yi-xB-gut, B)] =Y _Gi—EB)- (2.1)
i=1

i=1
The minimizer to (2.1) is found to be

Br="> xijilS2, (2.2)
i1

where x; = x; — 27:1 X fAj E,.(t;,s)ds, §i =y — Z;'Zlyj fA,- E,(t;,s)ds, and S2=Y""  &*. The
estimator BL is called the LSE of 8.

When the errors are heteroscedastic, we consider two different cases according to f. If
o? = f(u;) are known, then B. is modified to be the WLSE

Bw = Zﬂi&i}?i/Tz; (2.3)
i-1

where a; =02 =1/f(w;) and T? = Y | a;x7. In fact, f is unknown and must be estimated.

When Ee? = 1, we have E(y; —x;8 — g(¢:))* = f (u;). Hence the estimator of f can be defined
by

R n

) = 326,50 [ B 4

j=1 5;

where B; = [s]_,,s!) are intervals that partition [0,1] with u; € B;, i = 1,2,...,n, and 0 <
uy <up<---<u,=1L

For convenience, we assume that min; <;<, [ﬁ,(ui)| > 0. Consequently, the WLSE of 8 is
n
Bw =) ankiil Wy, (2.5)
i=1

where a,; = 1/f,(w;), 1 <i <n,and W2 = 3" a,:&2.
We define the plug-in estimators of the nonparametric component g corresponding to
,éL, ,éW, and ,5W, respectively, by

2 =) 0i-xp) / Eut9)ds,  gw(t)=) (i-xpw) | Ent9)ds,
i=1 Ai i=1 Aj
and

aw o) = ;(w xifw) /A E(t,9)ds

i

Now we list some basic assumptions, which will be used in Sect. 3.
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(A0) Let {e;,i > 1} be a sequence of negatively associated random variables with Ee; = 0

|2+ < 0o for some § > 0.

and sup;..; Ele;
(A1) There exists a function % on [0, 1] such that x; = k(¢;) + v;, and
(1) limyooon™ Y1, v = X0 (0 < Zo < 00);

(i) maxi<;<, [vil = O(1);

(iii) limsup,_, .. (v/#logn)™ maxi <<, | D ity v;| < 00.
(A2) (i) f, g and & satisfy the Lipschitz condition of order 1 on [0, 1], h € H", v > 3/2,

where H" is the Sobolev space of order v;

(ii) 0<mp < ming<j<,f(1;) < maxy<j<,f(u;) < Mo < 00.

(A3) The scaling function ¢ is r-regular (r is a positive integer), satisfies the Lipschitz
condition of order 1, and has a compact support. Furthermore, |p(E) — 1] = O() as
£ — 00, where @ is the Fourier transform of ¢.

(A4) (i) maxicizuls;—sii1|=O(m™); maxi<i<y |s; — ;1] = O(m™);

(i) There exist d; > 0 and dy > 0 such that miny<;<, |£; — £;i.1] > d1/n and
min i<, |4; — ti-1| > da/n.

(A5) The spectral density function ¥ (w) of {e;} satisfies 0 < C; < ¥(w) < C; < 0o for
w € (-m,m].

(A6) There exist positive integers p := p(n), q := q(n), and k := k,, = Llqu such that for
p+q<nqgp <C<oo.

Remark?2.1 Assumptions (A1), (A2), and (A5) are the standard regularity conditions com-
monly used in the recent literature such as Hardle [5], Liang et al. [6], Liang and Fan [7],
Zhang and Liang [11]. Assumption (A3) is a general condition for wavelet estimator. Ac-
cording to Bernstein’s blockwise idea, Assumption (A6) is a technical condition and easily
satisfied if p, g are chosen reasonably to show Theorem 3.3 (see, e.g., Liang et al. [15, 27]
and Li et al. [18, 20]).

Remark 2.2 It can be deduced from (A1)(i), (iii), (A2), (A3), and (A4) that

n n
Y B Ze o S Iw<G
i=1 i=1
(2.6)
n n
G=n') 0% <Cy  T,>) |oj%%|<C.
i=1

i=1

Remark 2.3 Let k() = k(t;) - Z;‘zl «(t) fA/ E,.(t;,s)ds, set k = f,g, or h. Under assump-
tions (A2)(i), (A3), and (A4), by Theorem 3.2 in [16] it follows that

sup‘k(t)’ = O(n_1 + 2_”’). (2.7)

Remark 2.4 By (A1)(ii), (2.7), and Lemma A.6 in the Appendix it is easy to obtain that

n

max |¥;| < max |1:1i| + max |v;| + max |v;| max Z
1<i<mn 1<i<n 1<i<n 1<j<nm 1<i<n ~ 1
j=

/Em(ti,s)ds =0(). (2.8)
4y

Page 4 of 21
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3 Notations and main results

To state our main results, we introduce the following notations. Set

n n
012,1 = Var( E 5cioiei>, 022n = Var( E kiai_le,'),
i=1 i=1

Fn2(t) = Var(Zoiei/ E,.(t,s) ds); u(q) = sup Z |C0v(e,«,e,)
i=1 4 /

>1 ... .
I=5 jlj-il=q

’

m
AMp = qp_l! Adn =P”l_1: Asp = (2—m + n_l) ’ Aan = 7 ]0g2 n;

Asu= (27" +n ) logn+/n(27" + n’l)_z,

Yin = qp_lzmr Yon :Pn_lzm, Van = 272 4 fom [y log ;

3

2
248)/(3+5
Win = Z)\}és £ 2018 4 g oy = ZV;’/B 4y,

i=1 )

/2

52, 173
n (

+u®(@; v =y +u(g).

Uiy = kg
Theorem 3.1 Suppose that (A0), (A1)(i), and (A2)—-(A5) hold. If 2" n = O(n~"'?), then

() BL—B as; (i) Bw—pB as (3.1)
In addition, if maxy<j<, | Y i, % fA,- E,(t,s)ds| = O(1), then

(i) 1rgla<>;|§L(ti) -gt)| =0 as; (ii) 1II<llfd<Xn|gw(ti) -gt)| >0 as (3.2)

Theorem 3.2 Assume that (A0), (A1)(i), and (A2)-(A5) are satisfied. If Ee} = 1,
sup; E|e;|? < oo for some p > 4 and 2" [n = O(n~2), then

M) 1B=Bl=o(w ) (i) max|fu(uw)—flu)| >0 as;

(3.3)
(iii) BW — B as.
In addition, if maxi<j<u | 31y %i [y, Em(t, ) ds| = O(1), then
max ’gw(ti) —g(t,')’ -0 as. (3.4)

1<i<m

Remark 3.1 When random errors {e;} are i.i.d. random variables with zero means, Chen et
al. [3] proved (3.1) and (3.3) under similar conditions. Since independent random samples
are a particular case of NA random samples, Theorems 3.1 and 3.2 extend the results of
Chen et al. [3]. Back and Liang [10] also obtained (3.1)—(3.4) for the weighted estimators

of unknown quantities under NA samples.

Page 5 of 21
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Theorem 3.3 Suppose that (A0)—(A6) are satisfied. If jt1, — 0 and vy, — 0, then we have

2
@ sup P(S AliTad ) ) - @(y)‘ - O + i)
y O1n
L (3.5)
(ii) sup P(M 5}') - 45()’)‘ = O(u1y + vip).
y O2n

Corollary 3.1 Suppose that the assumptions of Theorem 3.3 are fulfilled. If 2" /n = O(n™?),

u(n) = O(n(=0120=0) 2 < 6 < I, then

2 9 1
y Uln
. (3.6)
(if) sup P(M ) <1§(y)} 67 .
y O

Theorem 3.4 Under the assumptions of Theorem 3.3, if o, — 0 and vy, — 0, then for
each t € [0,1], we have

P(§ () - £g(2)

0 = y) - ®(y)‘ = O(u2n + Van), (3.7)

y
where g(t) = g1 (¢) or gw (¢).

Corollary 3.2 Under the assumption of Theorem 3.4, if
1
2"/n=0(n""), u(n) = O(n‘<9“’)/(2p‘1)), 5 <P< 0<1,

then

§y> _ (p(y)’ _ o3 25y, (3.8)

sup
y

P(é(t) - Eg(t)
()

4 Proof of main theorems

Proof of Theorem 3.1 We prove only (3.1)(ii), as the proof of (3.1)(i) is analogous.
Step 1. Set g; = g(t;) — Z} 18(8) fA (ti,s)ds, & =g — ]'.11 & fA,» E,(t;,5) ds. Tt easily fol-

lows that

IBAW — ﬂ = T;z |:i 611‘561‘85 — Zn:ﬂﬁzl’ <Xn: Ejf Em(t,»,s) dS) + iﬂﬂclg,}
i=1 i=1 A

j=1 J i=1

= Aln _AZn +A3n. (41)

Page 6 of 21
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Firstly, we prove A, — 0 a.s. Note that Ay, = Y -, (T, %ax;0:)e; =: Y -, cue;. It follows
from (A1)(i), (A2)(ii), (2.6), and 2"/n = O(n~'/?) that

a:i o
max |c,;| < max aixi] - max — = O(n’”z),
1<i<n i<isn T, 1<isn Ty,

n n

2 _ 4 ) 2 _ -1
E =T, E ax; - aio; = O(Vl )
i=1 i=1

Hence, according to Lemma A.1, we have A;, — 0 a.s. Obviously,

AZ”‘Z(ZT ax,a,/ m(t,,s)ds)e] dee,

j=1 j=1

By (A2)(ii), Lemma A.6, (2.6), and 2" /n = O(n~'/?) we can obtain
2 1\ _ Af-12
1rr<11a<);|a,’n]| < (1max o (lr<n';1§ / |Em(tl,s)’ds> (Tn ;Iaixﬂ) =0(n'7?),
2 n
ZdZ <CT;? Z Z(/ ot ) s> (T,;2 Za@%)
i1

j=1 i=1

<CrT;? Z Z( / n(tiS) ds>2 =0(2"/n) = O(n™7).

i=1 j=1

Therefore Ay, — 0 a.s. by Lemma A.1. Clearly, from (2.6) and (2.7) we obtain

|As,| < (max |g:| ) ( Zlﬂle ) = ") = 0.

Step 2. We prove (3.2)(i), as the proof of (3.2)(ii) is analogous. We can see that

|

Together with (3.1)(i), under the additional assumption, it follows that By, — 0 a.s. We
obtain from (A2)(ii) and Lemma A.6 that Bs, — 0 a.s. by applying Lemma A.2. Hence
(3.2)(i) is proved by (2.7). O

1IT<11?‘<7;|§L(G) —g(ti)\

+ gl +

1<i<n

n n
< max{|ﬂ —BL| . Zx]/ E,.(t;,s)ds Zajej/ E,.(t;,s)ds
j=1 Y4 j=1 4

= Bln + BQ,, + Bgn.

Proof of Theorem 3.2 Step 1. Firstly, we prove (3.3)(i). We have

BL-Bl=5 [Zx Zx<2/ t,,sds>+leg,}

= Cln - Cz,,, + an. (42)
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Note that

n
Cln:E S x,al E cme,
i=1

and

Z(Z S_ le//. E.(ti,s) dS) €= Zdnjel

j=1 j=1

Similar to the proof of (3.1)(ii), we have

%] 1 _ .
max |c),; ’<(max —>~S—n=O(n 12y, Z <CZ 1Sy =0(n""),

l<i<n 1<i<n S, —
max|d,| < (max o (m/ [Enltcs |dS)(S‘ Zm)— (27im) = O(n "),
2 n
Zd’z <CS, 222( / n(tirS) ds) (snzzng)
j=1 i=1 i=1

<Cs;? Z Z( / ) ds)2 =0(2"/n) = O(n™"?).

i=1 j=1

Therefore, applying Lemma A.1 and taking o = 4, we obtain that C;, = o(n""%) a.s.,i = 1,2.
As for Cs,,, by 2”/n = O(n~'/?), (2.6), and (2.7) we easily see that

Caul = (max 2 ) - ( 22 A ) — 0@ 4 n) = o(n).

Step 2. We prove (3.3)(ii). Noting thatfn(u) = Z?:l [x:(8 - BL) + 3 +&]? fBi E,.(u,s)ds, we
can see that

max[f u;) — f(u)) |

1<j<n

ée? /l;iEm(uj,s) ds — f (u;)
28,/ (7 ds(Ze}/ E,(ts)d )
n " 5
;/Bi Em(btpS)ds(j:lej /A,'EWI(ti’S) ds)

Ze,g,/ E,.(uj,s)ds

< max
1<j<n

+ 2 max

1<j<n

+ max
1<j<n

+ 2 max

1<j<n

Zx / (), 8) ds

+21p ~ pr| max

n
> xiEi / (14,5) ds
==n i=1

i

+(B - /SL max

1<j<n

Page 8 of 21
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+2|8 - BL| max
1=

Z?E,gl‘/ Em(uj,s)ds
=t B

ng/ E,.(uj,s)ds
=" B

+ max
1<j< )
13

As for Dy, we have

n

X > fw(e-1) / E,u(uj,5)ds

Dln = max
1<j P} B;

+ max Zf(u,»)/B‘Em(u,-,s) ds — f (u))

1<j<n
== i=1

=: D11y, + D12

Note that Ee? = 1,s0 €2 — 1 = [(e])? — E(e})*] + [(¢;)* — E(e;)?] := &, + &;,, and

(f(u ) f Ep(11,5) ds)sq (f(u,) / (16,9) ds)glz

Since {&;,,i > 1} and {&;,,i > 1} are NA random variables with zero means, sup; E|&; P12 <
Csup, Ele;|? < 00, j=1,2. By (A2)(ii) and Lemma A.6 we have

D11, < max + max
i< <

max }j(ui)/ E,(uj,s)ds| = O(2m/n) = O(n_l/z)
<ij<n B;

and

=0(1).

n
max u; E,.(u;,s)ds
IZM JRCE

Therefore D1y, — 0a.s. by Lemma A.2. By (2.7) we have |D1y,| = 027 +n7!),50 Dy, — 0

(o= )

Note that
Similar to the proof of Dy, we obtain D,, — 0 a.s. by Lemma A.2.
Applying the assumptions, from (2.6), (2.7), (3.3)(i), Lemma A.2, and Lemma A.6 it fol-

lows that

|Day| < Z(max

1<i<nm

Za}e,/ w(ti, 8)ds

Zolel/ E,u(uj,s)ds

n

2
[Dsy| < max (Zo,e; / m(a,s)ds> max 3
5

/ E,.(uj,s)ds
—1 1YBi

—0 as,




Hu et al. Journal of Inequalities and Applications (2019) 2019:314 Page 10 of 21

o) »2(mac )

1Dgs| = 2( max ) - <max
1<i<n

1<j<n Zgl/ u},
. ({Ela}n Z‘/BiEM(ui’S)dS

n
max
><1<j<n i=1
—0 as,
n
1Deul < (B - Br) ~(lr<nlE]1§ / IEnt) s><25c§)=o(1) as,
i=1

|D7n|§2|ﬁ—BL|-(max gl <max/|E u},s)|ds)<2|x,>—>0 a.s.,

<l]<
/Em(u,,s)ds — 0,
_1 1YBi

2
|D5n|sz|ﬁ—BL|~<gg; (Zx)Z (/B.Em(u,»sws) )

)

Z &k / E,.(t;,s)ds

1<j<n ~
i

2
|Dg,| < (max |gl|> (max

i=1

To prove that D5, — 0 a.s., it suffices to show that
n 2
~2 E y _ -1/2 S, 4.
FQ}Z’Z;Q (/’ (14 s)ds) O(n™?) as (4.3)
As for (4.3), we can split

n 2
~2 i
gfag);zgi </B,- E,.(uj,s) ds)

i=1

n 2
< max siz </ E,.(uj, s) ds>
s=no B;
n n
Z&'(/ Em(up ) Sk/ Em t,,S
i=1 B Ag

n n
+ | max (/ E, (u,,s)ds) . 8k/ E, (t;,s)d
1= \JB; -1 YA

:= D514 + D5y + Ds3yy.

+ 2 max
1<j<n

By Lemmas A.2 and A.6, since 2" /n = O(n~'/?), we have

) . (12% /B i‘Em(uj,s)| ds)

E Ek t“S
1<i<n
- | max E & m(u],
1<j<n

= o(n‘m) a.s.,

[Dsap| <2 (max
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|Ds3,| < (max
1<i<m

Zsk/ (i, 8)d

/ E,.(uj,s)ds
B,

i

) (max/‘E uj,$ |ds>
1<ij<n

n
- | max E
I<j=n €

i=1

)

= 0(11‘1/2) a.s.

Note that

+ max
1<j<n

2
Za &, (/ E, (1, s) ds)

2ot )

[Ds1,] < max
2
Zo Ee </ m(u,«,s)ds)

Y Z /1
=Dz, + D5y, + D5y

+ max
1<j<nm

where &, = [(¢])* - E(e})?] and &;, = [(¢;)? — E(e;)*] are NA random variables with zero
means. Similar to the proof of Dy, we obtain that Dj, , = o(n"?) a.s. and D}, ,, = o(n~'?)

a.s. by Lemma A.2. On the other hand,
> — O(}’I_I/Z),

and thus we have proved that Ds;,, = O(n~'/2) a.s. This completes the proof of (3.3)(ii).
Step 3. Next, we prove (3.3)(iii) by means of (A2)(ii) and (3.3)(ii). When # is large enough,
it easily follows that

n

\D4,| < <max of/ |Ep(u,9)| ds) max Z
1<j<n B; 1<j=<n ;

/ E,.(uj,s)ds
-1 I8

1

0<my< mmf,,(ul) < 1rnaxf,q(u ) <M < oo, (4.4)

1<i<u

Cs < W2/n < Cg,and W2 Y| |a,:%:| < C. Hence we have

n n

l 1

2
n

1Bu— Bl < ApiXiEi| +

AniXigi
i=1

n
=: WEIH + EZVI- (45)

n

_Wz
i=1

Together with (2.7) and (4.5), we get
n
|Eznl < (lnfla; |§i|) : (W;z; Iama“cil) -0,
i
1< . ) [
; Z;(ﬂm‘ —a;)X;E; Z ZI: a;xi&;
= i=

1o "
— ) (aui —a)¥ 8‘/ E,.(t;,s)ds
" ; (;21: ' A

|Eln| = +

1 n

- E (@ni — ar)X;e;
n -
i=1

n
1 -~
- aAiXi€i
i=1

< +

=:E11p + E1oy + E13,.
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We know from Lemma A.2 that
n n n
nt Z e =n" Z[(e;)z —E(e;')z] +nt Z[(@i_)2 - E(e;)z] +nt ZE@?
i=1 i=1 ‘ i=1
=0(1) as. (4.6)

Applying Lemma A.2 and combining (4.4)—(4.6) with (3.3)(ii), we obtain

|Evin] < <max M) <% Zicf) (% ;&) -0 as,

1<i<n ﬁ,(ul)f(ul) i=1

|E1gn] < (max M) : (% > |9~Ci|) : (119?3,

=iz F(u)f () i=1

n

Zs,»/; E,.(t;,s)ds
j

j=1

)

2
As for E;3,, we have E;3, = %(|A1n + As,|) = 0 a.s., and therefore E7, — 0 a.s. O

— 0 a.s.

The proof of (3.4) is similar to that of (3.2)(i), and hence we omit it.

Proof of Theorem 3.3 We prove only (3.5)(i), as the proof of (3.5)(ii) is analogous. From
the definition of BL we have

SX(BL-B) = ifcﬂiei - i:%(i Gjej/ E,n(ti,5) dS) + Xn:&@i
i=1 i=1 j=1 4j

U i=1

=Ly, — Loy + L3y, (47)

Setting Z,; = %, we employ Bernstein’s big-block and small-block procedure. Let

kim+p— ’ lm+q-
Yum = Z;:k:f 1Zm‘: Yom = Zi:l:nq IZm‘; J/,,kﬁ = Z:l:k(p+q)+1 Zniy ky = (m — 1)(P + q) +1,
ly=m-1)p+q) +p+1,m=1,2,...,k. Then

n k k
1 = / /
o1, Lin:=Liy= ZZm' = Zynm + Zy,,m + Yee1 = L11n + Lion + L13n.
i=1 m=1 m=1

We observe that

L2n = Zl|:]:11 +V;— (; Vi /I‘;k Em(tijs)d5>:| : (;O}e] quEM(ti’s)dS>

i=

= ilt (Zoje// Em(ti,s)ds> +Zvl~<ZojeI~/ Em(t,»,s)ds>
i=1 j=1 4j i=1 j=1 4

) m(tiss)d i€ m(tirs)d
2 (kZI:Vk/AkE (t) S)(;GJ%/A‘E (t;,5) s)

J

= Lo1y + Looy — Loz
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So we can write

S2(BL-P) _
nai = Lyt + Ligg + Lizy + 07, (Latn + Logy — Lozy + Lay,).
1n

By applying Lemma A.4 we have

<2<ﬁL D5\ -o0)

Oln

y

< sup|P(Li1n <) = @W)| + P(IL12al > 712}) + P(IL13u] > 13)7)
y

+ P07, | Latal > 457 + P07, [Logul > 17) + P07, Lasul > 147)

1
+ (Z)\'l/?) )“1/3) = _1|L3n|
8
— Zlk”' (4.8)
k=1

Therefore, to prove (3.5)(i), it suffices to show that 22=2 Iy = O(it1,) and I, = O(vy, +
M2 4+ A)/2). Here we need to the following Abel inequality (see Hirdle et al. [5]). Let
Aj,...,Ayand By,...,B, (By > By > --- > B, > 0) be two sequences of real numbers, and
let Sk = ZLA,», Mj = minj<x<, Sk, and My = maxj<x<, Sx. Then

n
B\My <) AgBi < BiM,. (4.9)
k=1

Note that

Gm (Zx,a,el> = /ﬂ ¥ (w) anickgke—ikw
i k=1

dw

and

2 - " 2
t) E(Z a,el/ E,.(ts) ) = / Y (w) Zakf E,(t,s)dse™™®| dw.
-7 k=1 Ak
By (A2)(ii), (A5), (2.6), and Lemma A.6 it follows that
Cn=<C )Y i <o}, <C Yy & <Csn, (4.10)

i=1 i=1

n

2 " )
Co Z([qi E.(t,s) ds) < Fn2(t) < Cio ;(/A,- Em(t,s)ds) _ O(Zm/n). 4.11)

i=1
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Step 1. We first prove Y, _, Iy = O(11,,). Using Lemma A 3, (2.7), and (2.8), from (A0)(i)

(A1)-(A6), (4.10), and (4.1i) it follows that

EIL |2 k lm+q-1
12n .,2 2 /3
I = 3213 = Az/sz Z X0 = 2/3—C)‘}n’
1n In m=1 i=l, 1;1
E|Ly3,|? C " Cp ,
fon = AZ/: 23 Z x‘20i2< )L2/3—C)‘én3’
2n 21 j=k(p+q)+ Aoy
E| Lyl ’
o 21n 2
Ly, < =1 - hi / E(t,5)ds | o
25 AZ % ,
S || Z ]E (t; )\d
= 2/3 ax 1% ITEIBL’; m(tis)| ds
CR™+nt)? U3
3n
“2E|L 2
22n 2
15n§ ; ; Vl/ E,(t;,s)ds | o;
) ,
C mo\?
=< 2B 1<l/<n</ |En (t,,S)|ds> max |E (t;5)| ds| - (max ZI:V/;)
i
- C(2"n ! log? n) )
= 2273 4n
Jon < T ELznl” ZZ[E(t)di/E(t)dzz
6n = 17 m\li,S)As - m\li,$)As | O;
Ay ”)‘if =1 A i=1 Y4 '
C n
= 53 max ( f |Em(ti,S)!dS> - max / E,(ti,s)ds
I’l)»zm =Lj=n Aj <i<n 1 4
n
- | max / E,,(t;,s)ds| max Zv,
1<i<n 7 /4, 1<m=n
C(2"n ' log* n) s
VR < Chy.
4n
As for Ig,, we have
n
&) v Em(tiys)d5>

4j

igi| +

j=1

<_n<

n

1 ~ o~
E Xigi
i=1

Iy, =0y,

+ — max |h | max |g,|

Vj
Z Ji nl i<n 1<
E:Vh

max Z/{E t,,s)|ds max

1)) = Chsp.

C
< — max |gl| max
n 1<L<n m<n

C
+ — max |g;| -
ﬁ 1<i<n

< C(Z_m n_l)(logn + «/ﬁ(Z‘”’ +n

Hence from the previous estimates we obtain that ) ;_, Jx, = O(11,)
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Step 2. We verify I, = O()&LZ + A%ff + v1n). Let {0y, :m =1,2,...,k} be independent
random variables with the same distributions as y,,,, m = 1,2,...,k. Set H, = an:l Nom
and s2 = anzl Var(y,,,). Following the method of the proof of Theorem 2.1 in Liang and
Li [27] and Li et al. [20], we easily see that

Ly, = Sl;P|P(L11n <y -20)|
< Sl;p|P(L11n <y)-P(H, <y)|
+ sup|P(H,, <y)- @(y/sn)| + sup}<1§(y/s,,) - @(y)|
y y
=111y + Loy + L13p- (4.12)

(i) We evaluate s%. Noticing that s2 = EL3,,—2 3", ;s COV(yui, ) and EL}, = 1, we can
get

|E(L11n)* = 1| < C(A}7 +237). (4.13)

On the other hand, from (A1), (A2), (4.10), and (2.8) it follows that

k-1 k ki+p-1kj+p-1

< C”Fl Z Z Z Z |52352t0'so't| . |C0V(esr et)’

i=1 j=itl s=k; t=k;

> CoVGiryw)

1<i<j<k

< Ckpn'u(q) < Cu(q). (4.14)

Thus, from (4.13) and (4.14) it follows that [s? — 1| < C(A1? + 1Y% + u(q)).
(i) Applying the Berry—Esséen inequality (see Petrov [28], Theorem 5.7), for § > 0, we
get
k
Sup| P(H, /s, < y) = @ ()| < C D (Elyuml** I5,). (4.15)
y

m=1

By Lemma A.3 from (A0), (A1), (A2), (4.10), and (2.8) we can deduce that

k k ki +p—1 2+8
2+8

D_Emnl™ =Y E| D Zu

m=1 m=1 J=km

k[ kmtp-1 km+p—1 1+8/2
ECUfy,(2+8)Zi > E|5cl-al-ei|2+3+[ > E(xiaiei)z} }

m=1 U i=ky, i=kim

< C(kpn_l)(n_‘w2 + (p/n)m) < CAY2 (4.16)

Since s, — 1 by (4.13) and (4.14), from (4.15) and (4.16) we easily see that I;5, < Ckgf.
Note that I3, = O(|s2 — 1]) = O(A/? + 1Y% + u(q)).

(iii) Next, we evaluate I1,. Let ¢; (£) and ¢, () are the characteristic functions of Ly, and
H,, respectively. Thus applying the Esséen inequality (see Petrov [28], Theorem 5.3), for

Page 15 of 21
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any T > 0, we have

SUP|P(L11n < t) _P(Hn < t)|
t

T
5/
-T

=1, + 1, (4.17)

t t

t)— t
M‘dt+ Tsup/ ‘P(Hn§u+t)—P(H,,§t)|du
|lu|<C/T

From Lemma A.5 and (4.14) it follows that

lo1() — 2(0)] =

k k
Eexp (it Zy,,m) - H Eexp (ityum)

m=1 m=1

ki+p-1kj+p-1

<4t > Y > |COV(Zusy s Zuny)|

1<i<j<k si=k; t1 =k/‘

<4Ct’u(g),

which implies that
Tl o1(t) - pa(t)
Iy, = / ‘f‘dtg Cu(q)T?. (4.18)
-T

Therefore by (4.15) and (4.16) we have

sup‘P(H,, <t+u)-PH, < t)‘
t
H, t+u t+u
Pl — < -
Sp Sn Sp
PlZ<=)-o(=
Sn Sn Sn
H,
P<—§t>—q§(t)
Sn

<sup
t

+ sup
t

*(%)-2()
°(5)-2()

<2sup + sup
t t
< c(xgﬁf +2 ) < C(2 + [u)). (4.19)
S

From (4.19) it follows that

I, = T'sup / |P(H,, <t +u) - P(H, <t)|du < C(A3? +1/T). (4.20)
t Ju<c/T

Combining (4.17), (4.18) with (4.20) and choosing T = u~'3(g), we easily see that I;;, <
C(u'3(q) + 23/?). So I, < C(AY2 + A)/? + v1,). This completes the proof of Theorem 3.3

from Step 1 and Step 2. d

Proof of Corollary 3.1 In Theorem 3.3, choosing p = 1], q= #2071, 8 =1, when 1/2 <
6 < 7/10, we have 1, = O(n~?~VY3) and vy,, = O(n~®~V’3), Therefore (3.6) directly follows
from Theorem 3.3. O



Hu et al. Journal of Inequalities and Applications (2019) 2019:314 Page 17 of 21

Proof of Theorem 3.4 We prove only the case of g(¢) = g.(¢), as the proof of g(¢) = gw (¢) is
analogous.
By the definition of g, (¢) we easily see that

N o@0 -Ea®) =1, @) <Z 6 / En(t,5) )
+ I 1(t)<2xl(EﬂL—,B)/ (t, s)ds)

i=1

71 . _ A d
r; (ﬂ(;oc,(ﬁ A /A Eyle9) s)

:=]1n +]2n +]3n~

oiei [4. Em(t,s)ds

Set Z), = —Fn Similar to Ly,, we can split Ji,, as /i, = Y Z = Tin + i +
k k ’ ’ km 1
]13;;, Wl'llere Jitn = Zmzl Xnms J12n = Zmzl KXo J13n = Xuks1? Xnm = Zl k:np Zm, X;;m =
mt+
Zz lmq Z;”, Xr/tk+1 = Z?:k(p+q)+1 Zm’ km = (m - 1)(p + q) +1, lm = (I’l’l - 1)([9 + q) +p+ 1,
=1,2,...,k.

Applying Lemma A .4, we have

81(t) — Egr(t)
s1;p P<T §y> - ‘DO’)‘

< SUP|P(]11n <) = ®W)| + P24l > i) + P(V13n] > v52°)

[J2n] 2+8)/3 s 1/3 &
+ N +P(|J3ul > v5, Zykn + )/3316

6
_ Zka (4.21)
k=1

Hence it suffices to show that 216(:2 Gin = O(uo,) and Gy, = O()/lln/2 + yzl,fz + Ugy).
Step 1. We first prove 22:2 Gin = O(l2,). Similar to the proof for I, — Ig,, in Theorem 3.3,

we have
E|]12 | k Im+q-1 m
Gan < /n ; (/ m(t,s) ds) of < 5 = Cyi?,
)/12n3 Fz(t 7/121'13 mX; ; l 1n "

EJ13n]? C “ 2 c2m
Gl € ( | Em<t,s)ds) ot = 2P < cyle,
Yon F (t)yZ” i=k(p+q)+1 A nYou

Note that if & — & ~ N(0,1), then E|&,| — E|&| = +/2/m and E|§,*** — E|§|**. By
Theorem 3.3(i) and (2.6) it follows that

|8 —EBL| <E|B - Bil = O(014/S2) = O(n™'?), (4.22)

EIB - Aol < O((01/82)*"") = O(n 1372, (4.23)
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Therefore, applying the Abel inequality (4.9) and combining (A1)(iii) and (A2)(i) with
Lemma A.6, from (4.22) and (4.23) we get

Guan B—EBy| -
|Gyl = \/_F() Bl

> a f En(t,s)ds
=1 YA

l

§ :V/t

i=1

< CFn’l(t)n’l/ ( sup |h t)| + maxf {E (¢, s)|ds max

0<t<1 1<i<n

)

C(Z’"’/2 ++/2"/nlog n) = Cysy (4.24)

and

246

snl>? = [ (E|B - Br|*

in / E,.(t,s)ds
i=1

i

< CFH_(2+5)(t)n_(2+5)/2< sup ’h(t + max/ ’Em(t s }ds max

0<t<1

246
z :Vh )

< Cy}o, (4.25)

which implies that Gs, < ¢y 2"/

S0 we get 18, G = Otiz,).
Step 2. We verify Gy, = O()/llnl2 + y;f +Uyy,). Let {¢ym : m =1,2,...,k} beindependent ran-
dom variables and ¢,,,, have the same distribution as y,,, m =1,2,...,k.Set T, = Z/fﬂ:l Cnm

and £2 = Zm 1 Var(x,,). Similar to the proof of (4.17), we easily see that
Gy = SI;P‘P(]nn <y -0
< Sl;p|P(]11n <y) -P(T, <y)|
+ SLy1p|P(T,, <y) - (D(y/tn)| + 31y1p|q§(y/tn) - @(y)|
= Giin + Gion + Gizne (4.26)

Similar to the proof of (4.13)—(4.20), we can obtain |2 - 1| < C()/lln/2 + )/21,{2 +u(q)), |Gion| <
2n , |Giznl < C(yllrf2 + yzlrfz +u(q)), and |G11,| < Cvy,. Thus it follows that Gy, = O()/l/2
¥s2 4 vy,). The proof of Theorem 3.4 is completed. O

Proof of Corollary 3.2 Letting p = |n”], ¢ = |[n**™], 8§ =1, when 1/2 < p <0 < 1, we
have J/1/3 O( —(0-p /3) J/1/3 O(I’l ©@-p /3) y3/4 O(H—S (1- 9)/8) and u1/3(q) O(n—(e—p)/B).
Therefore (3.8) directly follows from Theorem 3.4. O

Appendix

Lemma A.1 (Back and Liang [10]) Let {X,,n > 1} be a sequence of NA random variables
with zero means and o > 2. Assume that {a,;,1 < i <n,n > 1} is a triangular array of real
numbers with maxi <j<y |ay| = O(n™V%) and Y, a%; = o(n™>*(logn)™'). If sup, E|X;|P < 0o
Jor some p > 2a/(a — 2), then Y .| aX; = o(n™*) a.s.
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Lemma A.2 (Back and Liang [10]) Let {X,,,n > 1} be a sequence of NA random variables
with zero means. Assume that {a,;,1 <i < n,n > 1} isa function array defined on the closed
interval I of R satisfying maxi<;j<y |ani(u))| = O(n™V2) and maxi<j<, 3 i, lani(u))| = O(1).
If sup; E|X;|? < oo for some p > 2, then

max = o(L(n)) a.s.,

12 Z ﬂm(u/)X

(i) max (Z|am(u,»)xi|) =0(1) as.,
=j=n

i=1

where L(x) > 0 is a slowly varying function as x — 00, and /xL(x) is nondecreasing for
x> x9>0.

Lemma A.3 (Liang and Li [27]) Let {X,;n > 1} be a sequence of NA random variables with
zero means and E| X, |P < oo for some p > 1, and let {b;,i > 1} be a sequence of real numbers.

Then there exists a positive constant C, such that

E max
1<m<n

p pl2
th <G {ZE|bX|"+I(p>2)<ZE(bX)2) }

i=1 i=1

Lemma A.4 (Yang [29]) Suppose that {c,,n > 1}, {n,,n > 1}, and {&,,n > 1} are three
random variable sequences, {y,,n > 1} is a positive nonrandom sequence, and y, — 0. If
sup, |F.,(x) — @ (x)| < Cyy, then for any &1 >0 and &, > 0,

SUP|F e, inystn () = P(X)| < Clyn + &1 + &2 + P(Inal = 1) + P(|€4] = &) }.

Lemma A.5 (Liang and Fan [7]) Suppose that X,,, n > 1 is a sequence of NA random vari-
ables with finite second moments. Let {a;,j > 1} be a real sequence, and let 1 = my < m; <
- <my=n.DefineY; =3 " . aX;for1<l<k Then

k

Eexp{itZ Yl} 1_[ exp{itY;}

=1

< 4p Z Z Z |allalz||Cov X1, X1,) |

1<s<j<kli=ms_1+1lp=mj 1+1

Lemma A.6 (Wei and Li [12]) Assume that Assumptions (A3) and (A4) hold. Then
() sup,, fy [Em(t,8)|ds < C;
(i) Y, |fAi E,.(t,s)ds| < C;
(111) Sup0<5 t<1 |Em(t S)| = O(2m)v
(V) | [, Emt,5)ds| = O(3),i=1,2,....m;
v) X 1(fA (t,5)ds)> = O(%-);
(Vl) maxi<j<p 21:1 fA/. |Em(tus)| ds < C;
(vii) maxj<i<, ZIZI fAi |E,(t,8) ds < C.
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