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Abstract
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1 Introduction
If 0 <

∑∞
m=1 a2

m < ∞ and 0 <
∑∞

n=1 b2
n < ∞, then we have the following discrete Hilbert

inequality with the best possible constant factor π (cf. [1], Theorem 315):

∞∑

m=1

∞∑

n=1

ambn

m + n
< π

( ∞∑

m=1

a2
m

∞∑

n=1

b2
n

)1/2

. (1)

Assuming that 0 <
∫ ∞

0 f 2(x) dx < ∞ and 0 <
∫ ∞

0 g2(y) dy < ∞, we have the following
Hilbert integral inequality (cf. [1], Theorem 316):

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dx dy < π

(∫ ∞

0
f 2(x) dx

∫ ∞

0
g2(y) dy

)1/2

, (2)

where the constant factor π is the best possible. Inequalities (1) and (2) are important in
analysis and its applications (cf. [2–13]).

We still have the following half-discrete Hilbert-type inequality (cf. [1], Theorem 351):
If K(x) (x > 0) is a decreasing function, p > 1, 1

p + 1
q = 1, 0 < φ(s) =

∫ ∞
0 K(x)xs–1 dx < ∞,

then

∞∑

n=1

np–2
(∫ ∞

0
K(nx)f (x) dx

)p

< φp
(

1
q

)∫ ∞

0
f p(x) dx. (3)

In recent years, some new extensions of (3) were provided by [14–19].
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In 2006, using the Euler–Maclaurin summation formula, Krnic et al. [20] gave an exten-
sion of (1) with the kernel 1

(m+n)λ (0 < λ ≤ 14), and, in 2019, according to [20], Adiyasuren
et al. [21] considered an extension of (1) involving the partial sums. In 2016–2017, by ap-
plying the weight functions, Hong [22, 23] considered some equivalent statements of the
extensions of (1) and (2) with a few parameters and conjugate exponents. Some similar
work was presented by [24–26].

In this paper, according to [20, 22], by the use of the weight functions, the idea of intro-
duced parameters and the Euler–Maclaurin summation formula, a reverse half-discrete
Hilbert inequality with the homogeneous kernel 1

(x+n)λ (0 < λ ≤ 28) and the reverse equiv-
alent forms are given. The equivalent statements of the best possible constant factor re-
lated to a few parameters are considered. As applications, two corollaries about the cases
of non-homogeneous kernel and some particular cases are obtained.

2 Some lemmas
In what follows, we assume that p < 0 (0 < q < 1), 1

p + 1
q = 1, λ ∈ (0, 28], σ ∈ (0, 2] ∩ (0,λ),

μ ∈ (0,λ), f (x) ≥ 0 (x ∈ R+ = (0,∞)), an ≥ 0 (n ∈ N = {1, 2, . . .}), such that

0 <
∫ ∞

0
xp[1–( λ–σ

p + μ
q )]–1f p(x) dx < ∞ and 0 <

∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n < ∞.

Lemma 1 Define the following weight function:

� (σ , x) := xλ–σ

∞∑

n=1

nσ–1

(x + n)λ
(x ∈ R+). (4)

We have the following inequality:

� (σ , x) < B(σ ,λ – σ ) (x ∈ R+). (5)

Proof For fixed x > 0, we set the function gx(t) := tσ–1

(x+t)λ (t > 0). Using the Euler–Maclaurin
summation formula (cf. [20]), for ρ(t) := t – [t] – 1

2 , we have

∞∑

n=1

gx(n) =
∫ ∞

1
gx(t) dt +

1
2

gx(1) +
∫ ∞

1
ρ(t)g ′

x(t) dt =
∫ ∞

0
gx(t) dt – h(x),

h(x) :=
∫ 1

0
gx(t) dt –

1
2

gx(1) –
∫ ∞

1
ρ(t)g ′

x(t) dt.

We obtain – 1
2 gx(1) = –1

2(x+1)λ ,

∫ 1

0
gx(t) dt =

∫ 1

0

tσ–1

(x + t)λ
dt =

1
σ

∫ 1

0

dtσ

(x + t)λ
=

1
σ

tσ

(x + t)λ

∣
∣
∣
∣

1

0
+

λ

σ

∫ 1

0

tσ dt
(x + t)λ+1

=
1
σ

1
(x + 1)λ

+
λ

σ (σ + 1)

∫ 1

0

dtσ+1

(x + t)λ+1

>
1
σ

1
(x + 1)λ

+
λ

σ (σ + 1)

[
tσ+1

(x + t)λ+1

]1

0
+

λ(λ + 1)
σ (σ + 1)(x + 1)λ+2

∫ 1

0
tσ+1 dt

=
1
σ

1
(x + 1)λ

+
λ

σ (σ + 1)
1

(x + 1)λ+1 +
λ(λ + 1)

σ (σ + 1)(σ + 2)
1

(x + 1)λ+2 ,
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–g ′
x(t) = –

(σ – 1)tσ–2

(x + t)λ
+

λtσ–1

(x + t)λ+1 =
(1 – σ )tσ–2

(x + t)λ
+

λtσ–2

(x + t)λ
–

λxtσ–2

(x + t)λ+1

=
(λ + 1 – σ )tσ–2

(x + t)λ
–

λxtσ–2

(x + t)λ+1 .

For 0 < σ ≤ 2, σ < λ ≤ 28, we find λ + 1 – σ > 0,

(–1)i di

dti

[
tσ–2

(x + t)λ

]

> 0, (–1)i di

dti

[
tσ–2

(x + t)λ+1

]

> 0 (i = 0, 1, 2, 3),

and then, by the Euler–Maclaurin summation formula (cf. [20]), we find

(λ + 1 – σ )
∫ ∞

1
ρ(t)

tσ–2

(x + t)λ
dt

> –
λ + 1 – σ

12(x + 1)λ
,

– xλ

∫ ∞

1
ρ(t)

tσ–2

(x + t)λ+1 dt >
xλ

12(x + 1)λ+1 –
xλ

720

[
tσ–2

(x + t)λ+1

]′′

t=1

>
(x + 1)λ – λ

12(x + 1)λ+1 –
(x + 1)λ

720

[
(λ + 1)(λ + 2)

(x + 1)λ+3 +
2(λ + 1)(2 – σ )

(x + 1)λ+2 +
(2 – σ )(3 – σ )

(x + 1)λ+1

]

=
λ

12(x + 1)λ
–

λ

12(x + 1)λ+1

–
λ

720

[
(λ + 1)(λ + 2)

(x + 1)λ+2 +
2(λ + 1)(2 – σ )

(x + 1)λ+1 +
(2 – σ )(3 – σ )

(x + 1)λ

]

.

Hence, we have h(x) > h1
(x+1)λ + λh2

(x+1)λ+1 + λ(λ+1)h3
(x+1)λ+2 , where

h1 :=
1
σ

–
1
2

–
1 – σ

12
–

λ(2 – σ )(3 – σ )
720

, h2 :=
1

σ (σ + 1)
–

1
12

–
(λ + 1)(2 – σ )

720
,

and h3 := 1
σ (σ+1)(σ+2) – λ+2

720 .
For λ ∈ (0, 28], λ

720 < 1
24 , σ ∈ (0, 2], it follows that

h1 >
1
σ

–
1
2

–
1 – σ

12
–

(2 – σ )(3 – σ )
24

=
24 – 20σ + 7σ 2 – σ 3

24σ
> 0.

In fact, setting g(σ ) := 24 – 20σ + 7σ 2 – σ 3 (σ ∈ (0, 2]), we obtain

g ′(σ ) = –20 + 14σ 2 – 3σ 2 = –3
(

σ –
7
3

)2

–
11
3

< 0,

and then

h1 >
g(σ )
24σ

≥ g(2)
24σ

=
4

24σ
> 0

(
σ ∈ (0, 2]

)
.
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We still find that h2 > 1
6 – 1

12 – 30
360 = 0, and h3 ≥ 1

24 – 30
720 = 0. Hence, we find h(x) > 0, and

then

xλ–σ

∞∑

n=1

gx(n) < xλ–σ

∫ ∞

0
gx(t) dt

= xλ–σ

∫ ∞

0

tσ–1 dt
(x + t)λ

=
∫ ∞

0

uσ–1 du
(1 + u)λ

= B(σ ,λ – σ ),

namely, (5) follows. �

Lemma 2 We have the following reverse inequality:

I =
∫ ∞

0

∞∑

n=1

f (x)an

(x + n)λ
dx

> B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

×
{∫ ∞

0
xp[1–( λ–σ

p + μ
q )]–1f p(x) dx

} 1
p
{ ∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n

} 1
q

. (6)

Proof For n ∈ N, setting x = nu, we obtain another weight function:

ω(μ, n) := nλ–μ

∫ ∞

0

xμ–1 dx
(x + n)λ

=
∫ ∞

0

uμ–1 du
(u + 1)λ

= B(μ,λ – μ). (7)

For p < 0, 0 < q < 1, by the reverse Hölder inequality (cf. [27]) and Lebesgue term by term
integration theorem (cf. [28]), we obtain

∫ ∞

0

∞∑

n=1

f (x)an

(x + n)λ
dx =

∫ ∞

0

∞∑

n=1

1
(x + n)λ

[
n(σ–1)/p

x(μ–1)/q f (x)
][

x(μ–1)/q

n(σ–1)/p an

]

dx

≥
{∫ ∞

0

[ ∞∑

n=1

1
(x + n)λ

nσ–1

x(μ–1)(p–1)

]

f p(x) dx

} 1
p

×
{ ∞∑

n=1

[∫ ∞

0

1
(x + n)λ

xμ–1

n(σ–1)(q–1) dx
]

aq
n

} 1
q

=
{∫ ∞

0
� (σ , x)xp[1–( λ–σ

p + μ
q )]–1f p(x) dx

} 1
p

×
{ ∞∑

n=1

ω(μ, n)nq[1–( σ
p + λ–μ

q )]–1aq
n

} 1
q

.

Then, by (5) and (7), we have (6). �

Remark 1 For μ + σ = λ, we find

� (σ , x) = xμ

∞∑

n=1

nσ–1

(x + n)λ
(x ∈ R+),
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0 <
∫ ∞

0
xp(1–μ)–1f p(x) dx < ∞ and 0 <

∞∑

n=1

nq(1–σ )–1aq
n < ∞,

and then we reduce (6) as follows:

∫ ∞

0

∞∑

n=1

f (x)an

(x + n)λ
dx > B(μ,σ )

[∫ ∞

0
xp(1–μ)–1f p(x) dx

] 1
p
[ ∞∑

n=1

nq(1–σ )–1aq
n

] 1
q

. (8)

Lemma 3 The constant factor B(μ,σ ) in (8) is the best possible.

Proof For 0 < ε < qσ , we set

f̃ (x) :=

⎧
⎨

⎩

0, 0 < x < 1,

xμ– ε
p –1, x ≥ 1,

ãn := nσ– ε
q –1 (n ∈ N).

If there exists a positive constant M (M ≥ B(μ,σ )), such that (8) is valid when replacing
B(μ,σ ) by M, then by substitution of f (x) = f̃ (x), an = ãn, we have

Ĩ :=
∫ ∞

0

∞∑

n=1

f̃ (x)ãn

(x + n)λ
dx > M

[∫ ∞

0
xp(1–μ)–1 f̃ p(x) dx

] 1
p
[ ∞∑

n=1

nq(1–σ )–1ãq
n

] 1
q

= M
(∫ ∞

1
x–ε–1 dx

) 1
p
( ∞∑

n=1

n–ε–1

) 1
q

≥ M
(∫ ∞

1
x–ε–1 dx

) 1
p
(∫ ∞

1
x–ε–1 dx

) 1
q

= M
∫ ∞

1
x–ε–1 dx =

M
ε

.

For 0 < σ – ε
q < 2 (0 < q < 1), by (5), we obtain

Ĩ =
∫ ∞

1

[

x(μ+ ε
q )

∞∑

n=1

n(σ– ε
q )–1

(x + n)λ

]

x–ε–1 dx =
∫ ∞

1
�

(

σ –
ε

q
, x

)

x–ε–1 dx

≤ B
(

μ +
ε

q
,σ –

ε

q

)∫ ∞

1
x–ε–1 dx =

1
ε

B
(

μ +
ε

q
,σ –

ε

q

)

.

Then we have

B
(

μ +
ε

q
,σ –

ε

q

)

≥ εĨ ≥ M.

For ε → 0+, in view of the continuity of the beta function, it follows that B(μ,σ ) ≥ M.
Therefore, M = B(μ,σ ) is the best possible constant factor of (8). �

Remark 2 Setting μ̂ := λ–σ
p + μ

q , σ̂ := σ
p + λ–μ

q , we have

μ̂ + σ̂ =
λ – σ

p
+

μ

q
+

σ

p
+

λ – μ

q
=

λ

p
+

λ

q
= λ.
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And, for λ – μ – σ ∈ (–qσ , q(λ – σ )), we find

μ̂ >
λ – σ

p
+

(1 – q)(λ – σ )
q

= 0, μ̂ <
λ – σ

p
+

λ – σ + qσ

q
= λ,

0 < σ̂ = λ – μ̂ < λ, B(μ̂, σ̂ ) ∈ R+.

We can reduce (6) as follows:

∫ ∞

0

∞∑

n=1

f (x)an

(x + n)λ
dx > B

1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

×
[∫ ∞

0
xp(1–μ̂)–1f p(x) dx

] 1
p
[ ∞∑

n=1

nq(1–σ̂ )–1aq
n

] 1
q

. (9)

Lemma 4 If λ – μ – σ ∈ (–qσ , q(λ – σ )), the constant factor B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) in

(9) is the best possible, then we have λ – μ – σ = 0, namely, μ + σ = λ.

Proof If the constant factor B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) in (9) is the best possible, then, by

(8), the unique best possible constant factor must be B(μ̂, σ̂ ) (∈ R+), namely,

B(μ̂, σ̂ ) = B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ).

By the reverse Hölder inequality (cf. [27]), we find

B(μ̂, σ̂ ) =
∫ ∞

0

tμ̂–1

(1 + t)λ
dt =

∫ ∞

0

t
λ–σ

p + μ
q –1

(1 + t)λ
dt =

∫ ∞

0

1
(1 + t)λ

(
t

λ–σ–1
p

)(
t

μ–1
q

)
dt

≥
[∫ ∞

0

1
(1 + t)λ

tλ–σ–1 dt
]

1
p

[∫ ∞

0

1
(1 + t)λ

tμ–1 dt
]

1
q

= B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ). (10)

We observe that (10) keeps the form of an equality if and only if there exist constants A,
B, such that they are not all zero and Atλ–σ–1 = Btμ–1 a.e. in R+. Suppose that A 	= 0. We
find that

tλ–μ–σ =
B
A

a.e.in R+,

and then λ – μ – σ = 0, namely, μ + σ = λ. �

3 Main results
Theorem 1 Inequality (6) is equivalent to the following inequalities:

J1 :=

{ ∞∑

n=1

np( σ
p + λ–μ

q )–1
[∫ ∞

0

f (x)
(x + n)λ

dx
]p

} 1
p

> B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

{∫ ∞

0
xp[1–( λ–σ

p + μ
q )]–1f p(x) dx

} 1
p

, (11)
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J2 :=

{∫ ∞

0
xq( λ–σ

p + μ
q )–1

[ ∞∑

n=1

an

(x + n)λ

]q

dx

} 1
q

> B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

{ ∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n

} 1
q

. (12)

If the constant factor B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) in (6) is the best possible, then so is the

constant factor in (11) and (12).
In particular, for μ + σ = λ in (6), (11) and (12), we have (8) and the following equivalent

reverse inequalities with the best possible constant factor B(μ,σ ):

{ ∞∑

n=1

npσ–1
[∫ ∞

0

f (x)
(x + n)λ

dx
]p

} 1
p

> B(μ,σ )
[∫ ∞

0
xp(1–μ)–1f p(x) dx

] 1
p

, (13)

{∫ ∞

0
xqμ–1

[ ∞∑

n=1

an

(x + n)λ

]q

dx

} 1
q

> B(μ,σ )

[ ∞∑

n=1

nq(1–σ )–1aq
n

] 1
q

. (14)

Proof Suppose that (11) is valid. By Lebesgue term by term integration theorem and the
reverse Hölder inequality (cf. [27, 28]), we have

I =
∞∑

n=1

∫ ∞

0

f (x)an

(x + n)λ
dx =

∞∑

n=1

[

n
–1
p +( σ

p + λ–μ
q )

∫ ∞

0

f (x)
(x + n)λ

dx
]
[
n

1
p –( σ

p + λ–μ
q )an

]

≥ J1

{ ∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n

} 1
q

. (15)

Then, by (11), we have (6). On the other hand, assuming that (6) is valid, we set

an := np( σ
p + λ–μ

q )–1
[∫ ∞

0

f (x)
(x + n)λ

dx
]p–1

, n ∈ N.

If J1 = ∞, then (11) is naturally valid; if J1 = 0, then it is impossible to make (11) valid,
namely J1 > 0. Suppose that 0 < J1 < ∞. By (6), we have

∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n = Jp

1 = I

> B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

×
{∫ ∞

0
xp[1–( λ–σ

p + μ
q )]–1f p(x) dx

} 1
p
{ ∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n

} 1
q

,

{ ∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n

} 1
p

= J1 > B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

×
{∫ ∞

0
xp[1–( λ–σ

p + μ
q )]–1f p(x) dx

} 1
p

,

namely, (11) follows, which is equivalent to (6).
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Suppose that (12) is valid. By the reverse Hölder inequality, we have

I =
∫ ∞

0

[
x

1
q –( λ–σ

p + μ
q )f (x)

]
[

x
–1
q +( λ–σ

p + μ
q )

∞∑

n=1

an

(x + n)λ

]

dx

≥
{∫ ∞

0
xp{1–( λ–σ

p + μ
q )]–1f p(x) dx

} 1
p

J2. (16)

Then, by (12), we have (6). On the other hand, assuming that (6) is valid, we set

f (x) := xq( λ–σ
p + μ

q )–1

[ ∞∑

n=1

an

(x + n)λ

]q–1

, x ∈ R+.

If J2 = ∞, then (12) is naturally valid; if J2 = 0, then it is impossible to make (12) valid,
namely J2 > 0. Suppose that 0 < J2 < ∞. By (6), we have

∫ ∞

0
xp[1–( λ–σ

p + μ
q )]–1f p(x) dx

= Jq
2 = I

> B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

×
{∫ ∞

0
xp[1–( λ–σ

p + μ
q )]–1f p(x) dx

} 1
p
{ ∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n

} 1
q

,

{∫ ∞

0
xp[1–( λ–σ

p + μ
q )]–1f p(x) dx

} 1
q

= J2 > B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

×
{ ∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n

} 1
q

,

namely, (12) follows, which is equivalent to (6).
Hence, inequalities (6), (11) and (12) are equivalent.
If the constant factor B

1
p (σ ,λ – σ )B

1
q (μ,λ – μ) in (6) is the best possible, then so is the

constant factor in (11) and (12). Otherwise, by (15) (or (16)), we would reach the contra-
diction that the constant factor in (6) is not the best possible. �

Theorem 2 The following statements (i), (ii), (iii) and (iv) are equivalent:
(i) B

1
p (σ ,λ – σ )B

1
q (μ,λ – μ) is independent of p, q;

(ii) B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) is expressible as a single integral;

(iii) B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) is the best possible of (6);

(iv) If λ – μ – σ ∈ (–qσ , q(λ – σ )), then μ + σ = λ.

Proof (i)⇒(ii). In view of B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) is independent of p, q, we find

B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

= lim
p→–∞,
q→1+

B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) = B(μ,λ – μ),

which is a single integral
∫ ∞

0
tμ–1

(1+t)λ dt.
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(ii)⇒(iv). Suppose that B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) is expressible as a single integral

∫ ∞
0

t
λ–σ

p + μ
q –1

(1+t)λ dt. Then (10) keeps the form of equality. By the proof of Lemma 4, for
λ – μ – σ ∈ (–qσ , q(λ – σ )), we have μ + σ = λ.

(iv)⇒(i). If μ + σ = λ, then

B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) = B(μ,σ ),

which is independent of p, q.
Hence, we have (i)⇔(ii)⇔(iv).
(i)⇒(iii). By Lemma 3, for μ + σ = λ, B

1
p (σ ,λ – σ )B

1
q (μ,λ – μ) is the best possible of (6).

(iii)⇒(iv). By Lemma 4, we have μ + σ = λ.
Therefore, we show that (iv)⇔(iii), and then the statements (i), (ii), (iii) and (iv) are

equivalent. �

4 Two corollaries and some particular inequalities
Replacing x by 1

x , and then setting F(x) = xλ–2f ( 1
x ) in Theorem 1 and then Theorem 2, we

have the following.

Corollary 1 If F(x), an ≥ 0, such that

0 <
∫ ∞

0
xp[1–( σ

p + λ–μ
q )]–1Fp(x) dx < ∞ and 0 <

∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n < ∞,

then the following inequalities are equivalent:

∫ ∞

0

∞∑

n=1

F(x)an

(1 + xn)λ
dx

> B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

×
{∫ ∞

0
xp[1–( σ

p + λ–μ
q )]–1Fp(x) dx

} 1
p
{ ∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n

} 1
q

, (17)

{ ∞∑

n=1

np( σ
p + λ–μ

q )–1
[∫ ∞

0

F(x)
(1 + xn)λ

dx
]p

} 1
p

> B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

{∫ ∞

0
xp[1–( σ

p + λ–μ
q )]–1Fp(x) dx

} 1
p

, (18)

{∫ ∞

0
xq( σ

p + λ–μ
q )–1

[ ∞∑

n=1

an

(1 + xn)λ

]q

dx

} 1
q

> B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ)

{ ∞∑

n=1

nq[1–( σ
p + λ–μ

q )]–1aq
n

} 1
q

. (19)

If the constant factor B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) in (17) is the best possible, then so is the

constant factor in (18) and (19). In particular, for μ = λ – σ in (17), (18) and (19), we have
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the following equivalent inequalities with the best possible constant factor B(λ – σ ,σ ):

∫ ∞

0

∞∑

n=1

F(x)an

(1 + xn)λ
dx > B(λ – σ ,σ )

×
[∫ ∞

0
xp(1–σ )–1Fp(x) dx

] 1
p
[ ∞∑

n=1

nq(1–σ )–1aq
n

] 1
q

, (20)

{ ∞∑

n=1

npσ–1
[∫ ∞

0

F(x)
(1 + xn)λ

dx
]p

} 1
p

> B(λ – σ ,σ )
[∫ ∞

0
xp(1–σ )–1Fp(x) dx

] 1
p

, (21)

{∫ ∞

0
xqσ–1

[ ∞∑

n=1

an

(1 + xn)λ

]q

dx

} 1
q

> B(λ – σ ,σ )

[ ∞∑

n=1

nq(1–σ )–1aq
n

] 1
q

. (22)

Corollary 2 The following statements (I), (II), (III) and (IV) are equivalent:
(I) B

1
p (σ ,λ – σ )B

1
q (μ,λ – μ) is independent of p, q;

(II) B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) is expressible as a single integral;

(III) B
1
p (σ ,λ – σ )B

1
q (μ,λ – μ) is the best possible of (17);

(IV) If λ – μ – σ ∈ (–qσ , q(λ – σ )), then we have μ = λ – σ .

Remark 3 (i) For σ = 2 < λ (≤ 28), μ = λ – 2 in (8), (13) and (14), since

B(λ – 2, 2) =
Γ (λ – 2)Γ (2)

Γ (λ)
=

Γ (λ – 2)
(λ – 1)(λ – 2)Γ (λ – 2)

=
1

(λ – 1)(λ – 2)
,

we have the following equivalent reverse inequalities with the best possible constant factor
1

(λ–1)(λ–2) :

∫ ∞

0

∞∑

n=1

f (x)an

(x + n)λ
dx >

1
(λ – 1)(λ – 2)

[∫ ∞

0
xp(3–λ)–1f p(x) dx

] 1
p
( ∞∑

n=1

n–q–1aq
n

) 1
q

, (23)

{ ∞∑

n=1

n2p–1
[∫ ∞

0

f (x)
(x + n)λ

dx
]p

} 1
p

>
1

(λ – 1)(λ – 2)

[∫ ∞

0
xp(3–λ)–1f p(x) dx

] 1
p

, (24)

{∫ ∞

0
xq(λ–2)–1

[ ∞∑

n=1

an

(x + n)λ

]q

dx

} 1
q

>
1

(λ – 1)(λ – 2)

( ∞∑

n=1

n–q–1aq
n

) 1
q

. (25)

(ii) For σ = 2 < λ (≤ 28), μ = λ – 2 in (20), (21) and (22), we have the following equivalent
reverse inequalities with the best possible constant factor 1

(λ–1)(λ–2) :

∫ ∞

0

∞∑

n=1

F(x)an

(1 + xn)λ
dx >

1
(λ – 1)(λ – 2)

(∫ ∞

0
x–p–1Fp(x) dx

) 1
p
( ∞∑

n=1

n–q–1aq
n

) 1
q

, (26)

{ ∞∑

n=1

n2p–1
[∫ ∞

0

F(x)
(1 + xn)λ

dx
]p

} 1
p

>
1

(λ – 1)(λ – 2)

(∫ ∞

0
x–p–1Fp(x) dx

) 1
p

, (27)

{∫ ∞

0
x2q–1

[ ∞∑

n=1

an

(1 + xn)λ

]q

dx

} 1
q

>
1

(λ – 1)(λ – 2)

( ∞∑

n=1

n–q–1aq
n

) 1
q

. (28)
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5 Conclusions
In this paper, according to [20, 22], by applying the weight functions, the idea of in-
troduced parameters and Euler–Maclaurin summation formula, a reverse half-discrete
Hilbert inequality with the homogeneous kernel and the reverse equivalent forms are
given in Lemma 2 and Theorem 1 (for p < 0, 0 < q < 1). The equivalent statements of
the best possible constant factor related to some parameters are proved in Theorem 2.
As applications, two corollaries about the reverse cases of the non-homogeneous kernel
and some particular cases are considered in Corollary 1, Corollary 2 and Remark 3. The
lemmas and theorems provide an extensive account of this type of inequalities.
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