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Abstract
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1 Introduction
Let ν ∈ (–∞,∞) and σ , τ > 0 with σ �= τ . Then we denote by

G(σ , τ ) = σ 1/2τ 1/2, U(σ , τ ) =
√

2(σ – τ )

2 arctan(
√

2(σ–τ )
2
√

στ
)
,

Q(σ , τ ) =
(

σ 2 + τ 2

2

)1/2

,

(1.1)

and

Hν(σ , τ ) =
(

σ ν + τ ν

2

)1/ν

(ν �= 0), H0(σ , τ ) = σ 1/2τ 1/2

the geometric mean, Yang mean [1], quadratic mean [2], and νth Hölder mean [3] of σ

and τ , respectively.
It is not difficult to verify that the νth Hölder mean Hν(σ , τ ) is strictly increasing with

respect to ν ∈ (–∞,∞) for all distinct positive real numbers σ and τ , and

H–1(σ , τ ) =
2στ

σ + τ
= H(σ , τ ), H0(σ , τ ) = σ 1/2τ 1/2 = G(σ , τ ),

H1(σ , τ ) =
σ + τ

2
= A(σ , τ ), H2(σ , τ ) =

(
σ 2 + τ 2

2

)1/2

= Q(σ , τ )
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are the classical harmonic, geometric, arithmetic, and quadratic means of σ and τ , respec-
tively.

The bivariate means have in the past decades been the subject of intense research activity
[4–13] because many important special functions can be expressed by the bivariate means
[14–31] and they have wide applications in mathematics, statistics, physics, economics
[32–55], and many other natural and human social sciences [56–76].

Yang, Wu, and Chu [77] proved that κ1 = 2 log 2/(2 logπ – log 2) � 0.8684 is the largest
possible value and κ2 = 4/3 is the least possible value such that the two-sided inequality

Hκ1 (σ , τ ) < U(σ , τ ) < Hκ2 (σ , τ )

takes place for all distinct positive real numbers σ and τ , which leads to the conclusion
that

G(σ , τ ) < U(σ , τ ) < Q(σ , τ )

for σ , τ > 0 with σ �= τ .
In [78], Qian and Chu found that λ = λ0 � 0.5451 and μ = 2 are the best possible param-

eters such that the double inequality

Lλ(σ , τ ) < U(σ , τ ) < Lμ(σ , τ )

holds for all unequal positive real numbers σ and τ , where

Lν(σ , τ ) =
[

σ ν+1 – τ ν+1

(ν + 1)(σ – τ )

]1/ν

(ν �= –1, 0)

L–1(σ , τ ) =
σ – τ

logσ – log τ
, L0(σ , τ ) =

1
e

(
σσ

τ τ

)1/(σ–τ )

is the νth generalized logarithmic mean of σ and τ .
The Sándor–Yang mean SY(σ , τ ) [1] and two-parameter geometric and arithmetic mean

GAη,ν(σ , τ ) [79] are defined by

SY(σ , τ ) = Q(σ , τ )eG(σ ,τ )/U(σ ,τ )–1 (1.2)

and

GAη,ν(σ , τ ) = Gν
[
ησ + (1 – η)τ ,ητ + (1 – η)σ

]
A1–ν(σ , τ ), (1.3)

respectively.
Identity (1.3) leads to the conclusion that

GAp,1(σ , τ ) = G
[
pσ + (1 – p)τ , pτ + (1 – p)σ

]
, (1.4)

GAp,2(σ , τ ) = H
[
pσ + (1 – p)τ , pτ + (1 – p)σ

]
, (1.5)
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and

GAp,0(σ , τ ) = GA1/2,1/2(σ , τ ) = A(σ , τ ). (1.6)

Chu et al. [79] proved that the inequalities

GAη1,ν(σ , τ ) > AGM(σ , τ )

and

GAη2,ν(σ , τ ) > L(σ , τ )

are valid for all distinct positive real numbers σ and τ if and only if

η1 ≥ 1
2

–
√

2ν

4ν
, η2 ≥ 1

2
–

√
6ν

6ν

if ν ∈ [1,∞) and 0 < η1,η2 < 1/2, where

L(σ , τ ) = L–1(σ , τ ) =
σ – τ

logσ – log τ

and

AGM(σ , τ ) =
π

2
∫ π

0
dt√

σ 2 cos2 t+τ2 sin2 t

are the logarithmic and Gaussian arithmetic-geometric means of σ and τ , respectively.
Zhang, Yang, and Qian [80], and He et al. [81] proved that

λ1 = λ2 =
√

2
e

� 0.5203, λ3 =
2 log 2

2 + log 2
� 0.5147, ν1 =

5
6

, ν2 = ν3 =
2
3

are the best possible parameters such that the double inequalities

λ1A(σ , τ ) + (1 – λ1)H(σ , τ ) < SY(σ , τ ) < ν1A(σ , τ ) + (1 – ν1)H(σ , τ ),

λ2A(σ , τ ) + (1 – λ1)G(σ , τ ) < SY(σ , τ ) < ν2A(σ , τ ) + (1 – ν2)G(σ , τ ),

and

Hλ3 (σ , τ ) < SY(σ , τ ) < Hν3 (σ , τ ) (1.7)

hold for all σ , τ > 0 with σ �= τ .
From (1.4)–(1.7) and the monotonicity of the function ν → Hν(σ , τ ), we clearly see that

GA1,2(σ , τ ) = H(σ , τ ) = H–1(σ , τ ) < G(σ , τ ) = H0(σ , τ )

< SY(σ , τ ) < H1(σ , τ ) = A(σ , τ ) = GAp,0(σ , τ ) = GA1/2,1/2(σ , τ ) (1.8)

for all σ , τ > 0 with σ �= τ .
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Motivated by inequality (1.8), we naturally ask the question: For fixed p ∈ R, what are
the best possible parameters λ and μ on the interval (0, 1/2) or (1/2, 1) depending only on
the parameter p such that the double inequality

GAλ,p(σ , τ ) < SY(σ , τ ) < GAμ,p(σ , τ )

is valid for all unequal positive real numbers σ and τ ?
It is the aim of the article to answer the question in the case of p ∈ [1,∞) and λ,μ ∈

(0, 1/2).

2 Lemmas
Lemma 2.1 (see [82, Theorem 1.25]) Let κ1,κ2 ∈ R with κ1 < κ2, F ,G : [κ1,κ2] → R be
continuous on [κ1,κ2] and differentiable on (κ1,κ2) with G ′(t) �= 0 on (κ1,κ2). Then both the
functions

F (t) – F (κ1)
G(t) – G(κ1)

and

F (t) – F (κ2)
G(t) – G(κ2)

are (strictly) increasing (decreasing) on (κ1,κ2) if F ′(t)/G ′(t) is (strictly) increasing (decreas-
ing) on (κ1,κ2).

Lemma 2.2 The inequality

1
3p

+
(

2
e2

)1/p

< 1

holds for all p ≥ 1.

Proof Let p ∈ [1,∞) and

f1(p) =
1

3p
+

(
2
e2

)1/p

. (2.1)

Then (2.1) leads to

lim
p→∞ f1(p) = 1, (2.2)

f ′
1(p) =

2
p2 log

(√
2e
2

)[(√
2

e

)2/p

–
1

6 log(
√

2e
2 )

]

≥ 2
p2 log

(√
2e
2

)[(√
2

e

)2

–
1

6 log(
√

2e
2 )

]

=
12 log(

√
2e
2 ) – e2

3e2p2 . (2.3)
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Note that

12 log

(√
2e
2

)
– e2 � 0.4521 > 0. (2.4)

Therefore, Lemma 2.2 follows easily from (2.1)–(2.4). �

Lemma 2.3 The function

f2(x) =
4(x2 + 1) arctan(x) + x(x2 + 2)

x(3x2 + 2)
(2.5)

is strictly decreasing from (0,∞) on (1/3, 3).

Proof It follows from (2.5) that

f2
(
0+)

= 3, lim
x→∞ f2(x) =

1
3

, (2.6)

where and in what follows f (λ+) denotes the right limit of the function f at λ.
Let

ϕ1(x) = 4 arctan(x) +
x(x2 + 2)

x2 + 1
, ϕ2(x) =

x(3x2 + 2)
x2 + 1

.

Then we clearly see that

ϕ1
(
0+)

= ϕ2
(
0+)

= 0, f2(x) =
ϕ1(x)
ϕ2(x)

, (2.7)

ϕ′
1(x)

ϕ′
2(x)

=
x2 + 3

3x2 + 1
.

It is not difficult to verify that the function x → ϕ′
1(x)/ϕ′

2(x) is strictly decreasing on (0,∞).
Therefore, Lemma 2.3 follows from (2.6), (2.7), and Lemma 2.1 together with the mono-

tonicity of the function ϕ′
1(x)/ϕ′

2(x) on the interval (0,∞). �

Lemma 2.4 Let 0 < u < 1, p ≥ 1, and

g(u, p; x) =
p
2

log

(
(1 – u)x2 + 2

x2 + 2

)
+

1
2

log

(
x2 + 2

2(x2 + 1)

)
–

arctan(x)
x

+ 1. (2.8)

Then the following statements are true:
(1) g(u, p; x) > 0 for all x ∈ (0,∞) if and only if u ≤ 1/(3p);
(2) g(u, p; x) < 0 for all x ∈ (0,∞) if and only if u ≥ 1 – (2/e2)1/p.

Proof From (2.8) we clearly see that

g
(
u, p; 0+)

= 0, (2.9)

lim
x→∞ g(u, p; x) =

p
2

log(1 – u) + 1 –
1
2

log 2. (2.10)
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Let

g0(p, x) =
(x2 + 2)[(x2 + 2) arctan(x) – 2x]

x2[(x2 + 2) arctan(x) + 2(p – 1)x]
. (2.11)

Then

g0
(
p, 0+)

=
1

3p
, lim

x→∞ g0(p, x) = 1. (2.12)

Differentiating g(u, p; x) with respect to x gives

∂g(u, p; x)
∂x

=
(x2 + 2) arctan(x) + 2(p – 1)x

(x2 + 2)[(1 – u)x2 + 2]
[
g0(p, x) – u

]
. (2.13)

Let

g1(x) = arctan(x) –
2x

x2 + 2
, g2(x) =

x2

x2 + 2

[
arctan(x) +

2(p – 1)x
x2 + 2

]
.

Then we clearly see that

g0(p, x) =
g1(x)
g2(x)

, g1
(
0+)

= g2
(
0+)

= 0, (2.14)

g ′
1(x)

g ′
2(x)

=
x(x2 + 2)(3x2 + 2)

4(x2 + 1)(x2 + 2) arctan(x) + x[(3 – 2p)x4 + 2(5p – 3)x2 + 4(3p – 2)]

=
1

4(x2+1) arctan(x)+x(x2+2)
x(3x2+2) + 2(p–1)

3
23x2+22

(x2+2)(3x2+2) – 2(p–1)
3

. (2.15)

It is not difficult to verify that the function x → (23x2 + 22)/[(x2 + 2)(3x2 + 2)] is strictly
decreasing on (0,∞). Then from Lemma 2.3 and (2.15) we know that g ′

1(x)/g ′
2(x) is strictly

increasing on (0,∞). Therefore, the fact that the function x → g0(x, p) is strictly increasing
on (0,∞) follows from Lemma 2.1 and (2.14) together with the monotonicity of g ′

1(x)/g ′
2(x)

on the interval (0,∞).
From Lemma 2.2 we know that the interval (0, 1) can be expressed by

(0, 1) =
(

0,
1

3p

]
∪

(
1

3p
, 1 –

(
2
e2

)1/p)
∪

[
1 –

(
2
e2

)1/p

, 1
)

.

We divide the proof into three cases.
Case 1: 0 < u ≤ 1/(3p). Then (2.12) and (2.13) together with the monotonicity of the

function x → g0(x, p) lead to the conclusion that the function x → g(u, p; x) is strictly in-
creasing on (0,∞). Therefore g(u, p; x) > 0 for all x ∈ (0,∞) follows from (2.9) and the
monotonicity of the function x → g(u, p; x) on the interval (0,∞).

Case 2: 1 – (2/e2)1/p ≤ u < 1. Then from (2.10), (2.12), (2.13), Lemma 2.2, and the mono-
tonicity of the function x → g0(x, p), we clearly see that

lim
x→∞ g(u, p; x) ≤ 0, (2.16)
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and there exists x0 ∈ (0,∞) such that the function x → g(u, p; x) is strictly decreasing
on (0, x0) and strictly increasing on (x0,∞). Therefore g(u, p; x) < 0 for all x ∈ (0,∞)
follows from (2.9) and (2.16) together with the piecewise monotonicity of the function
x → g(u, p; x) on the interval (0,∞).

Case 3: 1/(3p) < u < 1–(2/e2)1/p. Then it follows from (2.10), (2.12), (2.13), and the mono-
tonicity of the function x → g0(x, p) that

lim
x→∞ g(u, p; x) > 0, (2.17)

and there exists x∗ ∈ (0,∞) such that the function x → g(u, p; x) is strictly decreasing
on (0, x∗) and strictly increasing on (x∗,∞). Therefore, there exists τ ∈ (0,∞) such that
g(u, p; x) < 0 for x ∈ (0, τ ) and g(u, p; x) > 0 for x ∈ (τ ,∞) follows from (2.9) and (2.17)
together with the piecewise monotonicity of the function x → g(u, p; x) on the interval
(0,∞). �

3 Main result
Theorem 3.1 Let p ≥ 1, 0 < λ,μ < 1/2, and σ and τ be any two different positive real
numbers. Then the double inequality

GAλ,p(σ , τ ) < SY(σ , τ ) < GAμ,p(σ , τ )

holds if and only if

λ ≤ 1
2

–
1
2

√
1 –

(
2
e2

)1/p

, μ ≥ 1
2

–
√

3p
6p

.

Proof From (1.1)–(1.3) we clearly see that both GAθ ,p(σ , τ ) and SY(σ , τ ) are symmetric
and homogenous of degree one with respect to their variables σ and τ . Without loss of
generality, we assume that σ > τ > 0. Let 0 < θ < 1/2 and x = (σ – τ )/

√
2στ > 0. Then (1.1)–

(1.3) lead to

SY(σ , τ ) = G(σ , τ )
√

1 + x2e
arctan(x)

x –1,

GAθ ,p(σ , τ ) = G(σ , τ )
√

1 +
x2

2

[
(1 – (1 – 2θ )2)x2 + 2

x2 + 2

]p/2

,

log
[
GAθ ,p(σ , τ )

]
– log

[
SY(σ , τ )

]

=
p
2

log

[
(1 – (1 – 2θ )2)x2 + 2

x2 + 2

]
+

1
2

log

(
x2 + 2

2(x2 + 1)

)
–

arctan(x)
x

+ 1

= g
(
(1 – 2θ )2, p; x

)
, (3.1)

where g(·, p; x) is defined by (2.8).
Therefore, Theorem 3.1 follows easily from Lemma 2.4 and (3.1). �

4 Applications
Let p = 1, 2. Then Theorem 3.1 leads to Theorem 4.1 immediately, which provides the
sharp bounds for the Sándor–Yang mean in terms of the one-parameter geometric and
harmonic means.
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Theorem 4.1 Let 0 < λ1,λ2,μ1,μ2 < 1/2, and σ and τ be any two distinct positive real
numbers. Then the double inequalities

G
[
λ1σ + (1 – λ1)τ ,λ1τ + (1 – λ1)σ

]
< SY(σ , τ ) < G

[
μ1σ + (1 – μ1)τ ,μ1τ + (1 – μ1)σ

]

and

H
[
λ2σ + (1 – λ2)τ ,λ2τ + (1 – λ2)σ

]
< SY(σ , τ ) < H

[
μ2σ + (1 – μ2)τ ,μ2τ + (1 – μ2)σ

]

hold if and only if

λ1 ≤ 1
2

–
1
2

√
1 –

2
e2 � 0.0730, μ1 ≥ 1

2
–

√
3

6
� 0.2113,

λ2 ≤ 1
2

–
1
2

√
1 –

√
2

e
� 0.1537, μ2 ≥ 1

2
–

√
6

12
� 0.2959.

Theorem 3.1 and (1.2) also lead to Theorem 4.2, which gives the sharp bounds for
the Yang mean in terms of the two-parameter geometric and arithmetic mean and the
quadratic and geometric means.

Theorem 4.2 Let p ≥ 1, 0 < α,β < 1/2, and σ and τ be any two different positive real
numbers. Then the two-sided inequality

G(σ , τ )
log[GAα,p(σ , τ )] – log[Q(σ , τ )] + 1

< U(σ , τ ) <
G(σ , τ )

log[GAβ ,p(σ , τ )] – log[Q(σ , τ )] + 1

takes place if and only if

α ≥ 1
2

–
√

3p
6p

, β ≤ 1
2

–
1
2

√
1 –

(
2
e2

)1/p

.

Let σ > τ = 1/2, α = 1/2 –
√

3p/(6p), and β = 1/2 –
√

1 – (2/e2)1/p/2. Then it follows from
(1.1), (1.3) that

U
(

σ ,
1
2

)
=

2σ – 1
2
√

2 arctan( 2σ–1
2
√

σ
)
, (4.1)

GA1/2–
√

3p/(6p),p

(
σ ,

1
2

)

=
[

4(3p – 1)σ 2 + 4(3p + 1)σ + 3p – 1
48p

]p(2σ + 1
4

)1–p

, (4.2)

GA1/2–
√

1–(2/e2)1/p/2,p

(
σ ,

1
2

)

=
[

4 × 21/pσ 2 + 4(2e2/p – 21/p)σ + 21/p

16e2/p

]p(2σ + 1
4

)1–p

. (4.3)

From Theorem 4.2 and (4.1)–(4.3) we obtain Theorem 4.3, which presents new one-
parameter bounds for the inverse tangent function.
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Theorem 4.3 The double inequality

2σ – 1
2
√

σ

[
p log

(
4 × 21/pσ 2 + 4

(
2e2/p – 21/p)σ + 21/p)

+ (1 – p) log(2σ + 1) –
1
2

log
(
4σ 2 + 1

)
– p log 4 – 1 –

1
2

log 2
]

< arctan

(
2σ – 1
2
√

σ

)
<

2σ – 1
2
√

σ

[
p log

(
4(3p – 1)σ 2 + 4(3p + 1)σ + 3p – 1

)

+ (1 – p) log(2σ + 1) –
1
2

log
(
4σ 2 + 1

)
– p(log p + log 3 + 2 log 2) + 1 –

1
2

log 2
]

holds for all σ > 1/2 and p ≥ 1.

5 Consequences and discussion
In the article, we have given the sharp bounds for the Sándor–Yang mean

SY(σ , τ ) = Q(σ , τ )eG(σ ,τ )/U(σ ,τ )–1

in terms of the two-parameter geometric and arithmetic mean

GAη,ν(σ , τ ) = Gν
[
ησ + (1 – η)τ ,ητ + (1 – η)σ

]
A1–ν(σ , τ )

and the one-parameter geometric and harmonic means

G
[
λσ + (1 – λ)τ ,λτ + (1 – λ)σ

]

and

H
[
μσ + (1 – μ)τ ,μτ + (1 – μ)σ

]
,

and have found the new bounds for the Yang mean

U(σ , τ ) =
√

2(σ – τ )

2 arctan(
√

2(σ–τ )
2
√

στ
)

and the inverse tangent function arctan[(2σ – 1)/(2
√

σ )].

6 Conclusion
In the article, we have proved that the double inequalities

GAλ,p(σ , τ ) < SY(σ , τ ) < GAμ,p(σ , τ )

and

G(σ , τ )
log[GAμ,p(σ , τ )] – log[Q(σ , τ )] + 1

< U(σ , τ ) <
G(σ , τ )

log[GAλ,p(σ , τ )] – log[Q(σ , τ )] + 1
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are valid for all distinct positive real numbers σ and τ if and only if

λ ≤ 1
2

–
1
2

√
1 –

(
2
e2

)1/p

, μ ≥ 1
2

–
√

3p
6p

.

if p ≥ 1 and λ,μ ∈ (0, 1/2).
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