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1 Introduction
The famous Young inequality for two scalars is the t-weighted arithmetic–geometric mean
inequality. This inequality says that if u, v > 0 and θ ∈ [0, 1], then

uθ v1–θ ≤ θu + (1 – θ )v (1)

with equality if and only if u = v. Let r, s > 1 be such that 1/r + 1/s = 1. Inequality (1) can
be written as

uv ≤ ur

r
+

vs

s
(2)

for u, v ≥ 0. In this form, inequality (2) was used to prove the celebrated Hölder inequality,
which is one of the most important inequalities of analysis. It contributes a wide area of
pure and applied mathematics and plays a key role in resolving many problems in social,
cultural science, and natural sciences.

Theorem 1.1 (Hölder inequality for integrals [7]) Let p > 1 and 1/p + 1/q = 1. If ϕ and ψ

are real functions defined on [u, v] such that |ϕ|p and |ψ |q are integrable functions on [u, v],
then

∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ ≤

(∫ v

u

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u

∣∣ψ(ζ )
∣∣q dζ

)1/q

(3)

with equality if and only if A|ϕ(ζ )|p = B|ψ(ζ )|q almost everywhere for some constants A
and B.
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Theorem 1.2 (Hölder inequality for sums [7]) Let u = (u1, . . . , um) and v = (v1, . . . , vm) be
two positive n-tuples, and let p, q > 0 be such that 1/p + 1/q = 1. Then we have

m∑
n=1

unvn ≤
( m∑

n=1

up
n

)1/p( m∑
n=1

vq
n

)1/q

(4)

with equality (4) if and only if up and vq are proportional.

Of course, the Hölder’s inequality has been extensively explored and tested to a new
situation by a number of scientists. Many its generalizations and refinements have been
obtained so far. See, for example, [1, 2, 4–12] and the references therein. In this paper,
using a simple proof method, we obtain some new refinements for integral and sum forms
of Hölder’s.

2 Main results
Theorem 2.1 Let p > 1 and 1/p + 1/q = 1. If ϕ and ψ are real functions defined on [u, v]
such that |ϕ|p and |ψ |q are integrable functions on [u, v], then

(i)

∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ

≤ 1
v – u

{(∫ v

u
(v – ζ )

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(v – ζ )

∣∣ψ(ζ )
∣∣q dζ

)1/q

+
(∫ v

u
(ζ – u)

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(ζ – u)

∣∣ψ(ζ )
∣∣q dζ

)1/q}
; (5)

(ii)

1
v – u

{(∫ v

u
(v – ζ )

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(v – ζ )

∣∣ψ(ζ )
∣∣q dζ

)1/q

+
(∫ v

u
(ζ – u)

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(ζ – u)

∣∣ψ(ζ )
∣∣q dζ

)1/q}

≤
(∫ v

u

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u

∣∣ψ(ζ )
∣∣q dζ

)1/q

. (6)

Proof (i) First (short) method: Using the Hölder inequality (3), we easily see that

∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ

=
1

v – u

{∫ v

u

∣∣(v – ζ )1/pϕ(ζ )(v – ζ )1/qψ(ζ )
∣∣dζ

+
∫ v

u

∣∣(ζ – u)1/pϕ(ζ )(ζ – u)1/qψ(ζ )
∣∣dζ

}

≤ 1
v – u

{(∫ v

u
(v – ζ )

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(v – ζ )

∣∣ψ(ζ )
∣∣q dζ

)1/q
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+
(∫ v

u
(ζ – u)

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(ζ – u)

∣∣ψ(ζ )
∣∣q dζ

)1/q}
.

Second (long) method: Let α ∈ [0, 1]. Applying (3) on the subinterval [u,αv + (1 – α)u] and
on the subinterval αv + (1 – α)u, v], respectively, we get

∫ αv+(1–α)u

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ ≤

(∫ αv+(1–α)u

u

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ λb+(1–λ)a

a

∣∣ψ(ζ )
∣∣q dζ

)1/q

and

∫ v

αv+(1–α)u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ ≤

(∫ v

αv+(1–α)u

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

αv+(1–α)u

∣∣ψ(ζ )
∣∣q dζ

)1/q

.

Adding the resulting inequalities, we get

∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ ≤

(∫ αv+(1–α)u

u

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ λb+(1–λ)a

a

∣∣ψ(ζ )
∣∣q dζ

)1/q

+
(∫ v

αv+(1–α)u

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

αv+(1–α)u

∣∣ψ(ζ )
∣∣q dζ

)1/q

. (7)

By the change of variable ζ = θv + (1 – θ )u on the right-hand side integrals in (7), we have

∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ

≤ (v – u)
{(∫ θ

0

∣∣ϕ(
θv + (1 – θ )u

)∣∣p dθ

)1/p(∫ θ

0

∣∣ψ(
θv + (1 – θ )u

)∣∣q dθ

)1/q

+
(∫ 1

θ

∣∣ϕ(
θv + (1 – θ )u

)∣∣p dθ

)1/p(∫ 1

θ

∣∣ψ(
θv + (1 – θ )u

)∣∣q dθ

)1/q}
.

Integrating both sides of this inequality over [0, 1] with respect to α, we obtain that

∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ

≤ (v – u)
{∫ 1

0

(∫ θ

0

∣∣ϕ(
θv + (1 – θ )u

)∣∣p dθ

)1/p(∫ θ

0

∣∣ψ(
θv + (1 – θ )u

)∣∣q dθ

)1/q

dα

+
∫ 1

0

(∫ 1

θ

∣∣ϕ(
θv + (1 – θ )u

)∣∣p dθ

)1/p(∫ 1

θ

∣∣ψ(
θv + (1 – θ )u

)∣∣q dθ

)1/q

dα

}
.

Then applying the Hölder inequality to the right-hand side integrals in the last inequality,
we have

∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ

≤ (v – u)
{(∫ 1

0

∫ θ

0

∣∣ϕ(
θv + (1 – θ )u

)∣∣p dθ dα

)1/p

×
(∫ 1

0

∫ θ

0

∣∣ψ(
θv + (1 – θ )u

)∣∣q dθ dα

)1/q
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+
(∫ 1

0

∫ 1

θ

∣∣ϕ(
θv + (1 – θ )u

)∣∣p dθ dα

)1/p

×
(∫ 1

0

∫ 1

θ

∣∣ψ(
θv + (1 – θ )u

)∣∣q dθ dα

)1/q}
.

By the Fubini theorem and the change of variable θ = (ζ – u)/(v – u) we get

∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ

≤ (v – u)
{(∫ 1

0

∫ 1

θ

∣∣ϕ(
θv + (1 – θ )u

)∣∣p dα dθ

)1/p

×
(∫ 1

0

∫ 1

θ

∣∣ψ(
θv + (1 – θ )u

)∣∣q dα dθ

)1/q

+
(∫ 1

0

∫ θ

0

∣∣ϕ(
θv + (1 – θ )u

)∣∣p dα dθ

)1/p

×
(∫ 1

0

∫ θ

0

∣∣ψ(
θv + (1 – θ )u

)∣∣q dα dθ

)1/q}

= (v – u)
{(∫ 1

0
(1 – θ )

∣∣ϕ(
θv + (1 – θ )u

)∣∣p dθ

)1/p

×
(∫ 1

0
(1 – θ )

∣∣ψ(
θv + (1 – θ )u

)∣∣q dθ

)1/q

+
(∫ 1

0
θ
∣∣ϕ(

θv + (1 – θ )u
)∣∣p dθ

)1/p(∫ 1

0
θ
∣∣ψ(

θv + (1 – θ )u
)∣∣q dθ

)1/q}

=
1

v – u

{(∫ v

u
(v – ζ )

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(v – ζ )

∣∣ψ(ζ )
∣∣q dζ

)1/q

+
(∫ v

u
(ζ – u)

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(ζ – u)

∣∣ψ(ζ )
∣∣q dζ

)1/q}
.

(ii) First, let us consider the case

(∫ v

u

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u

∣∣ψ(ζ )
∣∣q dζ

)1/q

= 0.

Then, ϕ(ζ ) = 0 for almost every ζ ∈ [u, v] or ψ(ζ ) = 0 for almost everywhere ζ ∈ [u, v].
Thus we have

∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ = 0.

Therefore inequality (6) is trivial in this case.
Finally, we consider the case

I =
(∫ v

u

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u

∣∣ψ(ζ )
∣∣q dζ

)1/q

�= 0.



İşcan Journal of Inequalities and Applications        (2019) 2019:304 Page 5 of 11

Then

1
(v – u)I

{(∫ v

u
(v – ζ )

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(v – ζ )

∣∣ψ(ζ )
∣∣q dζ

)1/q

+
(∫ v

u
(ζ – u)

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(ζ – u)

∣∣ψ(ζ )
∣∣q dζ

)1/q}

≤ 1
v – u

{(∫ v
u (v – ζ )|ϕ(ζ )|p dζ∫ v

u |ϕ(ζ )|p dζ

)1/p(∫ v
u (v – ζ )|ψ(ζ )|q dζ∫ v

u |ψ(ζ )|q dζ

)1/q

+
(∫ v

u (ζ – u)|ϕ(ζ )|p dζ∫ v
u |ϕ(ζ )|p dζ

)1/p(∫ v
u (ζ – u)|ψ(ζ )|q dζ∫ v

u |ψ(ζ )|q dζ

)1/q}
.

Applying (1) to the right-hand side integrals of the last inequality, we get

1
(v – u)I

{(∫ v

u
(v – ζ )

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(v – ζ )

∣∣ψ(ζ )
∣∣q dζ

)1/q

+
(∫ v

u
(ζ – u)

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
(ζ – u)

∣∣ψ(ζ )
∣∣q dζ

)1/q}

≤ 1
v – u

{∫ v
u (v – ζ )|ϕ(ζ )|p dζ

p
∫ v

u |ϕ(ζ )|p dζ
+

∫ v
u (v – ζ )|ψ(ζ )|q dζ

q
∫ v

u |ψ(ζ )|q dζ

+
∫ v

u (ζ – u)|ϕ(ζ )|p dζ

p
∫ v

u |ϕ(ζ )|p dζ
+

∫ v
u (ζ – u)|ψ(ζ )|q dζ

q
∫ v

u |ψ(ζ )|q dζ

}

=
1
p

+
1
q

= 1.

This completes the proof. �

Remark 2.1 Inequality (6) shows that inequality (5) is better than inequality (3).

More general versions of Theorem 2.1 are given in the following:

Theorem 2.2 Let p > 1 and 1/p + 1/q = 1. If ϕ and ψ are real functions defined on [u, v]
such that |ϕ|p and |ψ |q are integrable functions on [u, v], then

(i)
∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ

≤
{(∫ v

u
α(ζ )

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
α(ζ )

∣∣ψ(ζ )
∣∣q dζ

)1/q

+
(∫ v

u
β(ζ )

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
β(ζ )

∣∣ψ(ζ )
∣∣q dζ

)1/q}
, (8)

where α,β : [u, v] → [0,∞) are continuous functions such that
α(ζ ) + β(ζ ) = 1, ζ ∈ [u, v];

(ii)
∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ
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≤
n∑

i=1

(∫ b

a
αi(ζ )

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ b

a
αi(ζ )

∣∣ψ(ζ )
∣∣q dζ

)1/q

,

where αi : [u, v] → [0,∞), i = 1, 2, . . . , n, are continuous functions such that∑n
i=1 αi(ζ ) = 1, ζ ∈ [u, v].

Proof The proof of the theorem is easily seen by using a similar method as in the proof of
Theorem 2.1. �

Remark 2.2 We easily see that the inequalities obtained in Theorem 2.2 are better than
inequality (3).

Remark 2.3 (i) Taking α(ζ ) = sin2 ζ and β(ζ ) = cos2 ζ in inequality (8), we have

∫ v

u

∣∣ϕ(ζ )ψ(ζ )
∣∣dζ

≤
{(∫ v

u
sin2 ζ

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
sin2 ζ

∣∣ψ(ζ )
∣∣q dζ

)1/q

+
(∫ v

u
cos2 ζ

∣∣ϕ(ζ )
∣∣p dζ

)1/p(∫ v

u
cos2 ζ

∣∣ψ(ζ )
∣∣q dζ

)1/q}
.

(ii) Taking α(ζ ) = v–ζ

v–u and β(ζ ) = ζ–u
v–u in inequality (8), we have inequality (5).

Theorem 2.3 Let u = (u1, . . . , um) and v = (v1, . . . , vm) be two positive n-tuples, and let p, q >
0 be such that 1/p + 1/q = 1. Then

(i)

m∑
n=1

unvn ≤ 1
m

{( m∑
n=1

nup
n

)1/p( m∑
n=1

nvq
n

)1/q

+

( m∑
n=1

(m – n)up
n

)1/p( m∑
n=1

(m – n)vq
n

)1/q}
; (9)

(ii)

1
m

{( m∑
n=1

nup
n

)1/p( m∑
n=1

nvq
n

)1/q

+

( m∑
n=1

(m – n)up
n

)1/p( m∑
n=1

(m – n)vq
n

)1/q}

≤
( m∑

n=1

up
n

)1/p( m∑
n=1

vq
n

)1/q

. (10)

Proof (i) Using the Hölder inequality in (4), we easily see that

m∑
n=1

unvn

=
m∑

n=1

(
n
m

+
m – n

m

)
unvn
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=
1
m

{ m∑
n=1

n1/punn1/qvn +
m∑

n=1

(m – n)1/pun(m – n)1/qvn

}

≤ 1
m

{( m∑
n=1

nup
n

)1/p( m∑
n=1

nvq
n

)1/q

+

( m∑
n=1

(m – n)up
n

)1/p( m∑
n=1

(m – n)vq
n

)1/q}
.

(ii) Let us first consider the case

( m∑
n=1

up
n

)1/p( m∑
n=1

vq
n

)1/q

= 0.

Then un = 0 for n = 1, 2, . . . , m or vn = 0 for n = 1, 2, . . . , m. Thus we have

m∑
n=1

unvn = 0.

Therefore inequality (10) is trivial in this case.
Finally, we consider the case

S =

( m∑
n=1

up
n

)1/p( m∑
n=1

vq
n

)1/q

�= 0.

Then

1
mS

{( m∑
n=1

nup
n

)1/p( m∑
n=1

nvq
n

)1/q

+

( m∑
n=1

(m – n)up
n

)1/p( m∑
n=1

(m – n)vq
n

)1/q}

=
1
m

{(∑m
n=1 nup

n∑m
n=1 up

n

)1/p(∑m
n=1 nvq

n∑m
n=1 vq

n

)1/q

+
(∑m

n=1(m – n)up
n∑m

n=1 up
n

)1/p(∑m
n=1(m – n)vq

n∑m
n=1 vq

n

)1/q}
.

Applying (1) to the right-hand side sums of the last inequality, we get

1
mS

{( m∑
n=1

nup
n

)1/p( m∑
n=1

nvq
n

)1/q

+

( m∑
n=1

(m – n)up
n

)1/p( m∑
n=1

(m – n)vq
n

)1/q}

≤ 1
m

{ ∑m
n=1 nup

n

p
∑m

n=1 up
n

+
∑m

n=1 nvq
n

q
∑m

n=1 vq
n

+
∑m

n=1(m – n)up
n

p
∑m

n=1 up
n

+
∑m

n=1(m – n)vq
n

q
∑m

n=1 vq
n

}

=
1
p

+
1
q

= 1.

This completes the proof. �

Remark 2.4 Inequality (10) shows that inequality (9) is better than inequality (4).
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More general versions of Theorem 2.1 are given in the following:

Theorem 2.4 Let u = (u1, . . . , um) and v = (v1, . . . , vm) be two positive n-tuples, and let p, q >
0 be such that 1/p + 1/q = 1.

(i) Let c = (c1, . . . , cm) and d = (d1, . . . , dm) be two positive n-tuples such that
cn + dn = 1, n = 1, 2, . . . , m. Then

m∑
n=1

unvn ≤
{( m∑

n=1

cnup
n

)1/p( m∑
n=1

cnvq
n

)1/q

+

( m∑
n=1

dnup
n

)1/p( m∑
n=1

dnvq
n

)1/q}
. (11)

(ii) Let c(i) = (c(i)
1 , . . . , c(i)

m ), i = 1, 2, . . . , k, be positive n-tuples such that∑k
i=1 c(i)

n = 1, n = 1, 2, . . . , m. Then

m∑
n=1

unvn ≤
k∑

i=1

{( m∑
n=1

c(i)
n up

n

)1/p( m∑
n=1

c(i)
n vq

n

)1/q}
.

Proof The proof of the theorem is easily seen by using a similar method as in the proof of
Theorem 2.1. �

Remark 2.5 We easily see that the inequalities obtained in Theorem 2.4 are better than
inequality (4).

Remark 2.6 (i) Taking c = (sin2 1, . . . , sin2 m) and d = (cos2 1, . . . , cos2 m) in inequality (11)
of Theorem 2.4, we have

m∑
n=1

unvn ≤
{( m∑

n=1

sin2 nup
n

)1/p( m∑
n=1

sin2 nvq
n

)1/q

+

( m∑
n=1

cos2 nup
n

)1/p( m∑
n=1

cos2 nvq
n

)1/q}
.

(ii) Taking c = ( 1
m , 2

m , . . . , 1) and d = ( m–1
m , m–2

m , . . . , 0) in inequality (11) of Theorem 2.4,
we have inequality (9).

3 An application
To obtain our main results, we need the following lemma of Dragomir et al. [3].

Lemma 3.1 Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, let a, b ∈ I◦ with a < b,
and let q > 1. If f ∈ L[a, b], then

f (a) + f (b)
2

–
1

b – a

∫ b

a
f (x) dx =

b – a
2

∫ 1

0
(1 – 2t)f ′(ta + (1 – t)b

)
dt.

Using this equality and the Hölder integral inequality, Dragomir et al. obtained the fol-
lowing inequality.
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Theorem 3.1 Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, and let a, b ∈ I◦ with
a < b. If the new mapping |f ′|q is convex on [a, b], then

∣∣∣∣ f (a) + f (b)
2

–
1

b – a

∫ b

a
f (x) dx

∣∣∣∣ ≤ b – a
2(p + 1)1/p

[ |f ′(a)|q + |f ′(b)|q
2

]1/q

, (12)

where 1/p + 1/q = 1.

If Theorem 3.1 is resulted again by using inequality (5) in Theorem 2.1, then we get the
following result.

Theorem 3.2 Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, and let a, b ∈ I◦ with
a < b. If the mapping |f ′|q is convex on [a, b], then

∣∣∣∣ f (a) + f (b)
2

–
1

b – a

∫ b

a
f (x) dx

∣∣∣∣

≤ b – a
4(p + 1)1/p

{[
2|f ′(a)|q + |f ′(b)|q

3

]1/q

+
[ |f ′(a)|q + 2|f ′(b)|q

3

]1/q}
, (13)

where 1/p + 1/q = 1.

Proof Using Lemma 3.1 and inequality (5), we find

∣∣∣∣ f (a) + f (b)
2

–
1

b – a

∫ b

a
f (x) dx

∣∣∣∣

≤ b – a
2

∫ 1

0
|1 – 2t|∣∣f ′(ta + (1 – t)b

)∣∣dt

≤ b – a
2

{(∫ 1

0
(1 – t)|1 – 2t|p dt

)1/p(∫ 1

0
(1 – t)

∣∣f ′(ta + (1 – t)b
)∣∣q dt

)1/q

+
(∫ 1

0
t|1 – 2t|p dt

)1/p(∫ 1

0
t
∣∣f ′(ta + (1 – t)b

)∣∣q dt
)1/q}

. (14)

Using the convexity of |f ′|q, we have

∫ 1

0
t
∣∣f ′(ta + (1 – t)b

)∣∣q dt ≤
∫ 1

0
t
[
t
∣∣f ′(a)

∣∣q + (1 – t)
∣∣f ′(b)

∣∣q]dt

=
2|f ′(a)|q + |f ′(b)|q

6
(15)

and
∫ 1

0
(1 – t)

∣∣f ′(ta + (1 – t)b
)∣∣q dt =

∫ 1

0
t
∣∣f ′(tb + (1 – t)a

)∣∣q dt

≤ |f ′(a)|q + 2|f ′(b)|q
6

. (16)

Further, since

∫ 1

0
t|1 – 2t|p dt =

∫ 1

0
(1 – t)|1 – 2t|p dt
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=
1

2(p + 1)
,

a combination of (14)–(16) immediately gives the required inequality (13). �

Remark 3.1 Since μ : [0,∞) →R,μ(x) = xα , 0 < α ≤ 1, is a concave function, for all z, t ≥ 0,
we have

μ

(
z + t

2

)
=

(
z + t

2

)α

≥ μ(z) + μ(t)
2

=
zα + tα

2
,

from which we get

1
2

[
2|f ′(a)|q + |f ′(b)|q

3

]1/q

+
1
2

[ |f ′(a)|q + 2|f ′(b)|q
3

]1/q

≤
[ |f ′(a)|q + |f ′(b)|q

2

]1/q

.

Thus we obtain

b – a
4(p + 1)1/p

{[
2|f ′(a)|q + |f ′(b)|q

3

]1/q

+
[ |f ′(a)|q + 2|f ′(b)|q

3

]1/q}

≤ b – a
2(p + 1)1/p

[ |f ′(a)|q + |f ′(b)|q
2

]1/q

,

which shows that inequality (13) is better than inequality (12).

4 Conclusion
In this paper, using a simple proof method, we obtained some new refinements for inte-
gral and sum forms of Hölder’s inequality. Many existing inequalities related to the Hölder
inequality can be improved via newly obtained inequalities, which we illustrate by an ap-
plication. Moreover, our results can be recognized as significant methods in the fields of
mathematics.
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