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Abstract
The almost sure local central limit theorem is a general result which contains the
almost sure global central limit theorem. Let {Xk , k ≥ 1} be a strictly stationary
negatively associated sequence of positive random variables. Under the regular
conditions, we discuss an almost sure local central limit theorem for the product of
some partial sums (

∏k
i=1 Sk,i/((k – 1)

kμk))μ/(σ
√
k), where EX1 =μ,

σ 2 = E(X1 –μ)2 + 2
∑∞

k=2E(X1 –μ)(Xk –μ), Sk,i =
∑k

j=1 Xj – Xi .

Keywords: Negatively associated random variables; Almost sure local central limit
theorem; Product of partial sum

1 Introduction
Statistical test depends greatly on sampling, and the random sampling without replace-
ment from a finite population is negatively associated (NA), but it is not independent. The
concept of NA was introduced by Joag-Dev and Proschan [1] in which the fundamental
properties were studied. Limit behaviors of NA have received increasing attention recently
due to the wide applications of NA sampling in a lot of fields such as those in multivariate
statistical analysis and reliability. Scholars have also achieved some results. For example,
Shao [2] for the moment inequalities, Su and Wang [3] for Marcinkiewicz-type strong law
of large number. Specifically, the definition of NA random variables is as follows.

Definition 1 Random variables X1, X2, . . . , Xn, n ≥ 2, are said to be NA if, for every pair of
disjoint subsets A1 and A2 of {1, 2, . . . , n},

Cov
(
f1(X1; i ∈ A1), f2(Xj, j ∈ A2)

) ≤ 0,

where f1 and f2 are increasing for every variable (or decreasing for every variable) such
that this covariance exists. A sequence of random variables {Xi, i ≥ 1} is said to be NA if
every finite subfamily is NA.

Starting with Arnold and Villaseñor [4], asymptotic properties of the products of par-
tial sums were investigated by several authors in the last two decades. Arnold and Vil-
laseñor [4] discussed sums of records and gave the result that the products of i.i.d. posi-
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tive, square integrable random variables are asymptotically log-normal. After that, Rem-
pała and Wesołowski [5] removed the condition with exponential distribution in Arnold
and Villaseñor [4] and introduced central limit theorem (CLT) for the product of par-
tial sums. Miao [6], in different perspective, gave a new form of the product of partial
sums. Later, Xu and Wu [7] generalized the result of Miao [6] from the case of i.i.d. ran-
dom variables to NA random variables and obtained the following result. Let {Xn, n ≥ 1}
be a strictly stationary negatively associated sequence of positive random variables with
EX1 = μ, σ 2 = E(X1 – μ)2 + 2

∑∞
k=2 E(X1 – μ)(Xk – μ) > 0. Then

( ∏k
i=1 Sk,i

(k – 1)kμk

)μ/(σ
√

k) d−→ eN ask → ∞, (1)

where Sk,i =
∑k

j=1 Xj – Xi, and N is a standard normal random variable.
During the past two decades, several researchers also focused on the almost sure central

limit theorem (ASCLT) for the partial sums Sk/σk of random variables which was started
by Brosamler [8] and Schatte [9]. For the product of partial sums, Gonchigdanzan and
Rempała [10] and Miao [6] obtained some results related to (1). Xu and Wu [7] also gener-
alized the result of Miao [6] not only from the case of i.i.d. random variables to NA random
variables but also from weight dk = 1/k to dk = log(ck+1/ck) exp(logα k), 0 ≤ α < 1/2, where
0 ≤ ck → ∞, limk→∞ ck+1/ck = c < ∞. That is, for any real x,

lim
n→∞

1
Dn

n∑

k=1

dkI
(( ∏k

i=1 Sk,i

(k – 1)kμk

)μ/(σ
√

k)

≤ x
)

= F(x) a.s., (2)

where Dn =
∑n

k=1 dk , I(·) denotes the indicator function and F(x) is the distribution func-
tion of the random variable eN . Since then, scholars have generalized these results for
weight sequence or/and the range of random variables. For instance, Wu [11] extended
weight sequence from 1/k to dk = k–1elnα k , 0 ≤ α < 1. Tan et al. [12] extended the range
of random variables from i.i.d. random variables to ρ–-mixing sequences and Ye and Wu
[13] extended i.i.d. random variables to strongly mixing random variables. We refer the
reader to Berkes and Csáki [14], Hörmann [15], Wu [16], Xu and Wu [17], and Tan and
Liu [18] for ASCLT.

A more general version of ASCLT was proved by Csáki et al. [19] who proved

lim
n→∞

1
log n

n∑

k=1

I(ak ≤ Sk < bk)
kP(ak ≤ Sk < bk)

= 1 a.s., (3)

under the conditions –∞ ≤ ak ≤ 0 ≤ bk ≤ ∞, E|X1|3 < ∞, and

n∑

k=1

log k
k3/2P(ak ≤ Sk < bk)

= O(log n) as n → ∞.

The result above may be called almost sure local central limit theorem. Gonchigdanzan
[20] and Jiang and Wu [21] extended (3) to the case of ρ-mixing sequences and NA se-
quences, respectively. Weng et al. [22] proved the almost sure local central limit theorem
for the product of partial sums of independent and identically distributed positive random
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variables. Recently, Jiang and Wu [23] extended the result in Weng et al. [22] from i.i.d. to
NA sequences.

In this paper, our objective is to give the almost sure local central limit theorem for the
product of some partial sums of NA sequences related to (2).

This paper is organized as follows. The exact result is described in Sect. 2. In Sect. 3
some auxiliary lemmas are provided. Proofs are presented in Sect. 4.

2 Main result
In the following, let c be a positive constant to vary from one place to another. an ∼ bn

denotes limn→∞ an/bn = 1. Assume that {Xn, n ≥ 1} is a strictly stationary sequence of NA
random variables with EX1 = μ, 0 < Var X1 < ∞. Denote

Sk,i =
k∑

j=1

Xj – Xi for 1 ≤ i ≤ k, Yj = Xj – μ for j ≥ 1, S̃k =
k∑

j=1

Yj,

and the covariance structure of the sequences

u(k) = sup
j∈N

∑

i:|i–j|≥k

∣
∣Cov(Xi, Xj)

∣
∣, k ∈ N∪ {0}.

For a stationary sequence of NA random variables, we point out

u(k) = –2
∞∑

j=k+1

Cov(X1, Xj), k ∈ N .

By Lemma 8 of Newman [24], we know u(0) < ∞ and limk→∞u(k) = 0. From Newman
[25], σ 2 := EY 2

1 + 2
∑∞

k=2 EY1Yk always exists and σ 2 ∈ [0, Var Y1]. Further, if σ 2 > 0, then
Var S̃k := σ 2

k ∼ kσ 2.
Let {ak , k ≥ 1} and {bk , k ≥ 1} be two sequences of real numbers satisfying

0 ≤ ak ≤ 1 ≤ bk ≤ ∞, k = 1, 2, . . . . (4)

Set

pk = P

(

ak ≤
( ∏k

i=1 Sk,i

(k – 1)kμk

)μ/(σ
√

k)

< bk

)

and

αk =

⎧
⎨

⎩

1
pk

I(ak ≤ (
∏k

i=1 Sk,i
(k–1)kμk )μ/(σ

√
k) < bk), if pk 
= 0,

1, if pk = 0.
(5)

Our main result is as follows.

Theorem 1 Let {Xn, n ≥ 1} be a strictly stationary negatively associated sequence of posi-
tive random variables with EX1 = μ, EX3

1 < ∞, and σ 2 > 0. ak , bk satisfy (4). Assume that

∞∑

k=1

u(k) < ∞, (6)
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and for some 0 < δ < 1/4,

pk ≥ 1/(log k)δ . (7)

Then

lim
n→∞

1
log n

n∑

k=1

αk

k
= 1 a.s., (8)

where αk is defined by (5).

Remark 1 Let ak = 0 and bk = x in (4). By the central limit theorem (1), we have pk =
P((

∏k
i=1 Sk,i/((k –1)kμk))μ/(σ

√
k) < x) → F(x) and (7) holds, then (8) becomes (2) with weight

sequence dk = 1/k, which is the almost sure global central limit theorem, where F(x) is the
distribution function of the random variable eN . Thus the almost sure local central limit
theorem is a general result which contains the almost sure global central limit theorem.

3 Lemmas
Let Ck,i = Sk,i/((k – 1)μ), k = 1, 2, . . . . By the following logarithm Taylor expansion

log(x + 1) = x –
x2

2(1 + θx)2 ,

where θ ∈ (0, 1) depends on x ∈ (–1, 1). Denote

Uk =
μ

σ
√

k

k∑

i=1

log
Sk,i

(k – 1)μ
=

μ

σ
√

k

k∑

i=1

log Ck,i

=
μ

σ
√

k

k∑

i=1

(

(Ck,i – 1) –
(Ck,i – 1)2

2(1 + θi(Ck,i – 1))2

)

:=
1

σ
√

k
S̃k + Tk ,

where

Tk =
μ

2σ
√

k

k∑

i=1

(Ck,i – 1)2

(1 + θi(Ck,i – 1))2 , θi ∈ (0, 1).

In order to prove the main result, the following lemmas play important roles in the proof
of our theorem. The following result is due to Weng et al. [22].

Lemma 1 Assume that {ξk , k ≥ 1} is a sequence of random variables such that Eξk = 1 for
k = 1, 2, . . . , n. Then

lim
n→∞

1
log n

E

( n∑

k=1

ξk

k

)

= 1.
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Furthermore, if ξk ≥ 0 for k ≥ 1 and

Var

( n∑

k=1

αk

k

)

≤ c(log n)2–ε

for some ε > 0 and large n, then

lim
n→∞

1
log n

n∑

k=1

ξk

k
= 1 a.s.

The following Lemma 2 is Marcinkiewicz-type strong law of large numbers given by Su
and Wang [3] for identically distributed NA sequences.

Lemma 2 ([3]) Let {Xi, i ≥ 1} be identically distributed NA sequences. Denote Sn =
∑n

i=1 Xi,
then for 0 < p < 2, such that

Sn – nb
n1/p → 0 a.s., n → ∞ (9)

is valid if and only ifE|X1|p < ∞; and b can be any real number for 0 < p < 1; when 1 ≤ p < 2,
b = EX1.

Lemma 3 is from Corollary 2.2 in Matuła [26] due to NA random variables which are
linearly negative quadrant dependent (LNQD). Of course it is the Berry–Esseen inequality
for the NA sequence random variables, which is also studied in Pan [27].

Lemma 3 ([26]) Let {Xn, n ≥ 1} be a strictly stationary sequence of NA random variables
withEX1 = 0, σ 2 > 0,E|X1|3 < ∞ and the covariance structure of the sequence satisfying (6).
Then one has

sup
–∞<x<∞

∣
∣
∣
∣P

(
Sn

σn
< x

)

– Φ(x)
∣
∣
∣
∣ ≤ c

1
n1/5 .

The following Lemma 4 is obvious.

Lemma 4 ([22]) Assume that the nonnegative random sequence {ξk , k ≥ 1} satisfies

lim
n→∞

1
log n

n∑

k=1

ξk

k
= 1 a.s.

and the sequence {ηk , k ≥ 1} is such that, for any ε > 0, there exists k0 = k0(ε) for which

(1 – ε)ξk ≤ ηk ≤ (1 + ε)ξk , k > k0, a.s.

Then

lim
n→∞

1
log n

n∑

k=1

ηk

k
= 1 a.s.
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Lemma 5 Under the conditions of Theorem 1, assume that there exists δ1 such that 0 <
δ < δ1 < 1/4. Let εl = 1/(log l)δ1 , where l = 3, 4, . . . , n. Then the following inequality relations
hold:

n∑

l=1

l–1∑

k=1

1
klpl(log l)δ1

≤ c(log n)2–ε , (10)

n∑

l=1

l–1∑

k=1

1
klpkpl

P

(∣
∣
∣
∣

1√
l
S̃k

∣
∣
∣
∣ ≥ εl

)

≤ c(log n)2–ε , (11)

n∑

l=1

l–1∑

k=1

1
klpkpl

P
(|Tl| ≥ εl

) ≤ c(log n)2–ε , (12)

where ε = min(δ1 – δ, 1 – 2(δ + δ1)).

Proof By elementary calculations, it is easy to know that

n∑

l=1

l–1∑

k=1

1
klpl(log l)δ1

≤
n∑

l=1

l–1∑

k=1

(log l)δ

kl(log l)δ1
≤ c

n∑

l=1

(log l)δ–δ1

l
log l

≤ c(log n)2+(δ–δ1) ≤ c(log n)2–ε .

It proves (10). By using Markov’s inequality, σ 2
k ∼ kσ 2, and εl = 1/(log l)δ1 , we get

n∑

l=1

l–1∑

k=1

1
klpkpl

P

(∣
∣
∣
∣

1
σ
√

l
S̃k

∣
∣
∣
∣ ≥ εl

)

≤
n∑

l=1

l–1∑

k=1

σ 2
k

kl2pkplε
2
l σ

2 ≤ c
n∑

l=1

l–1∑

k=1

(log l)2δ1 k
kl2pkpl

≤ c
n∑

l=1

(log l)2δ1 (log l)δ

l2

l–1∑

k=1

(log k)δ

≤ c
n∑

l=1

(log l)2δ+2δ1

l
≤ c(log n)2–ε .

It proves (11). Now we prove (12).
For 1 ≤ i ≤ l and ∀ε > 0, we have

lim
l→∞

P

{ ∞⋃

m=l

∣
∣
∣
∣
Xi

m

∣
∣
∣
∣ ≥ ε

}

= lim
l→∞

P

{∣
∣
∣
∣
Xi

l

∣
∣
∣
∣ ≥ ε

}

= lim
l→∞

P
{|X1| ≥ εl

}
= 0.

So, by a.s. convergence criteria (see [28, Theorem 1.5.2]), we get

Xi

l
→ 0 a.s., l → ∞.

By Lemma 2 of the strong law of large numbers, it follows that

|Cl,i – 1| ≤
∣
∣
∣
∣

∑l
j=1 (Xj – μ)
(l – 1)μ

∣
∣
∣
∣ +

∣
∣
∣
∣

Xi

(l – 1)μ

∣
∣
∣
∣ +

∣
∣
∣
∣

1
l – 1

∣
∣
∣
∣ → 0 a.s., l → ∞.
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So by a.s. convergence criteria (see [28, Theorem 1.5.2]), we get

lim
L→∞P

( ∞⋃

l=L,1≤i≤l

(|Cl,i – 1| ≥ λ
)
)

= 0 for ∀λ > 0.

That is,

lim
L→∞P

(
sup

l≥L,1≤i≤l
|Cl,i – 1| ≥ λ

)
= 0 for ∀λ > 0.

Hence, for any λ > 0, ∃L such that

P

(
sup

1≤i≤l,l>L
|Cl,i – 1| ≥ λ

)
< λ.

On the other hand, as |x| < 1/2, we have x2/(1 + θx)2 ≤ 4x2 for θ ∈ (0, 1). Thus, by
Markov’s inequality, we have

P

(
μ

2σ
√

l

l∑

i=1

(Cl,i – 1)2

(1 + θi(Cl,i – 1))2 I
(

sup
l>L,1≤i≤l

|Cl,i – 1| <
1
2

)

≥ εl

)

≤ P

(
2μ

σ
√

l

l∑

i=1

(Cl,i – 1)2 ≥ εl

)

≤ 2μ

σ
√

lεl

l∑

i=1

E(Cl,i – 1)2

= c
1√

l(l – 1)2εl

l∑

i=1

E

( l∑

j=1,j 
=i

Yi

)2

≤ c
l2

√
l(l – 1)2εl

.

Hence, taking λ < min(1/2, 1/
√

l), we get

P
(|Tl| > εl

)
= P

(
|Tl| > εl, sup

1≤i≤l,l>L
|Cl,i – 1| ≥ λ

)
+ P

(
|Tl| > εl, sup

1≤i≤l,l>L
|Cl,i – 1| < λ

)

≤ λ + c
l2

√
l(l – 1)2εl

≤ c
l2

√
l(l – 1)2εl

.

So, based on the fact log l <
√

l for l ≥ 1, we have

n∑

l=1

l–1∑

k=1

1
klpkpl

P
(|Tl| > εl

) ≤ c
n∑

l=1

l–1∑

k=1

1
klpkpl

· l2
√

l(l – 1)2εl

≤ c
n∑

l=1

√
l(log l)δ+δ1

(l – 1)2

l–1∑

k=1

(log k)δ

k

≤ c
n∑

l=1

√
l(log l)2δ+δ1

(l – 1)2 log(l – 1) ≤ c
n∑

l=2

(log l)2δ+δ1

(l – 1)

≤ c(log n)1+2δ+δ1 ≤ c(log n)2–ε .

This completes the proof of Lemma 5. �
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4 Proof

Proof of Theorem 1 Let

âk = log ak , b̂k = log bk , k ≥ 1.

Hence, –∞ ≤ âk ≤ 0 ≤ b̂k ≤ ∞ by (4). Note that pk = P(âk ≤ Uk < b̂k) and

αk =

⎧
⎨

⎩

1
pk

I(âk ≤ Uk < b̂k), pk 
= 0,

1, pk = 0.

First, assume that

b̂k – âk ≤ ck–1/2, k = 1, 2, . . . . (13)

Note that

Var

( n∑

k=1

αk

k

)

=
n∑

k=1

1
k2 Var(αk) + 2

∑

1≤k<l≤n

1
kl

Cov(αk ,αl). (14)

It is easy to know that Var(αk) = 0 if pk = 0 and

n∑

l=1

1
k2 Var(αk) =

n∑

l=1

1
k2

1 – pk

pk
≤

n∑

l=1

1
k2

1
pk

≤
n∑

l=1

1
k2 (log k)δ ≤ c(log n)2–ε . (15)

Now, we estimate the second term in (14). Let 1 ≤ k ≤ l and εl = 1/(log l)δ1 , we have

Cov(αk ,αl) =
1

pkpl
Cov

(
I(âk ≤ Uk < b̂k), I(âl ≤ Ul < b̂l)

)

=
1

pkpl

{

P

(

âk ≤ Uk < b̂k , âl ≤ S̃l

σ
√

l
+ Tl < b̂l

)

– pkP

(

âl ≤ S̃l

σ
√

l
+ Tl < b̂l

)}

≤ 1
pkpl

{

P

(

âk ≤ Uk < b̂k , âl – 2εl ≤ S̃l – S̃k

σ
√

l
< b̂l + 2εl

)

+ 2P
(∣

∣
∣
∣

S̃k

σ
√

l

∣
∣
∣
∣ ≥ εl

)

+ P
(|Tl| ≥ εl

)
– pk

[

P

(

âl ≤ S̃l

σ
√

l
+ Tl ≤ b̂l, |Tl| < εl

)

– P
(|Tl| ≥ εl

)
]}

≤ 1
pkpl

{

pkP

(

âl – 2εl ≤ S̃l – S̃k

σ
√

l
< b̂l + 2εl

)

+ 2P
(∣

∣
∣
∣

S̃k

σ
√

l

∣
∣
∣
∣ ≥ εl

)

+ P
(|Tl| ≥ εl

)
– pk

[

P

(

âl + εl ≤ 1
σ
√

l
S̃l < b̂l – εl

)

– P
(|Tl| ≥ εl

)
]}

≤ 1
pkpl

{

pkP

(

âl – 3εl ≤ S̃l

σ
√

l
< b̂l + 3εl

)

+ 3P
(∣

∣
∣
∣

S̃k

σ
√

l

∣
∣
∣
∣ ≥ εl

)

+ P
(|Tl| ≥ εl

)
– pk

[

P

(

âl + εl ≤ 1
σ
√

l
S̃l < b̂l – εl

)

– P
(|Tl| ≥ εl

)
]}
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≤ 1
pl

[

P

(

âl – 3εl ≤ 1
σ
√

l
S̃l < b̂l + 3εl

)

– P

(

âl + εl ≤ 1
σ
√

l
S̃l < b̂l – εl

)]

+
1

pkpl

[

2P
(|Tl| ≥ εl

)
+ 3P

(∣
∣
∣
∣

1
σ
√

l
S̃k

∣
∣
∣
∣ ≥ εl

)]

:=
1
pl

B1 +
1

plpk
(2B2 + 3B3). (16)

By Lemma 3, the inequality |Φ(x) – Φ(y)| ≤ c|x – y|, x, y ∈ R, and (13), we obtain

B1 ≤
[

P

(
S̃l

σl
<

σ
√

l(b̂l + 3εl)
σl

)

– Φ

(
σ
√

l(b̂l + 3εl)
σl

)]

–
[

P

(
S̃l

σl
<

σ
√

l(âl – 3εl)
σl

)

– Φ

(
σ
√

l(âl – 3εl)
σl

)]

+
[

Φ

(
σ
√

l(b̂l + 3εl)
σl

)

– Φ

(
σ
√

l(âl – 3εl)
σl

)]

–
[

P

(
S̃l

σl
<

σ
√

l(b̂l – εl)
σl

)

– Φ

(
σ
√

l(b̂l – εl)
σl

)]

+
[

P

(
S̃l

σl
<

σ
√

l(âl + εl)
σl

)

– Φ

(
σ
√

l(âl + εl)
σl

)]

–
[

Φ

(
σ
√

l(b̂l – εl)
σl

)

– Φ

(
σ
√

l(âl + εl)
σl

)]

≤ c
(

1
l1/5 + (b̂l – âl) + εl

)

≤ c
(

1
l1/5 +

1√
l

+
1

(log l)δ1

)

≤ c
1

(log l)δ1
.

Thus, by Lemma 5 we get

n∑

l=1

l–1∑

k=1

1
kl

(
1
pl

B1 +
1

pkpl
(2B2 + 3B3)

)

≤ (log n)2–ε . (17)

Hence, combining with (14)–(17) yields

Var

( n∑

k=1

αk

k

)

≤ c(log n)2–ε .

Applying Lemma 1, our theorem is proved under the restricting condition (13).
Now we drop the restricting condition (13). Fix x > 0 and define

ãk = max(âk , –x), b̃k = min(b̂k , x), p̃k = P(̃ak ≤ Uk < b̃k).
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Obviously, p̃k ≤ pk . Assuming p̃k 
= 0, then one has pk 
= 0, and thus

1
pk

I
(

ak ≤
( ∏k

i=1 Sk,i

(k – 1)kμk

)μ/(σ
√

k)

< bk

)

≤ 1
p̃k

I(̃ak ≤ Uk < b̃k) +
1
pk

[
I(âk ≤ Uk < ãk) + I(̃bk ≤ Uk < b̂k)

]

≤ 1
p̃k

I(̃ak ≤ Uk < b̃k) +
I(Uk < –x)

P(–x ≤ Uk < 0)
+

I(Uk > x)
P(0 ≤ Uk < x)

. (18)

By the central limit theorem for the product of some partial sums (1), that is,

( ∏k
i=1 Sk,i

(k – 1)kμk

)μ/(σ
√

k) d−→ eN as k → ∞,

we have

lim
k→∞

P(–x ≤ Uk < 0) = Φ(0) – Φ(–x), (19)

lim
k→∞

P(0 ≤ Uk < x) = Φ(x) – Φ(0). (20)

By the terminology of summation procedures (see [29]), we know that ASCLT is valid
for the large weight sequences, then ASCLT is still valid for the small weight sequences.
Hence, for weight sequence dk = 1/k, the almost sure central limit theorem for the product
of some partial sums (2) for NA sequence is still valid. That is,

lim
n→∞

1
log n

n∑

k=1

1
k

I
(( ∏k

i=1 Sk,i

(k – 1)kμk

)μ/(σ
√

k)

≤ x
)

= F(x) a.s. (21)

Combining Lemma 4 and (19)–(21), we obtain

lim
n→∞

1
log n

n∑

k=1

I(Uk < –x)
kP(–x ≤ Uk < 0)

=
Φ(–x)

Φ(0) – Φ(–x)
a.s., (22)

and

lim
n→∞

1
log n

n∑

k=1

I(Uk > 0)
kP(0 ≤ Uk < x)

=
1 – Φ(x)

Φ(x) – Φ(0)
a.s. (23)

Since b̃k – ãk ≤ min(2x, ck–1/2) satisfy (13), hence

lim
n→∞

1
log n

n∑

k=1

α̃k

k
= 1 a.s., (24)

where

α̃k =

⎧
⎨

⎩

1
p̃k

I(̃ak ≤ Uk < b̃k), pk 
= 0,

1, pk = 0.
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Combining (18) and (22)–(24), we get

lim sup
n→∞

1
log n

n∑

k=1

αk

k
≤ 1 + 2

1 – Φ(x)
Φ(x) – Φ(0)

a.s. (25)

On the other hand, if p̃k 
= 0, then we have

1
pk

I
(

ak ≤
( ∏k

i=1 Sk,i

(k – 1)kμk

)μ/(σ
√

k)

< bk

)

≥ 1
p̃k

I(̃ak ≤ Uk < b̃k)
(

1 –
pk – p̃k

pk

)

≥ 1
p̃k

I(̃ak ≤ Uk < b̃k)
(

1 –
P(Uk < –x) + P(Uk > x)

min(P(–x ≤ Uk < 0),P(0 ≤ Uk < x))

)

.

By the central limit theorem (1) and Lemma 4, we get

lim
n→∞

P(Uk < –x) + P(Uk > x)
min(P(–x ≤ Uk < 0),P(0 ≤ Uk < x))

= 2
1 – Φ(x)

Φ(x) – Φ(0)
.

So,

lim inf
n→∞

1
log n

n∑

k=1

αk

k
≥ 1 – 2

1 – Φ(x)
Φ(x) – Φ(0)

a.s. (26)

Combining (25) and (26), we have

1 – 2
1 – Φ(x)

Φ(x) – Φ(0)
≤ lim inf

n→∞
1

log n

n∑

k=1

αk

k
≤ lim

n→∞
1

log n

n∑

k=1

αk

k

≤ lim sup
n→∞

1
log n

n∑

k=1

αk

k
≤ 1 + 2

1 – Φ(x)
Φ(x) – Φ(0)

a.s. (27)

By the arbitrariness of x, let x → ∞ in (27), we obtain

lim
n→∞

1
log n

n∑

k=1

αk

k
= 1 a.s. (28)

This completes the proof of Theorem 1. �
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