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1 Introduction

A Sobolev-type equation appears in several physical problems such as flow of fluids
through fissured rocks, thermodynamics and propagation of long waves of small ampli-
tude (see [1-3]). Nonlinear fractional differential equations can be observed in many areas
such as population dynamics, heat conduction in materials with memory, seepage flow
in porous media, autonomous mobile robots, fluid dynamics, traffic models, electro mag-
netic, aeronautics, economics (see [4—13]). Controllability means to steer a dynamical sys-
tem from an arbitrary initial state to the desired final state in a given finite interval of time
by using the admissible controls, and controllability results for linear and nonlinear integer
order differential systems were studied by several authors (see [14—27]). The constrained
controllability is concerned with the existence of an admissible control that steers the state
to a given target set from a specified initial state. Few authors studied constrained control-
lability; for example Son [28] studied constrained approximate controllability for the heat
equations and retarded equations, Klamka [29] studied constrained controllability of non-
linear systems, Klamka [30] studied constrained controllability of semilinear systems with
delays, Sikora and Klamka [31] studied constrained controllability of fractional linear sys-
tems with delays in control. Furthermore, the Clarke subdifferential has been applied in
mechanics and engineering, especially in nonsmooth analysis and optimization [32, 33].
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However, the controllability and the constrained controllability of nonlocal Hilfer frac-
tional differential equations with the Clarke subdifferential have not yet been considered
in the literature, and this fact motivates this work. The purpose of this paper is to study
the controllability of Sobolev-type nonlocal Hilfer fractional differential equation system
with the Clarke subdifferential in Banach spaces and to study the constrained local con-
trollability of Sobolev-type nonlocal Hilfer fractional differential system with the Clarke

subdifferential in Banach spaces.

2 Preliminaries
In order to study the controllability and constrained controllability for Clarke subdifferen-
tial Hilfer fractional differential equations with nonlocal condition, we need the following

basic definitions and lemmas.

Definition 2.1 (see [34]) The fractional integral operator of order p > 0 for a function f

can be defined as

1t £
Iﬂf(t)_r(lu)/o (t—s)l—ﬂds’ t>0,

where I'(-) is the Gamma function.

Definition 2.2 (see [35, 36]) The Hilfer fractional derivative of order 0 <v <1 and 0 <
u < 1is defined as

DD = [ 2 [0,
dt
Next we recall some definitions from multi-valued analysis (see [37])
(i) For a given Banach space X, a multi-valued map F : X — 2%\ {#1} := P(X) is convex
(closed) valued, if F(x) is convex (closed) for all x € X.

(i) F is called upper semi-continuous (u.s.c) on X, if for each x € X, the set F(x) is a
non-empty, closed subset of X, and if for each open set V of X containing F(x),
there exists an open neighborhood N of x such that F(N) € V.

(ili) F is said to be completely continuous if F(V) is relatively compact, for every
bounded subset V C X.
(iv) Let (£2, X') be a measurable space and (X, d) a separable metric space.
A multi-valued map F : ] — P(X) is said to be measurable, if for every closed set
CCX,wehave Fl={te]:Ft)NC#0} e X.
Throughout this paper, let X is a Banach spaces with || - | and let C(/, X) be the Banach
space of all continuous maps from J = (0, 4] into X.
Define Y = {x : -1=1=Wx(.) € C(J, X)}, with norm | - ||y defined by

|- [ly = sup || 10 (r) |.
te]

Obviously, Y is a Banach space.

Introduce the set B, = {x € Y : ||x||y <r}, where r > 0.
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For x € X, we define two families of operators {S, ,(¢) : t >0} and {P,(t) : £ > O} by

Spu@=197"P, ),  Pu(t) =T, (),

oo (2.1)
T,(¢) :/ ;LHW,L(Q)S(L‘”“G) do,
0
where
I
v, (0) = — 0 1,6 € (0, 00), 2.2
(0) ;(n_l)!m_nm <1 <1,6 € (0,00) (22)
is a function of Wright-type which satisfies
o rl+rt)
'Y, (0)dd = ————, 6>0.
/0 w0 '(1+pt) -
Lemma 2.1 (see [38]) The operators S, ,, and P, have the following properties.
(i) {P.(t):t> 0} is continuous in the uniform operator topology.
(ii) Forany fixed t>0,S,,(t) and P,(t) are linear and bounded operators, and
M1 Mv-D0-w)
Py(t)x|| < lI%ll, Sou)x|| < —————— x| (23)
” H H F(,U«) H " H F(v(l _M) +M)

(iii) {P,(t):t> 0} and {S,,,(¢): t > O} are strongly continuous.
(iv) Foreveryt>O0,{P,(t)} and (S, (t)} are also compact operators if T(t), t >0 is
compact.

The operators A : D(A) C X — Y and E: D(E) C X — Y satisfy the following condi-
tions:

(H1) A and E are closed linear operators.

(H2) D(E) C D(A) and E is bijective.

(H3) E~':Y — D(E) is continuous.

Here, (H1) and (H2) together with the closed graph theorem imply the boundedness of
the linear operator AE™1: Y — Y.

(H4) For each t € J and for A € p(—~AE™), the resolvent of —AE~!, the resolvent of

R(A,—AE™) is the compact operator.

Lemma 2.2 (see [39]) Let T(t) be a uniformly continuous semigroup. If the resolvent set
R(A,A) of A is compact for every ) € p(A), then T(t) is a compact semigroup.

From the above fact, —~AE™" generates a compact semigroup {S(t),t > 0} in Y, which means
that there exists M > 1 such that sup,; ||S(®)|| < M.

Definition 2.3 (see [33, 37]) Let X be a Banach space with the dual space X* and Z : X —
R, be a locally Lipschitz functional on X. The Clarke generalized directional derivative of
Z at the point x € X in the direction v € X, denoted by Z°(x; ), is defined by

Z%x;v) = Alim sup M

=0 gy A
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The Clarke generalized gradient of Z at x € X, denoted by dZ(x), is a subset of X* given
by

AZ(x) =x* € X*: Z%(x;v) > <x*,v>, YveX.

(H5) The functional Z:J x X — R satisfies the following conditions:
(i) Z(-,x):] — R is measurable for all x € X;
(i) Z(¢,-): X — Rislocally Lipschitz continuous for a.e. ¢ € J;
(iii) there exist a function ¢ € L#(J,R*) (0 < }7 < @ < 1) and constant k > 0 satisfying

|| BZ(t,x)HX = sup{llzllx 1z € BZ(t,x)} <¢(t) +klxllx, VxeX,aete].
Now we define an operator N : L2(J, X) — 20X as follows:
N(x) = {w e L*(J,X) : w(t) € 3Z(t,x) a.e. t e]}, for x € L*(J, X).

Lemma 2.3 If (H5) holds, then for x € L*(J,X) the set N(x) has non-empty, convex and
weakly compact values.

Lemma 2.4 If (H5) holds, then the operator N satisfies: if x, — x in L*(J,X), w, — w
weakly in L*(J, X) and w, € N(x,), then we have w € N(x).

Theorem 2.1 Let X be a Banach space and F : X — 2% be a compact convex valued, u.s.c.
multi-valued maps such that there exists a closed neighborhood V of O for which F(V) isa
relatively compact set. If the set 2 = {x € X : Ax € F(x) for some A > 1} is bounded, then F
has a fixed point.

3 Controllability results

In this section, we present and prove main results of controllability for a Sobolev-type non-
local Hilfer fractional differential system with the Clarke subdifferential in Banach spaces
in the following form:

Dy (Ex(¢)) + Ax(t)
= Bu(t) + f(t, x(t)) + fotg(t, $,2(5), [y H(s, T,%(t)) dt) ds 3.1
+0Z(t,x(t)), te]=(0,a],
I(()i_”)(l_”)x(O) +q(x) = xo,

where Dy is the Hilfer fractional derivative, 0 <v <1,0< u <1, A and E are closed,
linear and densely defined operators with domain contained in the Banach space X and
ranges contained in the Banach space Y. The state x(-) takes values in the Banach space X
and the control function u(-) is given in L2(J, U). The Banach space of admissible control
functions with U a Banach space. The symbol B stands for a bounded linear from U into Y.
The nonlinear operatorsf: J x X — Y, H:JxXJxX — X,g:JX]x X xX — Yand 9Z(t,-)
is the Clarke subdifferential of Z(t, -).
To establish the result, we need the following additional hypotheses:
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(H6) f:J] x X — Y is a continuous function and there exist constants N; > 0 and N, >0
such that, for all £ € J, vq, v» € X we have

If(&v) —fE&va)| <Nilvi=vall,  Na=|f(5,0)].

(H7) g:] xJ x X x X — Y is a continuous function and there exist constants L; > 0

and L, > 0 such that, for all £,s € J, vi,v2, w1, wo € X we have

|g(ts,vi,w1) = g(t, 5, va, wa) | < La[llve = vall + [wr = wall],

Ly = |g(£,5,0,0)].

(H8) H:J x ] x X — X is continuous and there exist constants L3 > 0, L4 > 0, such that

forall t,s € J, v1, v, € X we have
”H(t,s, Vl) —H(t,S, V2)” < L3”V1 - V2”’ L4 = ”H(t;Sr 0) ||

(H9) The linear operator W from U into E defined by
a
Wu = / E‘lPﬂ(a — 5)Bu(s) ds,
0

has an inverse operator W' which takes values in L2(J, U) \ ker W, where the
kernel space of W is defined by ker W = {x € L*(J, U) : Wx = 0} and B is a bounded

operator.

Definition 3.1 We say x € C(J, X) is a mild solution of the system (3.1) if it satisfies the

integral equation

t

x(t) = E‘lSu,u(t)E[xo - q(x)] + /OtE_lPu(t - s)f(s,x(s)) ds + /(; E_IPM(L‘ —s)Bu(s) ds

t » ~ s
+/0 E7'P,(t s){/o g(s,r,x(r),R(r))dr}ds

+ /tE_lPﬂ(t —38)z(s)ds, te], (3.2)
0

R(z) = /0 H(e,n,2(0) dn.

The proof of mild solution of Eq. (3.1) is similar to the proof of mild solution of Eq. (1.1)
in [38].

Definition 3.2 The system (3.1) is said to be controllable on J, if for every xo, x; € X, there
exists a control # € L*(J, U) such that the mild solution x(¢) of the system (3.1) satisfies

x(a) = x1, where x; and a are the preassigned terminal state and time, respectively.

Page 5 of 23
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Theorem 3.1 Ifthe hypotheses (H1)—(H9) are satisfied, then the system (3.1) is controllable

on J provided that there exists a constant r > 0 such that

Ma*||E7YIB|WL E
M”E1”<1+ a*|E B II)[II IlCllxoll + Ngll)

I'(p+1) (vl —p)+ )
Mg’ -D+1 a a
+ W<N1F+N2 + A 1 (L1<7"+ P +2(L37'+L4)) +L2> + ||§'|| +kr>]
Mav(u—l)Jrl
+ ————|[ETUBI| W s < 7
I(p+1)

Proof For any x € C(J,X) C L*(J, X) from Lemma 2.3 we consider the map V,: C(J, X) —

2€0X) as follows:

Vi(x) = {h eC(,X):h(t) = E’lSV,M(t)E[xO - q(x)] + /tElPH(t - s)f(s,x(s)) ds
0
+ /OtE_IPM(t —s)Bu(s)ds + /OtE_lPu(t —3) /Osg(s, T,x(‘(),R(‘L’)) drtds

+/ E‘1P,L(t—s)z(s)ds,zeN(x)}, forx e C(J, X).
0

We will show V;, has a fixed point using Theorem 2.1. Note V,(x) is convex from con-
vexity of N(x). We divide the proof into five steps.

Step 1: V, maps bounded sets into bounded sets in C(J, X).

For any x € B, and @ € V,(x), we choose a z € N(x) with

D(t) = E‘lSv,M(t)E[xo - q(x)] + /otE‘lP#(t - s)f(s,x(s)) ds + /otE‘lPﬂ(t —s)Bu(s) ds

+ /OtElPﬂ(t —5) /Osg(s, 7,%(1),R(1)) dr ds + /OtElP,L(t —8)z(s) ds.

Using the assumption (H9) for any arbitrary function x(-), define the control

u(t)=w! {xl —E_ISV,M(a)E[xO — q(x)] - /OaE_lPM(a - s)f(s,x(s)) ds

- /aE‘IP,L(a -5) /sg(s, ‘L',x(‘L’),R(‘L’)) dr ds — /ﬂE_IP,L(a —8)z(s) ds}(t),
0 0 0

then the operator @ takes the form

t

D(t) = E‘lSV,M(t)E[xo - q(x)] + /OtE_lPﬂ(t - s)f(s,x(s)) ds + /0 E_IPM(t —s)BW1

« {xl CES,  (@E (0 — 4(x)) - /0 EP,(a—n)f (nx(m) di

a n
_/ E—lpu(a—n){/ g(n,t,x(r),R(t)) dr}dn
0 0

Page 6 of 23
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- /0 “E1p,(a- n)Z(n)dn}(S) ds

t

+f0tE1P,L(t—s)/osg(s,r,x(t),R(r)) drds+/(; E’lPu(t—s)z(s)ds.

From (H7), (H8) and the Beta function, we have

,/o(t_S)M_lj(; g(s,r,x(t),fo H(r,n,x(n))dn) dt

t—ﬂ-lsL TH,, dn)+Ly)drd

Sl(t” L£<1<MHﬂAH 0nmeHn)+z)r s
t—’HSL rL Ly)dn | +L, |drd
SAU s) A(1O+A(y+4)0+z)rs

< /0 (t—s)Ht /OS (Ll (r +1(L3r + L4)) + Lg) drds

< /Ot(t —g)H1 |:(L1 (sr + g(Lgr + L4)> + sL2>i| ds

() (2) oL I (u)I(3)
r(w+2) 2 I'(u+3)

a*+! a
< I:Ll (r + (Lsr + L4)) + L21|.
up +1) w+2

From (H5)-(H9), Lemma 2.1 and Hoélder’s inequality, we have

ds

W T @)

< Ly| re*t
- 1( F(p+2)

(L3r + L4)> + th

@y = suptt01| ()
te]

= supe 0 LS., 0] 1 - a0
te

e [ e e -9 ds+ [ £ lpae-lisiw|
0 0

X

w1~ E'S, (@)E (%0 — 4(x)) - /0 E P, (a — n)f (nx(n)) dn

a n
_/ Elpﬂ(a—n){/ g(n,r,x(f),R(r))dr}dn
0 0

. /0 E'Py(a-n)(n)dn

(s)ds
. /o NE[Pue-9)] /0 " lg(s, 7 (), R(@)) e | ds

t E—l » ) ,

+/0 |E[|Pute-9)]|26)] s}

-1

S rrempent i LGRS VL)
Mg’ r-1D+1 ”E—l I
T T+

(3.3)

Page 7 of 23
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a a
X | Nir+ Ny + Li|r+ (Lar+Lg) | + Lo | + IS + kr
w+1 n+2

Mav(u—1)+1 ) »
irarmeral LT R 1Y

M2a* | E7 P |BI W]
T+ 1)W1 = p) + p)

(Ilxoll + [|g@)])

M2 =D B2 B W e
+
r(p+1)

X[NM+A5+ a (h(r+ a (Qr+LQ)+l€)+H§H+k4
n+1 n+2

, M = Ma |EH 1B W
= Foa—pamlE Nl + Hq(x>H)<1 + T EY )
Mdv(u—1)+l ”E—l ”
I(n+1)

) |Nre Ny —2 (Lo (r+ —Zar+ La) ) + Ly ) +11C ] + kr
pw+1 n+2

1
[E B W= fen

( Ma" | E7H||IBI W > Ma" =D+
x |1+

I'(pn+1) I'(p+1)
Ma* |EYB||WT
=M||E’1H 1+ a|| [HIBIH [
I(p+1)

|:||E||(||xo|| + llqll) .\ Mg w-1+1
F(U(I_M)‘F,LL) F(/’L+1)

a a
X <N1r+N2 + (Ll <r+
nw+1 m+

2(Lg,r +L4)> +L2) +z]+ kr)]
Ma* "

-1)+1 . o
+ oo VE BN ) <

Thus V,(B,) is bounded in C(J, X).
Step 2: {V,(x) : x € B,} is equicontinuous (for all » > 0).
For any x € B, and @ € V,(x) and z € N(x) and from Lemma 2.1(ii) and Holder’s inequal-

ity, we have

|e@) - 20,

= sup 201 | b (1) - 0 (0)
te]

-1 1
5M||E—1H(1+Ma“IIE HIBIIW ||>

I(p+1)
[HEII(leoII +llgl) | Ma"
revA-w+up)  I(e+1)

a a
X (N1r+N2 + (Ll(r+ (L3r+L4)) +L2) + 1|l +kr>i|
u+1 w+2

Mav(u—1)+1
+ e —
I(n+1)

IE 1B W a1l + llxoll + Nl

Page 8 of 23
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Thus, for all ¢ > 0 and for sufficiently small §; > 0, with 0 < ¢ < §;, we have || ®(¢) —

@(0)|ly < 5. Hence, for all & >0, V11,75 € [0,8;] and Y@ € V,(B,), we have ||®(1;) -

®(1y)|y < &. For any x € B,, and %1 <1, < T <a,weobtain

|®(12) - @(m)|

=[£7] { [ (S (@2) = Suu(20) Eo - a@) | +

‘/TZ Py(ty - s)f(s,x(s)) ds

1

+

/Q P,(ty—s)BW™! {x1 —E'S, 1 (@)E (%0 — q(x))

1

a a n
- / EP,(a— n)f (n,x() dn - / E'P,(a—n) / a(n7.2(0), R(D)) d di
0 0 0

- / E'Pu(a- n)z(n)dn}(s) ds

0

+

/ ? P, (12— 8)z(s)ds

1

+ /Tl Pﬂ(tz—s)/og(s,r,x(r),R(t))drds

+ [TI [Py(12 = 8) = Pu(t1 = 9)|f (s,(5)) ds
0

+ /0 1 [PM(Tz —8)=Py(t; - s)]BW‘l {xl - E_ISU,M(a)E(xO - q(x))

a

_ / “EP, (@ n)f (m,x(n) din - /
0

n
E'Py(a- n)/ g(n, 7, %(1),R(v)) dv dn
0 0

- / E'Pu(a- n)Z(n)dn}(S) ds

0

+

/I[Pu(fz—s)—Pu(n—S)]/ g(s,7,%(1),R(r)) dr ds
0 0

+

i [P,L(rz —8)=P,(t; - s)]z(s) ds
0

}. (3.4)

From the compactness of T(¢),t > 0, Lemma 2.1(ii), we see that the right hand side of
inequality (3.4) tends to zero as o — 7;. Thus we see that [|(®)(t2) — (©)(71)]|y tends to
Zero.

For Ve > 0,V11, 12 € (0,al, |11 — 72| < 61, VO € V,(B,) we see that || (P)(12) — (®)(t1)|ly < €
independently of x € B,. Therefore, we deduce that {V,(x) : x € B,} is an equicontinuous
family of functions in C(/, X).

Step 3: V, is completely continuous.

We prove that, for all £ € J, r > 0, the set [ [(t) = {®(¢) : @ € V,(B,)} is relatively compact
in X. Obviously, [](0) = xo — g(x) is compact, so we only need to consider ¢ > 0. Let0< ¢t < a
be fixed. For any x € B,, @ € V,(x), we choose z € N(x) with

t

D(t) = E‘lSV,M(t)E[xo - q(x)] + /OtE_lPﬂ(t - s)f(s,x(s)) ds + /0 E_IPM(t —s)BW1

« {xl CES,  (@E (0 — 4(x)) - /0 EP,(a—n)f (nx(m) di

a n
_/ E—lpu(a—n){/ g(n,t,x(r),R(t)) dr}dn
0 0
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/ E'P,(a- n)z(n)dn}(s)ds+/ E'P,(t- s)/ s,7,%(t), R(r)) dt ds
+ftE_1PM(t—s)z(s)ds, te].
0

For each € €(0,¢), t € (0,4], x € B,, and any § > 0, we define

€3 _” -1 v(1-p)-1 -1
D (¢) = (- M))/./ ot - s) —m=lgr W(@)S(S”Q) [xo q(x)]d@ds
+ 1 /f- / ET'O(t - )", (0)S((t - 9)"0)f (s,x(s)) dO ds
0 s

t—e€ 00 i et o i
+M/O fa ET0(t— )", (0)S((£ - 5)"0)BW

. Y w11
x |:x1 F(v(l—,u))/o /0 E7 0(a-n)'" "M gt lI/M(G)S(n“Q)
X E[xo —q(x)] do dn

—u fo fo E7'0(a - )", (0)S((a — 5)"0)f (n,x(n)) d6 dn
—M/a/mE-le(a ~ )", (0)S((a - )"0)
0o Jo
1
X {/ g(n,r,x(t),R(r)) dt}d@ dn
0
—u/ﬂ/wE‘IQ(a—s)“_llI/,L(Q)S((a—s)”“@)z(n)d@ dni|(s) do ds
+,u/ / E7'0(¢ - s)* 1y, (9)S((t s)“@)/ g(s 7,x(7),R(t ))dtdé‘ds
+,u/ / E‘19(t—s)“_llI/,L(Q)S((t—s)”@)z(s)deds
(1S(e"8)

= - @ -1 (I-p)-1 _p-1 “ g
e [ -t s - )

X E[xo —qx )] do ds

+ 1uS(e"8) /Ot_é /{SOOE’IG(L‘—s)“’llI/M(H)S((t—s)“Q —€"8)f (s,x(s)) do ds

+ uS(e"s) fo - /8 OOE‘IG(t - )", (0)S((t - 50 — €"8)BW!

. Y w11
x|:x1 F(v(l—,u))/()/() E = 0(a—n)" Mgt lPM(O)S(n"Q)

X E[xo - q(x)] do dn

[ [T E a9 w08~ 0) xt) do
0 0

_ a poo o o o

u/(;/(; E70(a-s) l1@(9)5((&1 s) 9)

1
X {/ g(n,r,x(r),R(r)) dt}d@ dn
0
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—u/a/wE‘IQ(a —s)"_IWM(Q)S((a—s)”@)z(n)d@ dn:|(s) de ds
o Jo
+ ,uS(e“S) ft_e /OOE’IO(t—s)”_III/M(G)S((t—s)“Q —6“8)
0 s
X /sg(s, T,x(‘L'),R(‘E)) dr db ds
0

+ uS(e"s) /0 H /8 B0 - 9 0, 0)S (£ - 5)"6 — € 8)2(s) d ds.

From the compactness of S(€”§), €8 > 0 and the bounded of u(s) we see that the set
]_[E]S(t) = {P(t): @ € V,(B,)} is relatively compact in X for each € € (0,£) and § > 0. More-

over, we have

|o@ - @,

= sup ¢4~V || & (t) — (1) ||
te]

t P
(=) (1) ® / f a1 v(1-p)-1 -1 "
<supt EO0(t-s s, (0)S (M0
< sup {Hr(vu—m) ) Jy B0 u(@)S(50)

x E[xo — q(x)] d6 ds

t s
+ U / / Elo(s - s)“_llI/M(G)S((t - s)“@)f(s,x(s)) do ds
o Jo

+ 14

t s
/ / E'0(t - )", (0)S((t - 9)"0)BW !
o Jo
_ H S _oyw(lew-1 -1
x|:x1 4F(V(1—M))/o/o E 7 O0(a-n)’" Mgt lI/M(Q)S(n"Q)
X E[xo - q(x)] de dn

—M/ / E‘lé(a—s)“_l'lfﬂ(G)S((a—s)“@)f(n,x(n)) do dn
0o Jo

~ a poo . el iy n }
M/o/o E0(a—-9)""w,(0)S((a-s) 9){/ g(n, 7, %(t),R(v)) dv { db dn

0

—u / “ / " E 0 - 5y, (0)S (@ - 56) (o) B dn] Wdvds
0 0

t $ s
+ U / / E‘lé(t—s)“_llPM(G)S((t—s)"O)/ g(s,r,x(t),R(r))drd@ds
o Jo 0

t s
+ U / / E‘le(t—s)”_l'J/H(G)S((t—S)“H)z(s)deds
o Jo

1 /t /OOE’IO(L‘—s)“’llI/M(H)S((t—s)“@)f(s,x(s)) do ds
t-€ J§

+ U /H/(; E‘le(t—s)/‘—llIJM(Q)S((t_S)MG)BW—I

_ w S _oywa-w-1p-1
><|:x1 71_,(”(1_“))/0/0 EO(a-—n)" Mgt llf,t(Q)S(n“Q)
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S

x E[xo — q(x)] d6 dn

_//,/ﬂ/OOE—le(a—s)“—llI/H(Q)S((a_S)Me)f(n,x(n))dedn

o Jo

— a o] -1 _ u—1 Y n }
M/o/o E0(a-s)" 1w, 0)S((a-s) 0){/0 g(n, 7, %(t),R(v)) dv { db dn

_;,L/“/-OOE—le(ﬂ—S)u.—llI/M(Q)S((a_S)Me)z(n)dgdn](s)deds
0 0

+u /t_: /SOOE’IG(L‘ —S)’kllpu(@)S((t - S)HQ) /:g(s, t,x(r),R(f)) dt do ds

|

)
_ S)U(l—ll-)_ls“_l ds/ 9‘1/;1,(9) do
0
)

+ /i /wE‘le(t_S)“‘I‘I’M(Q)S((t—s)“@)z(s)dgds

EMIE Nl + 1] 1o [*
(- ) St ./o(t

t
+ UM | E7| sup £ / (t-s)""gi(s)ds / 0w, (0)do
te] 0

M| 1B W supet =0 m/ (t-)!

LM ETHEN 1 || + lg@)1I]
x[nxln O of T4 /( )AL=t gy

a7 [ a9 g+ um] £ / (@ sy (n) iy
0 0
a §
+uM[E7] [ (a —S)“‘IZ(n)dn](S) ds / 0w, (0)do
0 0
t )
+ uM | E7| sup £ / (t—8)" " hu(s)ds / 0W,(0)do
te] 0 0
t )
+ ,uMHE’1 || sup tIH [ — gy l(s) ds/ 0w, (0)de
te] 0 0
t o0
+ ,lLMHE_l ” sup t(l_”m_“)/ (t—s)"gi(s) ds/ 0w,(0)do
te] t—e §

t
+uM|E7| 1Bl W supt“*“)(l*“) / (t-s)*!
t—€

WMIEIEN ol + 1G] ot
X[”’“” Fo(1-p) / (a- 4

+uM[ET /0 (a—9)""'g(n)dn + uM|E™"| /O (@ -5y (n) dn
+ uM|E7| * (a9 L) dn] (s) ds/oo 0w, (0)do
0 )

t [e'e]
+uM|EY su?t(l’”)(l’“) (t— )" hi(s) ds fa 6w, (0)do
te t—e€

t [ee]
+ ,lLMHE_l ” sug) t(l_”m_“)/ (¢ — )" z(s) ds/ 0w,(0)do.
te t—e€ )
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Now we see that ||@(t) — @<°(t)||y — 0 as € — 0, § — 0. Therefore, the set [](¢), t > 0 is
totally bounded, i.e., relatively compact in X. From the above (and step 2) and the Ascoli—
Arzela theorem, we see that V; is completely continuous.

Step 4: V, has a closed graph.

Let x, — %, asn — o0 in C(J, X), @, € V,(x,) and &, — @, as n — oo in C(J, X). We
prove that @, € V,(x,). Now @, € V,(x,), so there exist z,, € N(x,), f, =f(t,x,(¢)), R,(t) =
for H(t,n,%x,(n))dn and g, = g(t,s,%,(s), R,(7)) in L*(J,X) with

t t
®,(t) = E‘lSu,u(t)E[xo —qx)] + / E7'P,(t-s)fy (s, x(s)) ds + / E7'P,(t - 5)Bu(s)ds
0 0
t s t
+/ E’lPﬂ(t—s)/ 2u(5,7,%(7), Ry(7)) d ds+/ E7'P,(t-5)z,(s)ds. (3.5)
0 0 0
From (H5)—(HS8), {z,,fygn}n=1 S L*(J, X) are bounded. Hence we assume that
Zy —> Zy, fu—fo 2 — & weaklyin L*(J, X). (3.6)
From (3.5), (3.6) and compactness of P, (t), we have
t
@,(t) — E_ISV,M(t)E[xO - q(x)] + / E‘lPﬂ(t —s) *(s,x(s)) ds
0
t t s
+ / E_IPM(t —8)Bu(s)ds + / E_lPu(t —5) / ' (s, ‘L',x(‘L'),R*(T)) dtds
0 0 0
t
+/ E‘lPﬂ(t—s)z*(s) ds.
0
Note that @, — &, in C(/,X) and z, € N(x,,). Hence, from Lemma 2.4 we obtain z, €
N(x,) and @, € V,(x,), which implies V, has a closed graph and V; is u.s.c.
Step 5: A priori estimate.
From steps 1-4, we see that V, is u.s.c. and is compact convex valued and V;(B,) is

a relatively compact set (here r > 0). We now prove that the set 2 = {x € C(J,X) : \x €
V,(x), » > 0} is bounded. For all x € w, there exist z € N(x) and f, g in L2(J, X) with

x(t) = A_lE‘lSv,M(t)E[xo - q(x)] +a7t /tE‘IPH(t —s)f(s,x(s)) ds
0

+ A7 /tE‘lpﬂ(t —s)Bu(s) ds

0
B ¢ o ) s

+ A /0 E™P,(t s){/o g(s,r,x(r),R(r)) dt}ds

+A7t /tE_lP“(t —8)z(s) ds. (3.7)
0

Then from assumptions (H5)—(H8), we derive

[=@l,

sup ) ||x(t) ||
te]

t
sup ) { H)FlE_lSv,M(t)E[xo - q(x)] +a71 / E‘lPﬂ(t - s)f(s,x(s)) ds
0
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t
+a7t / E‘lPﬂ(t —8)Bu(s) ds
0

+)\1ftE%(t—s){fsg(s’t'x(’)’m)) dr}ds
0 0

|

< sup =01 {A-l IEZSu O NEN (%01l + | gCx)[))

t
#2271 / E‘lPu(t —8)z(s)ds
0

x| 6.209) | s

0
ext [ e 12t 9 1B o] ds
)L‘ltE‘lPt— S ,7,x(7),R(7)) d7 | d
2 [IERae=9] [ le(srate) RE) e ds

o e 1191 o as)

MA?
< -
Tl -p)+p)
Mav(#—1)+lk—l ”E—l ”
+
I(p+1)

[EIE (%ol + [ a)])

X [N1r+N2+
uw+

a a
Li|r+ (Lar+Ly) ) + Ly
1 m+2

+ ¢l +kr+ IIBIIIIMII}-

It follows from (3.7) and A~! < 1 that ||x(¢)||y < r.Hence, ||x||c = sup,; [[%(#)[ly < r,which
implies the set £2 is bounded.
From Theorem 2.1, V, has a fixed point, i.e., the system (3.1) is controllable and the proof

is complete. d

4 Constrained controllability
In this section, we present the constrained local controllability of Sobolev-type nonlocal
Hilfer fractional differential system with the Clarke subdifferential in Banach spaces in the

following form:

Dy (Ex(t)) + Ax(t)
= Bu(t) + fi(t,x(2), u(z)) + fotgl(t, $,4(5), [y H(s, T,%(7)) dt, u(s)) ds

+ aZ(t:x(t))r te ] = (01 d];
Iéi—v)(l—ﬂ)x(

(4.1)
0) + Q(x) = X0,

where the nonlinear operators fi : J x X x U = Y, H: ] X ] x X - X, g1: ] X ] x X x X x
U — Y and 0Z(t, ) is the Clarke subdifferential of Z(t, -).

In this section, we need the following hypotheses:

(H10) Let ||Bu(t)|| < Mp||lu(t)|ly for all u(t) € U on J where Mp > 0.

Page 14 of 23
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(H11) fi:] x X x U — Y is a uniformly continuous function in ¢ and there exist
constants Ls > 0 such that for all £ € J, v1, vo € X, u1,uy € U we have

it vi, 1) = i, vas wa) | < Ls(llvi = vall + g — ualr).-

(H12) g1:J xJ x X x X x U — Y is a uniformly continuous function in ¢ and there

exist constants Lg > 0 such that for all £, s € J, v1, v, € X, u1, up € U we have
|1 (& s,v1,u1) = g1 (&8, va, w2) || < Le(llve = vall + llr — a2l i)
The mild solution of the system (4.1) takes the form
t
x(t) = E‘ISV,M(t)E[xO - q(x)] + / E‘lpﬂ(t —s)Bu(s)ds
0
t
+ / E’IPM(L‘ -5 (s,x(s), u(s)) ds
0
t s
+ / E-lPu(t - 5){/ a (s, 7,x(17),R(7), u(r)) dr } ds
0 0

+/ E7'P,(t-5)z(s)ds, te], (4.2)
0

R(t) = /0 H(z,n,%(n))dn.

The constrained set of controls is considered to be a closed convex cone with empty
interior and vertex at origin. Let Uy C U be the constrained set of controls and let the set
of admissible controls be
Uy = L2(J; Uy) C V = L2(J; U).

Definition 4.1 The attainable set at time a4 > 0, denoted by K7 (U)), is defined as
Kr(Uy) = {x €X:x=x(a,u),u(a) € Uy a.e. in ]},

where x(¢, u) is a solution of (4.1).

Let us consider the Sobolev-type linear Hilfer fractional differential system

Dy (Ey(t)) + Ay(t) = Bu(t), te]=(0,a],

(4.3)
171 M y(0) = 0.

The mild solution of (4.3) is

y(t,v) = /tE‘IP#(t —s)Bv(s)ds, te]. (4.4)
0

Page 15 of 23
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Let us define the following operators:
B:U— C(J,X) by

Bu() = / E'P, (- 5)Buls) ds,
0
F:XxU— C(J,X)by

Faun) = [ E1R. 500,10 ds

0

and
G: X xXxU— C(J,X) by

G, u)(-) = /0. E7'P, (- s){/osgl (s, 7, %(7), R(1), u()) dl’} ds.

Let us put the following hypotheses:
(H13) The nonlinear function f;, g; satisfies:

fl (t» x(t)’ u(t)) |u=0 = 01 Dxfl (trx(t)’ u(t)) |u=0 = 0,
Dufl (t’x(t)’ I/l(t)) |u=0 =0, F41 (tr x(t)r u(t)) |u=0 =0,

ngl (t7 x(t), M(t)) |u:0 =0 and Dugl (trx(t)r Ll(t)) |u:0 = 0:

where D, and D, denote the Frechet derivative on space U.
(H14) B, F and G are continuously differentiable in U/.
(H15) The linear control system (4.3) is Up-exactly globally controllable on J.

Definition 4.2 The system (4.1) is said to be Up-exactly locally controllable on J if the
attainable set K7(U) contains a neighborhood of x(0) € X in the space X.

Definition 4.3 The system (4.1) is said to be Uj-exactly globally controllable on J if
Kr(Up) = X.

The main result observes the application of the generalized open mapping theorem, so
we recall it in the following lemma.

Lemma 4.1 ([40]) Let X, Y be Banach spaces and F : B,(xg) C X — Y such that
|Fx - Fx - T(x - %)| < kllx - Xl on B.(x0) x By(xo),

for some k>0 and T € L(X,Y) with rank(T) = Y. Then B,(Fxo) C FB,(xo) for some p >0
provided that k is sufficiently small.

Theorem 4.1 Under the assumptions (H1)—(H4), (H8) and (H10)-(H15) the nonlinear
control system (4.1) is Uy-exactly locally controllable on J.
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Proof Let us define an operator H : U,y — X by H(u) = x(a, u), which maps control to the
final state of the trajectory. Then the integral equation (4.2) implies

H(u) = E7'S, . (a)E[x0—q(x) ] + Bu(a) + F (x, u)(@) + G (x, u)(a) + /ﬂ E7'P,(a - s)z(s)ds.
0

By hypothesis (H14), #H is differentiable in {,q. Thus

D, H(u)=D, ((Bu)(a)) +D, (.F(x, u)(a)) +D, (Q(x, u)(a)). (4.5)
We have

D, ((Bu)(ﬂ)) = /a E‘lP,L(a — s)Bds,

0
Dy(F(x,u)(a)) = /ﬂ E7'P,(a-s)D,fi (s, x(s), u(s)) ds,

0

and

D, (Q(x, u)(a)) = /oa E_IPM (a - s){/os D,z (s, 7,x(1),R(7), u(r)) dr } ds.
Then, by using hypothesis (H13) in (4.5), we get
D, HWu)|=ov = /OuE’lPﬂ (a - s)Bv(s)ds = y(a,v).
By hypothesis (H15), the linear control system (4.3) is Up-exactly globally control-
lable, therefore the map D,H(u)|,-0, mapping v > y(a,v), is a surjective map with

D, H(0)(Uaq) = X. Now, let uy, uy € Uy corresponding to x;(¢) = x(¢,u1) and x,(¢) =
x(t, uy), respectively. Then, for all £ € J,

1) = %2 (8)|

< /tE‘IPM(t —s)B(ul(s) - Mz(s)) ds
0
N /0 ET'P,(t - 5)[fi (s, x(s), u(s)) — fa(s, x(s), u(s)) ] ds
+ ‘/(;tE_IP/L(t_S)
x {/S[gl(s,t,x(t),R(r),u(T)) - &(s,7,%(0), R(z), u(v)) ] dr ds} ‘
0
—1 t
<1 / M58 19 ) | s
1
I ] -] - )
1
Mﬂfm” e [ 11620 - 50+ i0)- o) s

Page 17 of 23
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-1 t s
<R [ emor s 1009 - )] 6 [ 1 6) - (e | s

—1 t S
+ Mlﬂfm” /0 -5yt [LS | (x1(5) = %2()) | +L6/0 [ (51(0) = 22(0) | d’] ds.

By Gronwall’s inequality,

CMIEN [
(6 -0 = 2 fo (t—s)"

X |:(MB +Ls) ” (ul(s) - uz(s)) || + L6/o H (ul(t) - ug(r)) H dt:| ds

-1 .
o« PG s s L Lss)ds)

Therefore

[H (1) = Hwa) || < ||#1(a) — x2(a)

" -1 at|E7L a
= % <MB *lst— 1L6>e(Mm'fD T iy 1y
U+ W+
and
a
||D,[H(0)(u1 - uz)” = H/ E'P,(a- s)B(ul(s) - uz(s)) ds
0
Ma* | E7|Mp
< — vl —uallv.
r(p+1)
Now

|H (1) = H(u2) — DuH(0) (111 — 12) |
< | H(u1) = Hwz) | + | DuHO) (1 — )

H|E-L MalEL a
_ Ma|ET] M+ Ls + —2 L )" Fien s ) il
I'(u+1) n+1
Ma" | EY||Mp I I
———— 1 —-u
T+l 1 2llv
Ma“||E’1|| a (Ma/LHE’1|\(L5+/%IL6))
Sm[(MB+L5+M+1L6>e Flt) +MB]||U1—142||V-

Thus, by Lemma 4.1, the operator H transforms a neighborhood of zero in U,q onto a
neighborhood of #(0) in the Banach space X. This proves the theorem. O

Remark 1 Controllability for a nonlinear fractional system was studied by many authors.
However, to the best of our knowledge, there are no results on the controllability of non-
local Hilfer fractional differential equations with the Clarke subdifferential.

Remark 2 Constrained controllability of for nonlinear fractional system was studied by
few authors. However, to the best of our knowledge, there are no results on the con-
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strained local controllability of nonlocal Hilfer fractional differential equations with the
Clarke subdifferential.

Remark 3 The study may be improved by finding the sufficient conditions for control-
lability and constrained local controllability of a Sobolev-type nonlocal Hilfer fractional

stochastic differential equation system with the Clarke subdifferential.

5 Applications
Example 5.1 Consider the following Sobolev-type nonlocal Hilfer fractional differential

system with the Clarke subdifferential in Banach spaces:

D33 (x(t.y) - 5690 509
= Bu(t,y) + = cos(x(t, %)) + [ ( S5 +5 /s (2+IT)2 dt)ds
+ aZ(t,x(t,y)), 0O<y<mte]=(0,1], (5.1)
x(t,0) =x(t,7)=0, te],

11
157 %(0,y) + 3202 cixltin ) = %0(9)s

12
where Dg.? is the Hilfer fractional derivative, v = L= % Let X = Y = L?(0,7) and de-

2
fine the operators A : D(A) CX — Y and E: D(E) C X — Y by Ax = —x,,, Ex = x — X,
where D(A), D(E) is given by {x € X : x,x, are absolutely continuous and xyy € X, x(0) =
() = 0] The functions x(1)y) = #(4), BUY) = Bu(ty). /(6:50)0) = 056,
g(t,s,%(s), fo H(s, t,x(7))dt)(y) = 32+9 9 0 > dt, H(s, t,x(t)) = 9 (2+r)2’ aZ(t,x(t))(y) =
02(t,x(t,)) and g(¥)() = Y7, cix(ti, ).
It is easy to verify that the function f satisfies hypothesis (H6) with N; = N = 3—10

Then A and E can be written as

2+1'

o0
Ax = Z n2(x, %, )%, x € D(A),

n=1

o0
Z 1 + n (x,xn)x,,, x € D(E),
n=1

where x,(y) = [ sinny,n=1,2,3,...,is the orthogonal set of eigenvectors of A and (x,x,)

is the L? inner product. Moreover, for x € X, we get

=1
1. _
Ex= Z T (%, %,)%,1,
n=1
o0 }’12
SAETx =) x),
n=1

It is well known that A generates a compact semigroup {7'(¢),¢ > 0} in X and

© o
T(t)x = Zemt(x,xn)xn, xeX,
n=1
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with
IT®)| <e’<1.

Moreover, the two operators P% (t) and S1 2 (2) satisfy

12
2’3

-1
6

Mt
re’

L

Mt
P, —
I3 < e

o 15120 <
3

We note that L, = é, Ly = % and choose other constants such that all hypotheses (H1)-
(H9) are satisfied and

-1 -1
M||E_1”<1+MIIE IIIIIiIIIIW ||>[||E||(||xo|!5+||4||)+ MS <ir+i
re re ré\s0 " 30

+§<L (r+§<Lr+i>>+1)+|| ||+kr)i|+ M IEZHIBI Wl l| < 7
50U T8\ T 36 g)*he re =

Hence, all the hypotheses of Theorem 3.1 are satisfied and the system (5.1) is controllable
onJ=(0,1].

Example 5.2 Consider the following Sobolev-type nonlocal Hilfer fractional differential

system with the Clarke subdifferential in Banach spaces:

D alt, ) = oo (6,6)) o5 (1)
= Bu(t, §) + G1(t,%(¢4, 6), ult, 6))
+ [y Galt,s,%(s,6), [ Ga(s, T, %(t, ¢)) dT, uls, §)) ds
+0Z(t,x(t,c)), 0<¢c=<mte]=(01],
x(t,0) =x(t,7)=0, te],

21
157 %0, 6) + D7 cix(ti, ¢) = %0(5),

(5.2)

13
where D, * is the Hilfer fractional derivative, v = 1, u = 2. Let X = Y = L*(0,7) and define

the operators A : D(A) CX — Y and E: D(E) C X — Y by Ax = —x., Ex = x — x.. where
D(A), D(E) is given by {x € X : x,x. are absolutely continuous and x.. € X, x(0) = x() = 0}.
The functions x(¢)(c) = x(¢, ), Bu(t)(s) = Bu(t, )0Z(t,x(£))(s) = 0Z(t,%(t, 5)), q(x)(5) =
Yrex(tng), filt,x(®),u®)(s) = Gitx(t ), ult,c)), gt s x(s), [y Hs, T,x(1))dT,
u(5))(s) = Ga(t,5,%(5,6), [ Ga(s, T,%(7, ) dT, ult, 5)).

Then A and E can be written as

o0
Ax = Z 12 (%, %)%, % € D(A),
n=1

Ex= Z(l +1°) (%, %)%, % € D(E),

n=1
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where x,(¢) = \/gsin ng, n=1,2,3,..., is the orthogonal set of eigenvectors of A and

(x,x,) is the L? inner product. Moreover, for x € X, we get

=1
Elx=) — — (50,
n=1

o0 2
-n
—AEx= E —— ()%,
2
— l+n

It is well known that A generates a compact semigroup {7'(¢),¢ > 0} in X and

o0
T(t)x = Zemt(x,xn)xn, xeX,

n=1

with
IT@®)| <e*=<1.

Moreover, the two operators P% (t) and S1 3(¢) satisfy

13
33

-1 -1
t4 Mts

<

Ps3 <
” 1(t)|| — I—v(%)

AN

Take L2[0, 7] as the control space and U = {u(t) € U : u(t, ¢) > 0}. The space of admis-
sible controls is U,q = L*(J; Uy) C V = L*(J; U) and the attainable set is

Kr(Up) = {x € X :x = x(t, ), ult, §) € Up}.

The associated linear control system of the nonlocal Hilfer fractional differential system
with the Clarke subdifferential (5.2) takes the form

13
Ddo’f()’(t: §)_y§g(t» §))_y§g(t’ <)
=BV(t,§), OSgSTl’,tE/Z(O,l],

y(t;o):)’(tﬁf)=0, te];

3 h

Ioy _)/(0, $)=0,

(5.3)

with mild solution in the form
t
y(t,v) = / E_IPM(t —$)Bv(s,c)ds, te]. (5.4)
0

We can prove that all the hypotheses (H10)—(H15) are satisfied. Hence, Theorem 4.1 is
satisfied and the nonlinear control system (5.2) is Uy-exactly locally controllable on J =
(0,1].



Ahmed et al. Journal of Inequalities and Applications (2019) 2019:233 Page 22 of 23

6 Conclusion

In this paper, by using fractional calculus and the Sadovskii fixed point theorem, we stud-
ied the sufficient conditions for controllability of Sobolev-type nonlocal Hilfer fractional
differential systems with Clarke’s subdifferential. In addition, we established the con-
strained local controllability for Sobolev-type nonlocal Hilfer fractional differential sys-
tems with Clarke’s subdifferential. Also, we provided two examples to illustrate our results.
In the future we aim to study the existence of mild solution for a class of noninstantaneous
and nonlocal impulsive Hilfer fractional stochastic integrodifferential equations with frac-

tional Brownian motion and Poisson jumps.
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