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Abstract
To design a quadratic spline contractual function in the case of discretely unknown
nodes, a modified constraint shifting homotopy algorithm for solving principal–agent
problems is constructed in the paper. Then the existence of globally convergent
solution to KKT systems for the principal–agent problem with spline contractual
function is proved under a much weaker condition. The proposed algorithm only
requires that any initial point is in the shifted feasible set but not necessarily in the
original feasible set.
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1 Problem description
In the paper, we will consider the following principal–agent bilevel programming problem,
in which the principal can neither observe nor verify the agent’s action:

max
s(x),a∈A

U
(
s(x), a

)
,

s.t. V
(
s(x), a

) ≥ V0

a ∈ arg max V
(
s(x), a

)
,

(1)

where U(s(x), a) and V (s(x), a) denote expected utility of the principal and agent, respec-
tively, s(x) is the contract when the agent’s action is a and a realized output x ∈ X = [x, x] ⊂
R++ which denotes the set of possible outcomes. The agent chooses an action a ∈ [a, a]
on the basis of the agreed payment schedule s(x) and has a separable von Newmann–
Morgenstern utility v(s(x), a) = v(s(x)) – c(a), which is concave. Let F(x, a) and f (x, a) de-
note the continuous distribution and density function of outcome x given that action a is
undertaken by the agent, which are assumed sufficiently continuous differentiable for all
x and a.

Since the principal–agent model was proposed, an efficient and conventional method
for analyzing the problem (1) was the so-called first-order approach. But Mirrlees [1, 2]
was the first scholar to point out that the analyzing method is generally incorrect. In the
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subsequent paper, Mirrlees [3] gave the validity conditions for implying the first-order
approach which is named the monotone likelihood ratio condition (MLRC) and the con-
vexity of the distribution function condition (CDFC). Then Rogerson [4] offered a correct
and much simpler proof than Mirrlees. Jewitt [5] provided some conditions which can be
used for justifying the first-order approach in the multi-statistic case. For more literature
about the first-order approach for solving principal–agent problems see, e.g., [6–14] and
the references therein.

However, since the problem (1) is an infinite-dimensional nonconvex bilevel program-
ming, lots of papers have focused on the theoretical analysis of the validity on first-
order approach, few papers were presented for directly solving the principal–agent model.
Prescott [15] computed solutions to moral-hazard programs using the Dantzig–Wolfe de-
composition algorithm in a discrete condition, but which is required to be block angular
in order to turn it into a linear program (LP) and as the cardinalities of the underlying sets
increase, LP quickly grows in size making computation infeasible. Su and Judd [16] studied
computational aspects of formulating moral-hazard problems as a mathematical program
with equilibrium constraints (MPEC) and proposed a hybrid procedure that combined
the linear programming (LP) approach with lotteries, but this algorithm only obtained
the local convergence. Armstrong et al. [17] formulated two complementary generalized
principal–agent models that incorporate features observed in a real-world contracting en-
vironment as MPEC and solved the resulting models by the state-of-the-art numerical al-
gorithms. Cecchini et al. [18] solved numerically the principal–agent problems written as
a linear-exponential-normal model by solving bilevel programming problems using the el-
lipsoid algorithm in the case of assuming the performance measures is linear. To solve the
problem, Zhu et al. [19] firstly proposed a modified constraint shifting homotopy method
by designing a piecewise linear contractual function under some typical risk averse utility
functions and the typical distribution functions. Renner and Schmedders [20] reformu-
lated the agent’s utility maximization problem as an equivalent system of equations and
inequalities under the assumption that the agent’s expected utility is a rational function of
the action and computed an approximate solution to the nonpolynomial problems trans-
formed by the principal’s utility maximization problem using the polynomial optimization
approach. For the general distribution functions, Zhu and Yu [21] presented a constraint
set swelling homotopy method for computing the solution to its Karush–Kuhn–Tucker
(KKT) systems under the case of designing piecewise linear contractual function by using
the composite Simpson’s rule to approximately compute integration, and they proved the
global convergence of the homotopy path under much weaker conditions. Moreover, Zhu
and Yu [22] proposed another modified homotopy method for computing the solution to
its KKT systems under requiring only an interior point and, not necessarily, a feasible ini-
tial approximation for the constraint shifting set. However, it is usually assumed that the
discrete nodes are known.

To directly solve the problem (1) by designing contractual function, as in the literature,
the conditions MLRC and CDFC are also assumed to hold in this paper: 1. f (x, a) satisfies
MLRC, i.e., fa

f is nondecreasing in x for every a; and 2. f (x, a) satisfies CDFC, i.e., Faa(x,
a) ≥ 0. In this respect, the incentive compatibility constraint can be replaced by the first-
order condition and the principal–agent problem can be turned into the following equiv-
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alently single-level nonconvex programming:

max
s(x),a∈A

U
(
s(x), a

)
,

s.t. V
(
s(x), a

) ≥ V0

Va
(
s(x), a

)
= 0.

(2)

Then the solution to the principal–agent problems can be computed by solving the equiv-
alent problem (2).

Since the combined homotopy method has global convergence and can be efficiently im-
plemented for solving nonlinear programming, fixed point problems, variational inequal-
ities, bilevel programming and other nonlinear problems, it has been paid much attention
to since the 1990s; see, e.g., [23–33]. Since for the existing combined homotopy methods
for solving the equivalent problem (2) it is usually assumed that the discrete nodes are
known and the contract is designed as a piecewise linear function, to design a quadratic
spline contractual function in the case of discretely unknown nodes, a new constraint
shifting combined homotopy for solving the KKT systems of the principal–agent prob-
lem will be constructed and the global convergence will be proved in this paper.

In the paper, the standard model of principal–agent problems with designing quadratic
spline contractual function is considered. In Sect. 2, the constraint shifting combined ho-
motopy for the basic principal–agent problems is constructed and some lemmas from
differential topology are introduced. In Sect. 3, the main results will be presented and the
existence of a smooth path from any given initial point in shifted feasible set to a solu-
tion to the KKT systems is proven. In Sect. 4, a detailed predictor–corrector algorithm is
presented.

2 Preliminaries
We assume that the wage contract is the following quadratic spline function. Setting the
discrete nodes which are unknown in X = [x, x] satisfying x = x1 ≤ x2 ≤ · · · ≤ xm ≤ xm+1 =
x, the wage contract is

s(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p1x2 + q1x + r1, x1 ≤ x ≤ x2,

p2x2 + q2x + r2, x2 ≤ x ≤ x3,
...

pmx2 + qmx + rm, xm ≤ x ≤ xm+1,

which satisfies pix2
i+1 + qixi+1 + ri = pi+1x2

i+1 + qi+1xi+1 + ri+1, 2pixi+1 + qi = 2pi+1xi+1 + qi+1,
i = 1, 2, . . . , m – 1, and pi ≤ 0, i = 1, 2, . . . , m.

Then we can get the following expected utilities of the principal and agent, respectively:

U
(
s(x), a

)
=

∫

x∈X
u
(
x – s(x)

)
f (x, a) dx

=
∫

x∈X

(
x – s(x)

)
f (x, a) dx

=
m∑

i=1

∫ xi+1

xi

(
x – pix2 – qix – ri

)
f (x, a) dx
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and

V
(
s(x), a

)
=

∫

x∈X
v
(
s(x)

)
f (x, a) dx – a

=
∫

x∈X
s(x)f (x, a) dx – a

=
m∑

i=1

∫ xi+1

xi

(
pix2 + qix + ri

)
f (x, a) dx – a.

Because the integral does not change the differentiability, the expected utilities of the prin-
cipal and agent are also sufficiently smooth for all x and a.

The expected utilities of principal and agent are concave on action a under CDFC.
Therefore, the relaxed Pareto-optimization programming of the principal–agent prob-
lem for designing the wage contract as quadratic spline function can be reformulated as
follows:

min
(pi ,qi ,ri)∈R

m∑

i=1

∫ xi+1

xi

[
pix2 + (qi – 1)x + ri

]
f (x, a) dx

s.t. –
m∑

i=1

∫ xi+1

xi

(
pix2 + qix + ri

)
f (x, a) dx + a + V0 ≤ 0,

a – a ≤ 0,

– a + a ≤ 0,

pi ≤ 0, i = 1, 2, . . . , m,

pix2
i+1 + qixi+1 + ri – pi+1x2

i+1 – qi+1xi+1 – ri+1 = 0, i = 1, 2, . . . , m – 1,

2pixi+1 + qi – 2pi+1xi+1 – qi+1 = 0, i = 1, 2, . . . , m – 1,
m∑

i=1

∫ xi+1

xi

(
pix2 + qix + ri

)
fa(x, a) dx – 1 = 0.

(3)

For convenience, we give the following notation, respectively:

F(p, q, r, a, ζ ) =
m∑

i=1

∫ xi+1

xi

(
pix2 + qix + ri – x

)
f (x, a) dx,

g1(p, q, r, a, ζ ) = p1,

g2(p, q, r, a, ζ ) = p2,

...

gm(p, q, r, a, ζ ) = pm,

gm+1(p, q, r, a, ζ ) = –
m∑

i=1

∫ xi+1

xi

(
pix2 + qix + ri

)
f (x, a) dx + a + V0,

gm+2(p, q, r, a, ζ ) = a – a,

gm+3(p, q, r, a, ζ ) = –a + a,
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h1(p, q, r, a, ζ ) = p1x2
2 + q1x2 + r1 – p2x2

2 – q2x2 – r2,

h2(p, q, r, a, ζ ) = p2x2
3 + q2x3 + r2 – p3x2

3 – q3x3 – r3,

...

hm–1(p, q, r, a, ζ ) = pm–1x2
m + qm–1xm + rm–1 – pmx2

m – qmxm – rm,

hm(p, q, r, a, ζ ) = 2p1x2 + q1 – 2p2x2 – q2,

hm+1(p, q, r, a, ζ ) = 2p2x3 + q2 – 2p3x3 – q3,

...

h2m–2(p, q, r, a, ζ ) = 2pm–1xm + qm–1 – 2pmxm – qm,

h2m–1(p, q, r, a, ζ ) =
m∑

i=1

∫ xi+1

xi

(
pix2 + qix + ri

)
fa(x, a) dx – 1,

where p = (p1, p2, . . . , pm)T , q = (q1, q2, . . . , qm)T , r = (r1, r2, . . . , rm), a = a, ζ = (x2, x3,
. . . , xm)T .

Then, when the wage contract is quadratic spline, the relaxed Pareto-optimization pro-
gramming (3) can be written as follows:

min F(p, q, r, a, ζ ),

s.t. gi(p, q, r, a, ζ ) ≤ 0, i ∈ {1, 2, . . . , m + 3},
hj(p, q, r, a, ζ ) = 0, j ∈ {1, 2, . . . , 2m – 1}.

(4)

Let Rn, Rn
+, Rn

++ denote n-dimensional Euclidean space, nonnegative orthant and posi-
tive orthant of Rn, respectively. It is well known that the solution of the optimization prob-
lem can be obtained from the KKT system for a convex nonlinear programming problem.
But for a nonconvex nonlinear programming problem, we can only obtain the solution to
its KKT system.

Therefore, the aim is to solve the following KKT system of the relaxed Pareto-optimiza-
tion programming (4):

∇F(p, q, r, a, ζ ) +
m+3∑

i=1

∇gi(p, q, r, a, ζ )yi +
2m–1∑

j=1

∇hj(p, q, r, a, ζ )zj = 0,

hj(p, q, r, a, ζ ) = 0, j = 1, 2, . . . , 2m – 1,

yigi(p, q, r, a, ζ ) = 0, yi ≥ 0, gi(p, q, r, a, ζ ) ≤ 0, i = 1, 2, . . . , m + 3,

(5)

where y ∈ R+
m+3, z ∈R

2m–1, ∇ = ( ∂
∂p , ∂

∂q , ∂
∂r , ∂

∂a , ∂
∂ζ

)T .
Consider the shifted constraint functions be g̃i(θ ,μ) = gi(θ ) – μσ τ , with τ ∈ R

m+3
++ and

h̃j(θ ,μ) = hj(θ ) – μhj(θ0), which made g̃i(θ , 0) = gi(θ ), and h̃j(θ , 0) = hj(θ ). Therefore,
∇ g̃i(θ ,μ) = ∇gi(θ ) and ∇h̃j(θ ,μ) = ∇hj(θ ). Because of the properties of gi(θ ) and hj(θ ),
∇ g̃i(θ ,μ) and ∇h̃j(θ ,μ) are also sufficiently smooth.

For convenience, the following notations will be used in the paper:

θ = (p, q, r, a, ζ )T ,
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Ω =
{
θ |gi(θ ) ≤ 0, hj(θ ) = 0, i ∈ {1, 2, . . . , m + 3}, j ∈ {1, 2, . . . , 2m – 1}},

Ωμ =
{
θ |g̃i(θ ,μ) ≤ 0, h̃j(θ ,μ) = 0, i ∈ {1, . . . , m + 3}, j ∈ {1, . . . , 2m – 1}},

Ω0
μ =

{
θ |g̃i(θ ,μ) < 0, h̃j(θ ,μ) = 0, i ∈ {1, . . . , m + 3}, j ∈ {1, . . . , 2m – 1}},

∂Ωμ = Ωμ\Ω0
μ, and

Iμ(θ ) =
{

i|g̃i(θ ,μ) = 0, i = 1, 2, . . . , m + 3
}

.

The following assumptions will be used in this paper. A vector τ ∈ R
m+3
++ and an open

subset V of the inequality constraint set {θ : g̃i(θ , 1) < 0} are existed to satisfy the following
conditions:

(A1) ∀μ ∈ [0, 1], Ωμ is bounded and Ω0
μ �= φ.

(A2) ∀θ ∈ V , ∇h(θ ) is a full column rank matrix. For any parameter μ ∈ [0, 1] and
θ ∈ Ωμ, (∇ g̃i(θ ,μ)i∈Iμ(θ ),∇h(θ )) is positive linearly independent at θ , i.e.,
∑

i∈I(θ ) αi∇gi(θ ) +
∑m

j=1 βj∇hj(θ ) = 0, αi ≥ 0, βj ∈R ⇒ αi = βj = 0.
(A3) (The normal cone condition) ∀θ ∈ ∂Ω1, the normal cone of Ω1 only meets ∂Ω1 at

θ , i.e., ∀θ ∈ Ω1,

{
θ +

∑

i∈I1(θ )

∇ g̃i(θ , 1)yi + ∇h(θ )z
∣
∣∣i ∈ I1(θ ), yi ≥ 0, z ∈ R

m
}

∩ Ω1 = {θ}.

In order to compute a solution to the KKT system of the relaxed Pareto-optimization
programming (4), for any randomly chosen vector (θ0, ξ ) ∈ V ×R

4m and any given vector
η ∈R

m+3
++ , we construct the constraint shifting combined homotopy as follows:

H
(
w, w0,μ

)
=

⎛

⎜
⎝

(1 – μ)(∇F(θ ) + ∇ g̃(θ ,μ)y) + ∇h(θ )z + μ(θ – θ0) + μ(1 – μ)ξ
Y g̃(θ ,μ) + μη

h(θ ) – μh(θ0)

⎞

⎟
⎠ , (6)

where w = (θ , y, z)T ∈R
4m ×R

m+3
+ ×R

2m–1, w0 = (θ0, y0, z0)T , and Y = diag(y1, y2, . . . , ym+3).
When μ = 0, the homotopy equation H(w, w0, 0) = 0 turns to the KKT system (5) of the

relaxed Pareto-optimization programming (4).

Lemma 2.1 Suppose that H(w, w0,μ) is defined as (6) and assumptions (A1), (A2) and
(A3) hold, then the homotopy equation H(w, w0, 1) = 0 has a unique solution

(θ , y, z) =
(
θ0, y0, z0) =

(
θ0, –

[
diag

(
g̃
(
θ0, 1

))]–1
η, 0

)
.

Proof Let w̄ = (θ̄ , ȳ, z̄) be a solution of H(w, w0, 1). From H(w̄, w0, 1) = 0 and ȳ ≥ 0, we get
θ̄ ∈ Ω1. In the following, we will prove θ̄ = θ0 by contradiction. We assume θ̄ �= θ0, which
implies that z̄ �= 0, together with the first equation of H(w, w0, 1) = 0, we have θ0 = θ̄ +
∇h(θ̄ )z̄, which contradicts with assumption (A2). Hence, θ̄ = θ0. From assumption (A2)
and ∇h(θ̄ )z̄ = 0, we get z̄ = 0. From the second equation of H(w̄, w0, 1) = 0 and θ0 ∈ Ω0

1 , we
have ȳ = –[diag(̃g(θ0, 1))]–1η. Therefore, we obtain the result. �

The following lemmas from differential topology which can be found in Refs. [34–36]
will be used in the next section. At first, let U ⊂R

n be an open set, let φ : U →R
p be a Cα
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(α > max{0, n – p}) mapping; we say that y ∈R
p is a regular value for φ if

Range
[
∂φ(x)/∂x

]
= R

p, ∀x ∈ φ–1(y).

Lemma 2.2 Let V ⊂R
n, U ⊂R

m be open sets, and let φ : V × U →R
k be a Cα mapping,

where α > max{0, m – k}. If 0 ∈ R
k is a regular value of φ, then, for almost all a ∈ V , 0 is a

regular value of φa = F(a, ·).

Lemma 2.3 Let φ : U ⊂ R
n → R

p be a Cα (α > max{0, n – p}). If 0 is a regular value of φ,
then φ–1(0) consists of some (n – p) dimensional Cα manifolds.

Lemma 2.4 A one-dimensional smooth manifold is diffeomorphic to a unit circle or a unit
interval.

3 Main result
For the sake of convenience, for any given w0 ∈ V × R

m+3
++ × R

2m–1, H(w, w0,μ) in (6) is
rewritten as Hw0 (w,μ) = H(w, w0,μ), and the zero-point set of Hw0 (w,μ) is written as fol-
lows:

H–1
w0 (0) =

{
(w,μ) ∈ Ωμ ×R

m+3
++ ×R

2m–1 × (0, 1] : Hw0 (w,μ) = 0
}

.

Theorem 3.1 Suppose that assumptions (A1) and (A2) hold for any chosen vector w0 ∈ V
and the homotopy is defined by (6), then, for almost all (w0, ξ ) ∈ V × R

m+3
++ × R

2m–1 ×
R

4m, the zero-point set H–1
w0 (0) must contain a smooth curve Γw0 starting from (θ0, y0, z0, 1).

Besides, if assumption (A3) holds, then the smooth curve Γw0 terminates or approaches
to the hyperplane μ = 0. If (θ̄ , ȳ, z̄, 0) is an ending limit point of the smooth curve Γw0 , then
w̄ = (θ̄ , ȳ, z̄) is a solution to KKT system (5) of the relaxed Pareto-optimization programming
(4).

Proof Suppose that H̃(w, θ0, ξ ,μ) : Ωμ ×R
m+3
+ ×R

2m–1 ×V ×R
4m × (0, 1] → Ωμ ×R

m+3
+ ×

R
2m–1 is the same map as H(w, w0,μ) but taking (θ0, ξ ) as variate. Considering the follow-

ing submatrix of the Jacobian DH̃(w, θ0, ξ ,μ):

∂H̃(w, θ0, ξ ,μ)
∂(θ0, y, ξ )

=

⎛

⎜
⎝

–μI (1 – μ)∇ g̃(θ ,μ) μ(1 – μ)
0 diag(̃g(θ ,μ)) 0

–μ∇h(θ0)T 0 0

⎞

⎟
⎠ .

For all μ ∈ (0, 1), by the fact that η > 0 and Y g̃(θ ,μ) + μη = 0, we see that diag(̃g(θ ,μ)) is
nonsingular. By assumption (A2), we see that the matrix ∇h(θ0)T is full row rank, which
implies that ∂H̃(w,θ0,ξ ,μ)

∂(θ0,y,ξ ) is a matrix of full row rank for any μ ∈ (0, 1). Hence, the matrix
DH̃(w, θ0, ξ ,μ) is full row rank for any solution of the equation H̃(w, θ0, ξ ,μ) = 0 in R

4m ×
R

m+3
++ ×R

2m–1 × V ×R
4m × (0, 1).

From the matrix

∂H(w, w0,μ)
∂w

=

⎛

⎜
⎝

Π (1 – μ)∇ g̃(θ ,μ) ∇h(θ )
Y∇ g̃(θ ,μ)T diag(̃g(θ ,μ)) 0

∇h(θ )T 0 0

⎞

⎟
⎠ ,
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where Π = (1 – μ)(∇2F(θ ) +
∑m+3

i=1 yi∇ 2̃gi(θ ,μ)) +
∑2m–1

j=1 zj∇2hj(θ ) + μI , for any μ ∈ (0, 1]
and the chosen initial point w0 = (θ0, y0, z0), using z0 = 0, we can obtain the following ma-
trix:

∂H(w0, w0, 1)
∂w

=

⎛

⎜
⎝

I 0 ∇h(θ0)
Y 0∇ g̃(θ0, 1)T diag(̃g(θ0, 1)) 0

∇h(θ0)T 0 0

⎞

⎟
⎠ ,

which is also nonsingular. So, we can see that the matrix DH̃(w, θ0, ξ ,μ) is nonsingular for
any μ ∈ (0, 1]. Thus, 0 is a regular value of H̃(w, θ0, ξ ,μ). By Lemma 2.2, we see that, for
almost all (θ0, ξ ) ∈ V ×R

4m, 0 is a regular value of H(w, w0,μ). From Lemma 2.3, if 0 is a
regular value of H(w, w0,μ), ∂H(w0,w0,1)

∂w is nonsingular and by the fact of H(w0, w0, 1) = 0,
H–1

w0 (0) must contain a smooth curve Γw0 ⊂ Ω0
μ × R

m+3
+ × R

2m–1 × (0, 1] starting from
(θ0, y0, z0, 1) and going into Ω0

1 ×R
m+3
+ ×R

2m–1 × (0, 1) and terminating in the boundary
of Ωμ ×R

m+3
+ ×R

2m–1 × [0, 1]. Then from Lemma 2.4, Γw0 ⊂ Ω0
μ ×R

m+3
+ ×R

2m–1 × (0, 1]
must be diffeomorphic to a unit circle or a unit interval [0, 1). Since the matrix ∂H(w0,w0,1)

∂w
is nonsingular, the smooth curve Γw0 cannot be diffeomorphic to a unit circle. Therefore,
Γw0 must be diffeomorphic to [0, 1).

When μ → 0, the limit points of Γw0 belong to ∂(Ωμ × R
m+3
+ × R

2m–1 × (0, 1]). Let
(θ̄ , ȳ, z̄, μ̄) be a limit point of Γw0 when μ → 0. Only the following five cases are possible:

(i) (θ̄ , ȳ, z̄) ∈ Ω1 ×R
m+3
+ ×R

2m–1, μ̄ = 1, ‖(ȳ, z̄)‖ < ∞;
(ii) (θ̄ , ȳ, z̄) ∈ Ωμ̄ ×R

m+3
+ ×R

2m–1, μ̄ ∈ [0, 1], ‖(ȳ, z̄)‖ = ∞;
(iii) (θ̄ , ȳ, z̄) ∈ Ωμ̄ × ∂Rm+3

+ ×R
2m–1, μ̄ ∈ (0, 1), ‖(ȳ, z̄)‖ < ∞;

(iv) (θ̄ , ȳ, z̄) ∈ ∂Ωμ̄ ×R
m+3
++ ×R

2m–1, μ̄ ∈ (0, 1), ‖(ȳ, z̄)‖ < ∞;
(v) (θ̄ , ȳ, z̄) ∈ Ω ×R

m+3
+ ×R

2m–1, μ̄ = 0, ‖(ȳ, z̄)‖ < ∞.
From Lemma 2.1, the homotopy equation H(w, w0, 1) = 0 has only one simple solution

w0 = (θ0, y0, z0) in Ω0
1 × R

m+3
++ × R2m–1, and because the matrix ∂H(w0,w0,1)

∂w is nonsingular,
case (i) is impossible.

If case (ii) happens, by assumption (A1), there must be a subsequence (θ k , yk , zk ,μk) ⊂
Γw0 such that ‖(yk , zk)‖ → ∞ and μk → μ̄, θ k → θ̄ as k → ∞. Only the following three
subcases are possible: (1) μ̄ = 1; (2) μ̄ ∈ (0, 1); (3) μ̄ = 0.

From the first equation of (6), we have

(1 – μk)

(

∇F
(
θ k) +

m+3∑

i=1

yk
i ∇ g̃i

(
θ k ,μk

)
)

+ �h
(
θ k)zk

+ μk
(
θ k – θ0) + μk(1 – μk)ξ = 0. (7)

(1) When μ̄ = 1, if ‖(1 – μk)yk , zk‖ < ∞, without loss of generality we can suppose that
((1 – μk)yk , zk) → (ȳ, z̄). Then ȳi = 0 for i /∈ I1(θ̄ ) from the second equation of (6). Taking
the limit in (7) as k → +∞, we have

θ0 = θ̄ + lim
k→∞

[
(1 – μk)

(∇F
(
θ k) + ∇ g̃

(
θ k ,μk

)
yk) + ∇h

(
θ k)zk]

= θ̄ + h(θ̄ )z̄ + lim
k→∞

∑

i∈I1(θ̄ )

(1 – μk)yk
i ∇ g̃i

(
θ k ,μk

)
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= θ̄ + h(θ̄ )z̄ +
∑

i∈I1(θ̄ )

ȳi∇ g̃i(θ̄ , 1), (8)

which contradicts with assumption (A3).
If ‖(1 – μk)yk , zk‖ → ∞, the discussion is the same as case (2).
(2) When μ̄ ∈ (0, 1), without loss of generality, we can suppose that ((1 – μk)yk , zk)/‖(1 –

μk)yk , zk‖ → (ᾱ, β̄) with ‖(ᾱ, β̄)‖ = 1 and ᾱi = 0 for i /∈ Iμ̄(θ̄ ). Dividing both sides of Eq. (7)
by ‖((1 – μk)yk , zk)‖ and taking the limit, we have

∑

i∈Iμ̄(θ̄ )

ᾱi∇ g̃i(θ̄ , μ̄) = 0,

which contradicts with assumption (A2).
(3) When μ̄ = 0, without loss of generality, suppose that (yk , zk)/‖yk , zk‖ → (ᾱ, β̄) with

‖(ᾱ, β̄)‖ = 1 and ᾱi = 0 for i /∈ Iμ̄(θ̄ ). Dividing both sides of Eq. (7) by ‖(yk , zk)‖ and taking
the limit, we have

∑

i∈Iμ̄(θ̄ )

ᾱi∇ g̃i(θ̄ , μ̄) +
2m–1∑

j=1

β̄j∇hj(θ̄ ) = 0,

which contradicts with assumption (A2).
Therefore, from the discussions of (1), (2) and (3), we see that case (ii) is also impossible.
Now, we discuss that cases (iii) and (iv) are also impossible. For any given η ∈ R

m+3
++ ,

from the second equation diag(̃g(θ̄ , μ̄))ȳ + μ̄η = 0 of H(w̄, w0, μ̄) = 0 as k → ∞, we see that
μ̄ > 0 and ȳ ∈ ∂Rm+3

+ , i.e., ȳi = 0 for some 1 ≤ i ≤ m + 3 cannot happen simultaneously.
Therefore, case (iii) is also impossible. If ȳ > 0 and μ̄ > 0, from diag(̃g(θ̄ , μ̄))ȳ + μ̄η = 0, we
can get diag(̃g(θ̄ , μ̄)) < 0, which implies that case (iv) is impossible.

As a conclusion, case (v) is the only possible case. That is Γw0 must terminate in or
approach to the hyperplane at μ̄ = 0 and w̄ = (θ̄ , ȳ, z̄) is a solution to the KKT system (5) of
principal–agent problems. �

4 Numerical algorithm
By Theorem 3.1, the homotopy equation (6) generates a smooth curve Γw0 for almost all
(w0,μ) ∈ Ω0

1 ×R
m+3
++ ×R

2m–1 × (0, 1] as μ → 0, one can find a solution to (5). Letting s be
the arc length of Γw0 , we can parameterize the smooth curve Γw0 with respect to s, i.e.

H
(
w(s), w0,μ(s)

)
= 0,

w(0) = w0, μ(0) = 1.
(9)

By differentiating Eq. (9), we can get the following theorem.

Theorem 4.1 The smooth homotopy path Γw0 is determined by the following initial value
problem to the ordinary differential equation:

DH
(
w(s), w0,μ(s)

)
(

ẇ
μ̇

)

= 0,

(
w(0),μ(0)

)
=

(
w0, 1

)
,

(10)
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where DH is the derivative of H , s is the arc length of the curve Γw0 , and the w-component of
the solution point (w(s∗),μ(s∗)) of Eq. (10) is the solution to the KKT system (5) as μ(s∗) = 0.

As regards how to trace numerically the homotopy path Γw0 , we can use the standard
predictor–corrector procedure, which contains three steps: the first predictor step, the
midway predictor step and the corrector step. The first predictor step is usually taken by
computing the tangent direction, the midway predictor steps are usually taken by using se-
cant directions, and the corrector steps are usually taken by Newton iterations for solving
an augmented system.

For the first predictor step, the tangent vector at a point on the homotopy path Γw0 has
two directions: one positive direction which makes the arc length s gradually increase,
and one negative direction which makes the arc length s gradually decrease. Since the
negative direction will lead the homotopy path Γw0 back to the initial point (w(0),μ(0)) =
(w0, 1), we must trace the homotopy path along the positive direction. By the basic theory
of homotopy methods, the positive direction ν at any point (w,μ) of Γw0 must keep the
sign of the following determinant invariant:

∣∣
∣∣
∣
DH(w(s), w0,μ(s))

νT

∣∣
∣∣
∣
.

Proposition 4.1 If the homotopy path Γw0 is smooth, then the positive direction ν0 at the
initial point w0 satisfies

sign

∣
∣∣
∣∣
DH(w0, w0, 1)

ν0T

∣
∣∣
∣∣

= (–1)(m+3)+(2m–1)+1.

Proof We have the shifted constraint functions g̃i(θ ,μ) = gi(θ ) – μσ τ , τ ∈ R++ and
h̃j(θ ,μ) = hj(θ ) – μhj(θ0), ∇ g̃i(θ ,μ) = ∇gi(θ ) and ∇h̃j(θ ,μ) = ∇hj(θ ). From the matrix

DH
(
w, w0,μ

)
=

∂H(w, w0,μ)
∂(w,μ)

=

⎛

⎜
⎝

Π (1 – μ)∇ g̃(θ ,μ) ∇h(θ ) Λ

Y∇ g̃(θ ,μ)T diag(̃g(θ ,μ)) 0 Ξ

∇h(θ )T 0 0 –h(θ0)

⎞

⎟
⎠ ,

where Π = (1 – μ)(∇2F(θ ) +
∑m+3

i=1 yi∇ 2̃gi(θ ,μ)) +
∑2m–1

j=1 zj∇2hj(θ ) + μI , Λ = –∇F(θ ) –
∇g(θ )y + θ – θ0 + (1 – 2μ)ξ and Ξ = –σμσ–1Yτ + η, for the initial point w0 = (θ0, y0, z0),
and by using z0 = 0, we can obtain

DH
(
w0, w0, 1

)
=

⎛

⎜
⎝

I 0 ∇h(θ0) Π0

Y 0∇ g̃(θ0, 1)T diag(̃g(θ0, 1)) 0 Ξ 0

∇h(θ0)T 0 0 –h(θ0)

⎞

⎟
⎠ = (Υ1,Υ2),

where Υ1 ∈ R
[4m+(m+3)+(2m–1)]×[4m+(m+3)+(2m–1)], Υ2 ∈ R

[4m+(m+3)+(2m–1)]×1. The tangent vec-
tor ν0T = (ν1

0T ,ν0
2 ) of Γw0 at the point (w0, 1) satisfies

(Υ1,Υ2)

(
ν0

1

ν0
2

)

= 0,
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where ν0
1 ∈ R

[4m+(m+3)+(2m–1)]×1 and ν0
2 ∈ R. By a simple computation, we can get ν0

1 =
–Υ –1

1 Υ2ν
0
2 . Then we can obtain the following determinant:

∣∣∣
∣∣
DH(w0, w0, 1)

ν0T

∣∣∣
∣∣

=

∣
∣∣
∣∣

Υ1 Υ2

ν1
0T

ν0
2

∣
∣∣
∣∣

=

∣
∣∣
∣∣

Υ1 Υ2

–Υ T
2 Υ T

1 1

∣
∣∣
∣∣
ν0

2

=

∣∣
∣∣
∣
Υ1 Υ2

0 Υ T
2 Υ –T

1 Υ –1
1 Υ2 + 1

∣∣
∣∣
∣
ν0

2 = |Υ1|ν0
2
(
Υ T

2 Υ –T
1 Υ –1

1 Υ2 + 1
)

=

∣
∣∣
∣∣
∣∣

I 0 ∇h(θ0)
Y 0∇ g̃(θ0, 1)T diag(̃g(θ0, 1)) 0

∇h(θ0)T 0 0

∣
∣∣
∣∣
∣∣
ν0

2
(
Υ T

2 Υ –T
1 Υ –1

1 Υ2 + 1
)

=

∣∣
∣∣∣
∣∣

I 0 ∇h(θ0)
Y 0∇ g̃(θ0, 1)T diag(̃g(θ0, 1)) 0

0 0 –∇h(θ0)T∇h(θ0)

∣∣
∣∣∣
∣∣
ν0

2
(
Υ T

2 Υ –T
1 Υ –1

1 Υ2 + 1
)

=
∣
∣–∇h

(
θ0)T∇h

(
θ0)∣∣

∣
∣∣∣
∣

I 0
Y 0∇ g̃(θ0, 1)T diag(̃g(θ0, 1))

∣
∣∣∣
∣
ν0

2
(
Υ T

2 Υ –T
1 Υ –1

1 Υ2 + 1
)

= (–1)2m–1∣∣∇h
(
θ0)T∇h

(
θ0)∣∣

∣
∣diag

(
g̃
(
θ0, 1

))∣∣ν0
2
(
Υ T

2 Υ –T
1 Υ –1

1 Υ2 + 1
)
.

Since g̃(θ0, 1) < 0, Υ T
2 Υ –T

1 Υ –1
1 Υ2 + 1 > 0, and the last element ν0

2 of the positive direction
ν0 should be negative, the sign of the determinant

∣
∣∣
∣∣
DH(w0, w0, 1)

ν0T

∣
∣∣
∣∣

is (–1)(m+3)+(2m–1)+1.

The proof is complete. �

For completeness of this study, a detailed predictor–corrector algorithm is presented
here.

Algorithm 4.1
Step 1. Initialization.

Given the risk averse utility v(·), the distribute density function f (x, a), the
minimum expected utility V0, the number m of nodes and vector τ ∈R

m+3
++ , formulate

F(θ ), g(θ ), h(θ ), shifted constraint functions g̃(θ ,μ), the homotopy map H and its
Jacobian. Given a randomly chosen vector ξ ∈R

4m and a positive vector η ∈R
m+3
++ , set

the accuracy parameters ε1 ≥ ε2 > 0, the initial point θ0 ∈ V ⊂ Ω0(1), the initial
steplength λ0 > 0, the minimum steplength λmin, the maximum steplength λmax, the
maximum number N̄ of the corrector steps, the threshold value εα for the angle
between two neighboring predictor directions, the step contraction factors ε1, ε2 and
ε3, the step expansion factors ε4 and ε5, and the threshold value 0 < εμ < 1 for starting
the end game. Set k = 0.
Step 2. The first predictor step.

If k = 0, set λ̂ = λ0, ε = ε1;
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Let ν–1 = (0, . . . , 0, –1)T ∈R
4m+(m+3)+(2m–1)+1 and compute the predictor step ν by

(
DH(w0, w0, 1)

(ν–1)Tν

)

= –ν–1

Set ‖ν0‖ = ν
‖ν‖ . Determine the smallest nonnegative integer i such that

w1,0,μ1,0) =
(
w0,μ0

)
+ εi

3λ̂ν0 ∈ Ω(μ1,0) ×R
m+3
+ ×R

2m–1 × (0, 1),

set λ̂ = εi
3λ̂;

Go to Step 3;
Else, perform the midway predictor step.

Let νk = ((wk ,μk) – (wk–1,μk–1))/‖(wk ,μk) – (wk–1,μk–1)‖, determine the
smallest nonnegative integer i such that

(
wk+1,0,μk+1,0

)
=

(
wk ,μk

)
+ εi

3λ̂νk ∈ Ω(μk+1,0) ×R
m+3
+ ×R

2m–1 × (0, 1);

Set λ̂ = εi
3λ̂;

Go to Step 3.
Step 3. The corrector step.

Set j = 0. Repeat; Compute the Newton step ν̂ by solving the following augmented
system:

(
DH(wk+1,j, w0,μk+1,j)

(νk)T

)

ν̂ =

(
–H(wk+1,j, w0,μk+1,j)

0

)

Determine the smallest nonnegative integer i such that

(
wk+1,j+1,μk+1,j+1

)
=

(
wk+1,μk+1

)
+ εi

3λ̂ν̂ ∈ Ω(μk+1,j+1) ×R
m+3
+ ×R

2m–1 × (0, 1).

If ‖H(wk+1,j+1, w0,μk+1,j+1)‖∞ ≤ ‖H(wk+1,j, w0,μk+1,j)‖∞
Set j = j + 1.

Else
Set j = N̄ , (wk+1,j,μk+1,j) = (wk+1,0,μk+1,0), until

∥∥H
(
wk+1,j, w0,μk+1,j

)∥∥∞ ≤ ε or j = N̄ ;

Go to Step 4.
Step 4. The steplength strategy.

If j = N̄ , ‖H(wk+1,j, w0,μk+1,j)‖∞ > ε,
Set λ̂ = max{λmin, ε2λ̂} and (wk+1,0,μk+1,0) = (wk ,μk) + λ̂νk ;
Go to Step 3;

Else
Set (wk+1,μk+1) = (wk+1,j,μk+1,j), adjust the steplength λ̂ as follows:

If (νk)Tνk–1 < εα , set λ̂ = max{λmin, ε1λ̂};
If j > 3, set λ̂ = max{λmin, ε2λ̂};
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If j = 2, set λ̂ = min{λmax, ε4λ̂};
If j < 2, set λ̂ = min{λmax, ε5λ̂};

If μk+1 < εμ, go to Step 5.
If ‖H(wk+1, w0, 0)‖∞ ≤ ε2 and wk+1 is feasible, then stop. w̄ = wk+1 is the computed
solution to the KKT system (5). Thus, ā = ak is the optimal action and
sk+1

i (x) = pk+1
i x2 + qk+1

i x + rk+1
i , i = 1, 2, . . . , m is the quadratic spline contractual

function.
Set ε = min{μk+1, ε1}, k = k + 1.

Step 5. The end game.
Set j = 0, wk+1,0 = wk+1;
Repeat;

Compute the Newton step νend by solving the equation
∂H
∂w (wk+1,0, w0, 0)νend = –H(wk+1,j, w0, 0),
set wk+1,j+1 = wk+1,j + νend,
j = j + 1;

Until, ‖H(wk+1,j, w0, 0)‖∞ ≤ ε2 or j = N̄ ;
If ‖H(wk+1,j, w0, 0)‖∞ ≤ ε2 and wk+1,j is feasible, then stop. w̄ = wk+1,j is the
computed solution to the KKT system (5). Thus, ā = ak+1,j is the optimal action and
sk+1,j

i (x) = pk+1,j
i x2 + qk+1,j

i x + rk+1,j
i , i = 1, 2, . . . , m is the quadratic spline contractual

function.
Else, set εt = 0.1εμ.

5 Conclusions
To design a quadratic spline contractual function in the case of discretely unknown nodes,
in this paper we constructed a modified constraint shifting homotopy algorithm for solv-
ing principal–agent problems. Then the existence of a globally convergent solution to KKT
systems for the principal–agent problem with spline contractual function is proved un-
der mild conditions. The proposed algorithm only requires that any initial point is in the
shifted feasible set but not necessarily in the original feasible set. Our contribution in the
paper is theoretical and the numerical simulations on performance for the CSCH can be
implemented as in Refs. [21, 22]. For more discussions about algorithms for solving opti-
mization problems, see, e.g., [36–38].
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