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Abstract
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1 Introduction
A Sobolev-type equation appears in several physical problems such as flow of fluids
through fissured rocks, thermodynamics and propagation of long waves of small ampli-
tude (see [1–3]). Nonlinear fractional differential equations can be observed in many areas
such as population dynamics, heat conduction in materials with memory, seepage flow
in porous media, autonomous mobile robots, fluid dynamics, traffic models, electro mag-
netic, aeronautics, economics (see [4–13]). Controllability means to steer a dynamical sys-
tem from an arbitrary initial state to the desired final state in a given finite interval of time
by using the admissible controls, and controllability results for linear and nonlinear integer
order differential systems were studied by several authors (see [14–27]). The constrained
controllability is concerned with the existence of an admissible control that steers the state
to a given target set from a specified initial state. Few authors studied constrained control-
lability; for example Son [28] studied constrained approximate controllability for the heat
equations and retarded equations, Klamka [29] studied constrained controllability of non-
linear systems, Klamka [30] studied constrained controllability of semilinear systems with
delays, Sikora and Klamka [31] studied constrained controllability of fractional linear sys-
tems with delays in control. Furthermore, the Clarke subdifferential has been applied in
mechanics and engineering, especially in nonsmooth analysis and optimization [32, 33].
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However, the controllability and the constrained controllability of nonlocal Hilfer frac-
tional differential equations with the Clarke subdifferential have not yet been considered
in the literature, and this fact motivates this work. The purpose of this paper is to study
the controllability of Sobolev-type nonlocal Hilfer fractional differential equation system
with the Clarke subdifferential in Banach spaces and to study the constrained local con-
trollability of Sobolev-type nonlocal Hilfer fractional differential system with the Clarke
subdifferential in Banach spaces.

2 Preliminaries
In order to study the controllability and constrained controllability for Clarke subdifferen-
tial Hilfer fractional differential equations with nonlocal condition, we need the following
basic definitions and lemmas.

Definition 2.1 (see [34]) The fractional integral operator of order μ > 0 for a function f
can be defined as

Iμf (t) =
1

Γ (μ)

∫ t

0

f (s)
(t – s)1–μ

ds, t > 0,

where Γ (·) is the Gamma function.

Definition 2.2 (see [35, 36]) The Hilfer fractional derivative of order 0 ≤ ν ≤ 1 and 0 <
μ < 1 is defined as

Dν,μ
0+ f (t) = Iν(1–μ)

0+
d
dt

I(1–ν)(1–μ)
0+ f (t).

Next we recall some definitions from multi-valued analysis (see [37])
(i) For a given Banach space X , a multi-valued map F : X → 2X \ {∅} := P(X) is convex

(closed) valued, if F(x) is convex (closed) for all x ∈ X .
(ii) F is called upper semi-continuous (u.s.c) on X , if for each x ∈ X , the set F(x) is a

non-empty, closed subset of X , and if for each open set V of X containing F(x),
there exists an open neighborhood N of x such that F(N) ⊆ V .

(iii) F is said to be completely continuous if F(V ) is relatively compact, for every
bounded subset V ⊆ X .

(iv) Let (Ω ,Σ) be a measurable space and (X, d) a separable metric space.
A multi-valued map F : J → P(X) is said to be measurable, if for every closed set
C ⊆ X , we have F–1 = {t ∈ J : F(t) ∩ C �= ∅} ∈ Σ .

Throughout this paper, let X is a Banach spaces with ‖ · ‖ and let C(J , X) be the Banach
space of all continuous maps from J = (0, a] into X.

Define Y = {x : ·(1–ν)(1–μ)x(·) ∈ C(J , X)}, with norm ‖ · ‖Y defined by

‖ · ‖Y = sup
t∈J

∥∥t(1–ν)(1–μ)x(t)
∥∥.

Obviously, Y is a Banach space.
Introduce the set Br = {x ∈ Y : ‖x‖Y ≤ r}, where r > 0.
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For x ∈ X, we define two families of operators {Sν,μ(t) : t > 0} and {Pμ(t) : t > 0} by

Sν,μ(t) = Iν(1–μ)
0+ Pμ(t), Pμ(t) = tμ–1Tμ(t),

Tμ(t) =
∫ ∞

0
μθΨμ(θ )S

(
tμθ

)
dθ ,

(2.1)

where

Ψμ(θ ) =
∞∑

n=1

(–θ )n–1

(n – 1)!Γ (1 – nμ)
, 0 < μ < 1, θ ∈ (0,∞), (2.2)

is a function of Wright-type which satisfies

∫ ∞

0
θτΨμ(θ ) dθ =

Γ (1 + τ )
Γ (1 + μτ )

, θ ≥ 0.

Lemma 2.1 (see [38]) The operators Sν,μ and Pμ have the following properties.
(i) {Pμ(t) : t > 0} is continuous in the uniform operator topology.

(ii) For any fixed t > 0, Sν,μ(t) and Pμ(t) are linear and bounded operators, and

∥∥Pμ(t)x
∥∥ ≤ Mtμ–1

Γ (μ)
‖x‖,

∥∥Sν,μ(t)x
∥∥ ≤ Mt(ν–1)(1–μ)

Γ (ν(1 – μ) + μ)
‖x‖. (2.3)

(iii) {Pμ(t) : t > 0} and {Sν,μ(t) : t > 0} are strongly continuous.
(iv) For every t > 0, {Pμ(t)} and {Sν,μ(t)} are also compact operators if T(t), t > 0 is

compact.

The operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y satisfy the following condi-
tions:

(H1) A and E are closed linear operators.
(H2) D(E) ⊂ D(A) and E is bijective.
(H3) E–1 : Y → D(E) is continuous.
Here, (H1) and (H2) together with the closed graph theorem imply the boundedness of

the linear operator AE–1 : Y → Y .
(H4) For each t ∈ J and for λ ∈ ρ(–AE–1), the resolvent of –AE–1, the resolvent of

R(λ, –AE–1) is the compact operator.

Lemma 2.2 (see [39]) Let T(t) be a uniformly continuous semigroup. If the resolvent set
R(λ, A) of A is compact for every λ ∈ ρ(A), then T(t) is a compact semigroup.

From the above fact, –AE–1 generates a compact semigroup {S(t), t > 0} in Y , which means
that there exists M > 1 such that supt∈J ‖S(t)‖ ≤ M.

Definition 2.3 (see [33, 37]) Let X be a Banach space with the dual space X∗ and Z : X →
R, be a locally Lipschitz functional on X. The Clarke generalized directional derivative of
Z at the point x ∈ X in the direction v ∈ X, denoted by Z0(x; v), is defined by

Z0(x; v) = lim
λ→0+

sup
y→x

Z(y + λv) – Z(y)
λ

.
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The Clarke generalized gradient of Z at x ∈ X, denoted by ∂Z(x), is a subset of X∗ given
by

∂Z(x) = x∗ ∈ X∗ : Z0(x; v) ≥ 〈
x∗, v

〉
, ∀v ∈ X.

(H5) The functional Z : J × X → R satisfies the following conditions:
(i) Z(·, x) : J → R is measurable for all x ∈ X ;

(ii) Z(t, ·) : X → R is locally Lipschitz continuous for a.e. t ∈ J ;
(iii) there exist a function ζ ∈ Lp(J , R+) (0 < 1

p < μ < 1) and constant k > 0 satisfying

∥∥∂Z(t, x)
∥∥

X = sup
{‖z‖X : z ∈ ∂Z(t, x)

} ≤ ζ (t) + k‖x‖X , ∀x ∈ X, a.e. t ∈ J .

Now we define an operator N : L2(J , X) → 2L2(J ,X) as follows:

N(x) =
{

w ∈ L2(J , X) : w(t) ∈ ∂Z(t, x) a.e. t ∈ J
}

, for x ∈ L2(J , X).

Lemma 2.3 If (H5) holds, then for x ∈ L2(J , X) the set N(x) has non-empty, convex and
weakly compact values.

Lemma 2.4 If (H5) holds, then the operator N satisfies: if xn → x in L2(J , X), wn → w
weakly in L2(J , X) and wn ∈ N(xn), then we have w ∈ N(x).

Theorem 2.1 Let X be a Banach space and F : X → 2X be a compact convex valued, u.s.c.
multi-valued maps such that there exists a closed neighborhood V of 0 for which F(V ) is a
relatively compact set. If the set Ω = {x ∈ X : λx ∈ F(x) for some λ > 1} is bounded, then F
has a fixed point.

3 Controllability results
In this section, we present and prove main results of controllability for a Sobolev-type non-
local Hilfer fractional differential system with the Clarke subdifferential in Banach spaces
in the following form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dν,μ
0+ (Ex(t)) + Ax(t)

= Bu(t) + f (t, x(t)) +
∫ t

0 g(t, s, x(s),
∫ s

0 H(s, τ , x(τ )) dτ ) ds

+ ∂Z(t, x(t)), t ∈ J = (0, a],

I(1–ν)(1–μ)
0+ x(0) + q(x) = x0,

(3.1)

where Dν,μ
0+ is the Hilfer fractional derivative, 0 ≤ ν ≤ 1, 0 < μ < 1, A and E are closed,

linear and densely defined operators with domain contained in the Banach space X and
ranges contained in the Banach space Y . The state x(·) takes values in the Banach space X
and the control function u(·) is given in L2(J , U). The Banach space of admissible control
functions with U a Banach space. The symbol B stands for a bounded linear from U into Y .
The nonlinear operators f : J ×X → Y , H : J × J ×X → X, g : J × J ×X ×X → Y and ∂Z(t, ·)
is the Clarke subdifferential of Z(t, ·).

To establish the result, we need the following additional hypotheses:
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(H6) f : J × X → Y is a continuous function and there exist constants N1 > 0 and N2 > 0
such that, for all t ∈ J , v1, v2 ∈ X we have

∥∥f (t, v1) – f (t, v2)
∥∥ ≤ N1‖v1 – v2‖, N2 =

∥∥f (t, 0)
∥∥.

(H7) g : J × J × X × X → Y is a continuous function and there exist constants L1 > 0
and L2 > 0 such that, for all t, s ∈ J , v1, v2, w1, w2 ∈ X we have

∥∥g(t, s, v1, w1) – g(t, s, v2, w2)
∥∥ ≤ L1

[‖v1 – v2‖ + ‖w1 – w2‖
]
,

L2 =
∥∥g(t, s, 0, 0)

∥∥.

(H8) H : J × J × X → X is continuous and there exist constants L3 > 0, L4 > 0, such that
for all t, s ∈ J , v1, v2 ∈ X we have

∥∥H(t, s, v1) – H(t, s, v2)
∥∥ ≤ L3‖v1 – v2‖, L4 =

∥∥H(t, s, 0)
∥∥.

(H9) The linear operator W from U into E defined by

Wu =
∫ a

0
E–1Pμ(a – s)Bu(s) ds,

has an inverse operator W –1 which takes values in L2(J , U) \ ker W , where the
kernel space of W is defined by ker W = {x ∈ L2(J , U) : Wx = 0} and B is a bounded
operator.

Definition 3.1 We say x ∈ C(J , X) is a mild solution of the system (3.1) if it satisfies the
integral equation

x(t) = E–1Sν,μ(t)E
[
x0 – q(x)

]
+

∫ t

0
E–1Pμ(t – s)f

(
s, x(s)

)
ds +

∫ t

0
E–1Pμ(t – s)Bu(s) ds

+
∫ t

0
E–1Pμ(t – s)

{∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ

}
ds

+
∫ t

0
E–1Pμ(t – s)z(s) ds, t ∈ J , (3.2)

where

R(τ ) =
∫ τ

0
H

(
τ ,η, x(η)

)
dη.

The proof of mild solution of Eq. (3.1) is similar to the proof of mild solution of Eq. (1.1)
in [38].

Definition 3.2 The system (3.1) is said to be controllable on J , if for every x0, x1 ∈ X, there
exists a control u ∈ L2(J , U) such that the mild solution x(t) of the system (3.1) satisfies
x(a) = x1, where x1 and a are the preassigned terminal state and time, respectively.
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Theorem 3.1 If the hypotheses (H1)–(H9) are satisfied, then the system (3.1) is controllable
on J provided that there exists a constant r > 0 such that

M
∥∥E–1∥∥

(
1 +

Maμ‖E–1‖‖B‖‖W –1‖
Γ (μ + 1)

)[‖E‖(‖x0‖ + ‖q‖)
Γ (ν(1 – μ) + μ)

+
Maν(μ–1)+1

Γ (μ + 1)

(
N1r + N2 +

a
μ + 1

(
L1

(
r +

a
μ + 2

(L3r + L4)
)

+ L2

)
+ ‖ζ‖ + kr

)]

+
Maν(μ–1)+1

Γ (μ + 1)
∥∥E–1∥∥‖B‖∥∥W –1∥∥‖x1‖ ≤ r.

Proof For any x ∈ C(J , X) ⊂ L2(J , X) from Lemma 2.3 we consider the map Vr : C(J , X) →
2C(J ,X) as follows:

Vr(x) =
{

h ∈ C(J , X) : h(t) = E–1Sν,μ(t)E
[
x0 – q(x)

]
+

∫ t

0
E–1Pμ(t – s)f

(
s, x(s)

)
ds

+
∫ t

0
E–1Pμ(t – s)Bu(s) ds +

∫ t

0
E–1Pμ(t – s)

∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ ds

+
∫ t

0
E–1Pμ(t – s)z(s) ds, z ∈ N(x)

}
, for x ∈ C(J , X).

We will show Vr has a fixed point using Theorem 2.1. Note Vr(x) is convex from con-
vexity of N(x). We divide the proof into five steps.

Step 1: Vr maps bounded sets into bounded sets in C(J , X).
For any x ∈ Br and Φ ∈ Vr(x), we choose a z ∈ N(x) with

Φ(t) = E–1Sν,μ(t)E
[
x0 – q(x)

]
+

∫ t

0
E–1Pμ(t – s)f

(
s, x(s)

)
ds +

∫ t

0
E–1Pμ(t – s)Bu(s) ds

+
∫ t

0
E–1Pμ(t – s)

∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ ds +

∫ t

0
E–1Pμ(t – s)z(s) ds.

Using the assumption (H9) for any arbitrary function x(·), define the control

u(t) = W –1
{

x1 – E–1Sν,μ(a)E
[
x0 – q(x)

]
–

∫ a

0
E–1Pμ(a – s)f

(
s, x(s)

)
ds

–
∫ a

0
E–1Pμ(a – s)

∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ ds –

∫ a

0
E–1Pμ(a – s)z(s) ds

}
(t),

then the operator Φ takes the form

Φ(t) = E–1Sν,μ(t)E
[
x0 – q(x)

]
+

∫ t

0
E–1Pμ(t – s)f

(
s, x(s)

)
ds +

∫ t

0
E–1Pμ(t – s)BW –1

×
{

x1 – E–1Sν,μ(a)E
(
x0 – q(x)

)
–

∫ a

0
E–1Pμ(a – η)f

(
η, x(η)

)
dη

–
∫ a

0
E–1Pμ(a – η)

{∫ η

0
g
(
η, τ , x(τ ), R(τ )

)
dτ

}
dη
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–
∫ a

0
E–1Pμ(a – η)z(η) dη

}
(s) ds

+
∫ t

0
E–1Pμ(t – s)

∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ ds +

∫ t

0
E–1Pμ(t – s)z(s) ds. (3.3)

From (H7), (H8) and the Beta function, we have

∫ t

0
(t – s)μ–1

∫ s

0

∥∥∥∥g
(

s, τ , x(τ ),
∫ τ

0
H

(
τ ,η, x(η)

)
dη

)
dτ

∥∥∥∥ds

≤
∫ t

0
(t – s)μ–1

∫ s

0

(
L1

(
‖x‖ +

∫ τ

0

∥∥H
(
τ ,η, x(η)

)∥∥dη

)
+ L2

)
dτ ds

≤
∫ t

0
(t – s)μ–1

∫ s

0

(
L1

(
r +

∫ τ

0
(L3r + L4) dη

)
+ L2

)
dτ ds

≤
∫ t

0
(t – s)μ–1

∫ s

0

(
L1

(
r + τ (L3r + L4)

)
+ L2

)
dτ ds

≤
∫ t

0
(t – s)μ–1

[(
L1

(
sr +

s2

2
(L3r + L4)

)
+ sL2

)]
ds

≤ L1

(
rtμ+1 Γ (μ)Γ (2)

Γ (μ + 2)
+

1
2

tμ+2 Γ (μ)Γ (3)
Γ (μ + 3)

(L3r + L4)
)

+ L2tμ+1 Γ (μ)Γ (2)
Γ (μ + 2)

≤ aμ+1

μ(μ + 1)

[
L1

(
r +

a
μ + 2

(L3r + L4)
)

+ L2

]
.

From (H5)–(H9), Lemma 2.1 and Hölder’s inequality, we have

‖Φ‖Y = sup
t∈J

t(1–ν)(1–μ)∥∥Φ(t)
∥∥

≤ sup
t∈J

t(1–ν)(1–μ)
{∥∥E–1∥∥∥∥Sν,μ(t)

∥∥‖E‖∥∥x0 – q(x)
∥∥

+
∫ t

0

∥∥E–1∥∥∥∥Pμ(t – s)
∥∥∥∥f

(
s, x(s)

)∥∥ds +
∫ t

0

∥∥E–1∥∥∥∥Pμ(t – s)
∥∥‖B‖∥∥W –1∥∥

×
∥∥∥∥x1 – E–1Sν,μ(a)E

(
x0 – q(x)

)
–

∫ a

0
E–1Pμ(a – η)f

(
η, x(η)

)
dη

–
∫ a

0
E–1Pμ(a – η)

{∫ η

0
g
(
η, τ , x(τ ), R(τ )

)
dτ

}
dη

–
∫ a

0
E–1Pμ(a – η)z(η) dη

∥∥∥∥(s) ds

+
∫ t

0

∥∥E–1∥∥∥∥Pμ(t – s)
∥∥

∫ s

0

∥∥g
(
s, τ , x(τ ), R(τ )

)
dτ

∥∥ds

+
∫ t

0

∥∥E–1∥∥∥∥Pμ(t – s)
∥∥∥∥z(s)

∥∥ds
}

≤ M
Γ (ν(1 – μ) + μ)

∥∥E–1∥∥‖E‖(‖x0‖ +
∥∥q(x)

∥∥)

+
Maν(μ–1)+1‖E–1‖

Γ (μ + 1)
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×
[

N1r + N2 +
a

μ + 1

(
L1

(
r +

a
μ + 2

(L3r + L4)
)

+ L2

)
+ ‖ζ‖ + kr

]

+
Maν(μ–1)+1

Γ (μ + 1)
∥∥E–1∥∥‖B‖∥∥W –1∥∥‖x1‖

+
M2aμ‖E–1‖2‖B‖‖W –1‖‖E‖
Γ (μ + 1)Γ (ν(1 – μ) + μ)

(‖x0‖ +
∥∥q(x)

∥∥)

+
M2aν(μ–1)+1‖E–1‖2‖B‖‖W –1‖aμ

Γ (μ + 1)2

×
[

N1r + N2 +
a

μ + 1

(
L1

(
r +

a
μ + 2

(L3r + L4)
)

+ L2

)
+ ‖ζ‖ + kr

]

=
M

Γ (ν(1 – μ) + μ)
∥∥E–1∥∥‖E‖(‖x0‖ +

∥∥q(x)
∥∥)(

1 +
Maμ‖E–1‖‖B‖‖W –1‖

Γ (μ + 1)

)

+
Maν(μ–1)+1‖E–1‖

Γ (μ + 1)

×
[

N1r + N2 +
a

μ + 1

(
L1

(
r +

a
μ + 2

(L3r + L4)
)

+ L2

)
+ ‖ζ‖ + kr

]

×
(

1 +
Maμ‖E–1‖‖B‖‖W –1‖

Γ (μ + 1)

)
+

Maν(μ–1)+1

Γ (μ + 1)
∥∥E–1∥∥‖B‖∥∥W –1∥∥‖x1‖

= M
∥∥E–1∥∥

(
1 +

Maμ‖E–1‖‖B‖‖W –1‖
Γ (μ + 1)

)

×
[‖E‖(‖x0‖ + ‖q‖)

Γ (ν(1 – μ) + μ)
+

Maν(μ–1)+1

Γ (μ + 1)

×
(

N1r + N2 +
a

μ + 1

(
L1

(
r +

a
μ + 2

(L3r + L4)
)

+ L2

)
+ ‖ζ‖ + kr

)]

+
Maν(μ–1)+1

Γ (μ + 1)
∥∥E–1∥∥‖B‖∥∥W –1∥∥‖x1‖ ≤ r.

Thus Vr(Br) is bounded in C(J , X).
Step 2: {Vr(x) : x ∈ Br} is equicontinuous (for all r > 0).
For any x ∈ Br and Φ ∈ Vr(x) and z ∈ N(x) and from Lemma 2.1(ii) and Hölder’s inequal-

ity, we have

∥∥Φ(t) – Φ(0)
∥∥

Y

= sup
t∈J

t(1–ν)(1–μ)∥∥Φ(t) – Φ(0)
∥∥

≤ M
∥∥E–1∥∥

(
1 +

Maμ‖E–1‖‖B‖‖W –1‖
Γ (μ + 1)

)

×
[‖E‖(‖x0‖ + ‖q‖)

Γ (ν(1 – μ) + μ)
+

Maν(μ–1)+1

Γ (μ + 1)

×
(

N1r + N2 +
a

μ + 1

(
L1

(
r +

a
μ + 2

(L3r + L4)
)

+ L2

)
+ ‖ζ‖ + kr

)]

+
Maν(μ–1)+1

Γ (μ + 1)
∥∥E–1∥∥‖B‖∥∥W –1∥∥‖x1‖ + ‖x0‖ + ‖q‖.
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Thus, for all ε > 0 and for sufficiently small δ1 > 0, with 0 < t ≤ δ1, we have ‖Φ(t) –
Φ(0)‖Y < ε

2 . Hence, for all ε > 0, ∀τ1, τ2 ∈ [0, δ1] and ∀Φ ∈ Vr(Br), we have ‖Φ(τ2) –
Φ(τ1)‖Y < ε. For any x ∈ Br , and δ1

2 ≤ τ1 < τ2 ≤ a, we obtain

∥∥Φ(τ2) – Φ(τ1)
∥∥

≤ ∥∥E–1∥∥
{∥∥(

Sν,μ(τ2) – Sν,μ(τ1)
)
E
(
x0 – q(x)

)∥∥ +
∥∥∥∥
∫ τ2

τ1

Pμ(τ2 – s)f
(
s, x(s)

)
ds

∥∥∥∥

+
∥∥∥∥
∫ τ2

τ1

Pμ(τ2 – s)BW –1
{

x1 – E–1Sν,μ(a)E
(
x0 – q(x)

)

–
∫ a

0
E–1Pμ(a – η)f

(
η, x(η)

)
dη –

∫ a

0
E–1Pμ(a – η)

∫ η

0
g
(
η, τ , x(τ ), R(τ )

)
dτ dη

–
∫ a

0
E–1Pμ(a – η)z(η) dη

}
(s) ds

∥∥∥∥
+

∥∥∥∥
∫ τ2

τ1

Pμ(τ2 – s)
∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ ds

∥∥∥∥ +
∥∥∥∥
∫ τ2

τ1

Pμ(τ2 – s)z(s) ds
∥∥∥∥

+
∥∥∥∥
∫ τ1

0

[
Pμ(τ2 – s) – Pμ(τ1 – s)

]
f
(
s, x(s)

)
ds

∥∥∥∥
+

∥∥∥∥
∫ τ1

0

[
Pμ(τ2 – s) – Pμ(τ1 – s)

]
BW –1

{
x1 – E–1Sν,μ(a)E

(
x0 – q(x)

)

–
∫ a

0
E–1Pμ(a – η)f

(
η, x(η)

)
dη –

∫ a

0
E–1Pμ(a – η)

∫ η

0
g
(
η, τ , x(τ ), R(τ )

)
dτ dη

–
∫ a

0
E–1Pμ(a – η)z(η) dη

}
(s) ds

∥∥∥∥
+

∥∥∥∥
∫ τ1

0

[
Pμ(τ2 – s) – Pμ(τ1 – s)

] ∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ ds

∥∥∥∥
+

∥∥∥∥
∫ τ1

0

[
Pμ(τ2 – s) – Pμ(τ1 – s)

]
z(s) ds

∥∥∥∥
}

. (3.4)

From the compactness of T(t), t > 0 , Lemma 2.1(ii), we see that the right hand side of
inequality (3.4) tends to zero as τ2 → τ1. Thus we see that ‖(Φ)(τ2) – (Φ)(τ1)‖Y tends to
zero.

For ∀ε > 0, ∀τ1, τ2 ∈ (0, a], |τ1 – τ2| < δ1, ∀Φ ∈ Vr(Br) we see that ‖(Φ)(τ2) – (Φ)(τ1)‖Y < ε

independently of x ∈ Br . Therefore, we deduce that {Vr(x) : x ∈ Br} is an equicontinuous
family of functions in C(J , X).

Step 3: Vr is completely continuous.
We prove that, for all t ∈ J , r > 0, the set

∏
(t) = {Φ(t) : Φ ∈ Vr(Br)} is relatively compact

in X. Obviously,
∏

(0) = x0 – q(x) is compact, so we only need to consider t > 0. Let 0 < t < a
be fixed. For any x ∈ Br , Φ ∈ Vr(x), we choose z ∈ N(x) with

Φ(t) = E–1Sν,μ(t)E
[
x0 – q(x)

]
+

∫ t

0
E–1Pμ(t – s)f

(
s, x(s)

)
ds +

∫ t

0
E–1Pμ(t – s)BW –1

×
{

x1 – E–1Sν,μ(a)E
(
x0 – q(x)

)
–

∫ a

0
E–1Pμ(a – η)f

(
η, x(η)

)
dη

–
∫ a

0
E–1Pμ(a – η)

{∫ η

0
g
(
η, τ , x(τ ), R(τ )

)
dτ

}
dη
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–
∫ a

0
E–1Pμ(a – η)z(η) dη

}
(s) ds +

∫ t

0
E–1Pμ(t – s)

∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ ds

+
∫ t

0
E–1Pμ(t – s)z(s) ds, t ∈ J .

For each ε ∈ (0, t), t ∈ (0, a], x ∈ Br , and any δ > 0, we define

Φε,δ(t) =
μ

Γ (ν(1 – μ))

∫ t

0

∫ ∞

δ

E–1θ (t – s)ν(1–μ)–1sμ–1Ψμ(θ )S
(
sμθ

)
E
[
x0 – q(x)

]
dθ ds

+ μ

∫ t–ε

0

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)
f
(
s, x(s)

)
dθ ds

+ μ

∫ t–ε

0

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)
BW –1

×
[

x1 –
μ

Γ (ν(1 – μ))

∫ a

0

∫ ∞

0
E–1θ (a – η)ν(1–μ)–1ημ–1Ψμ(θ )S

(
ημθ

)

× E
[
x0 – q(x)

]
dθ dη

– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

)
f
(
η, x(η)

)
dθ dη

– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

)

×
{∫ η

0
g
(
η, τ , x(τ ), R(τ )

)
dτ

}
dθ dη

– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

)
z(η) dθ dη

]
(s) dθ ds

+ μ

∫ t–ε

0

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ dθ ds

+ μ

∫ t–ε

0

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)
z(s) dθ ds

=
μS(εμδ)

Γ (ν(1 – μ))

∫ t

0

∫ ∞

δ

E–1θ (t – s)ν(1–μ)–1sμ–1Ψμ(θ )S
(
sμθ – εμδ

)

× E
[
x0 – q(x)

]
dθ ds

+ μS
(
εμδ

)∫ t–ε

0

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ – εμδ

)
f
(
s, x(s)

)
dθ ds

+ μS
(
εμδ

)∫ t–ε

0

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ – εμδ

)
BW –1

×
[

x1 –
μ

Γ (ν(1 – μ))

∫ a

0

∫ ∞

0
E–1θ (a – η)ν(1–μ)–1ημ–1Ψμ(θ )S

(
ημθ

)

× E
[
x0 – q(x)

]
dθ dη

– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

)
f
(
η, x(η)

)
dθ dη

– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

)

×
{∫ η

0
g
(
η, τ , x(τ ), R(τ )

)
dτ

}
dθ dη
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– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

)
z(η) dθ dη

]
(s) dθ ds

+ μS
(
εμδ

)∫ t–ε

0

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ – εμδ

)

×
∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ dθ ds

+ μS
(
εμδ

)∫ t–ε

0

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ – εμδ

)
z(s) dθ ds.

From the compactness of S(εμδ), εμδ > 0 and the bounded of u(s) we see that the set∏
ε,δ(t) = {Φε,δ(t) : Φ ∈ Vr(Br)} is relatively compact in X for each ε ∈ (0, t) and δ > 0. More-

over, we have

∥∥Φ(t) – Φε,δ(t)
∥∥

Y

= sup
t∈J

t(1–ν)(1–μ)∥∥Φ(t) – Φε,δ(t)
∥∥

≤ sup
t∈J

t(1–ν)(1–μ)
{∥∥∥∥ μ

Γ (ν(1 – μ))

∫ t

0

∫ δ

0
E–1θ (t – s)ν(1–μ)–1sμ–1Ψμ(θ )S

(
sμθ

)

× E
[
x0 – q(x)

]
dθ ds

∥∥∥∥

+ μ

∥∥∥∥
∫ t

0

∫ δ

0
E–1θ (t – s)μ–1Ψμ(θ )S

(
(t – s)μθ

)
f
(
s, x(s)

)
dθ ds

∥∥∥∥

+ μ

∥∥∥∥
∫ t

0

∫ δ

0
E–1θ (t – s)μ–1Ψμ(θ )S

(
(t – s)μθ

)
BW –1

×
[

x1 –
μ

Γ (ν(1 – μ))

∫ a

0

∫ ∞

0
E–1θ (a – η)ν(1–μ)–1ημ–1Ψμ(θ )S

(
ημθ

)

× E
[
x0 – q(x)

]
dθ dη

– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

)
f
(
η, x(η)

)
dθ dη

– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

){∫ η

0
g
(
η, τ , x(τ ), R(τ )

)
dτ

}
dθ dη

– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

)
z(η) dθ dη

]
(s) dθ ds

∥∥∥∥

+ μ

∥∥∥∥
∫ t

0

∫ δ

0
E–1θ (t – s)μ–1Ψμ(θ )S

(
(t – s)μθ

)∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ dθ ds

∥∥∥∥

+ μ

∥∥∥∥
∫ t

0

∫ δ

0
E–1θ (t – s)μ–1Ψμ(θ )S

(
(t – s)μθ

)
z(s) dθ ds

∥∥∥∥

+ μ

∥∥∥∥
∫ t

t–ε

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)
f
(
s, x(s)

)
dθ ds

∥∥∥∥

+ μ

∥∥∥∥
∫ t

t–ε

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)
BW –1

×
[

x1 –
μ

Γ (ν(1 – μ))

∫ a

0

∫ ∞

0
E–1θ (a – η)ν(1–μ)–1ημ–1Ψμ(θ )S

(
ημθ

)
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× E
[
x0 – q(x)

]
dθ dη

– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

)
f
(
η, x(η)

)
dθ dη

– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

){∫ η

0
g
(
η, τ , x(τ ), R(τ )

)
dτ

}
dθ dη

– μ

∫ a

0

∫ ∞

0
E–1θ (a – s)μ–1Ψμ(θ )S

(
(a – s)μθ

)
z(η) dθ dη

]
(s) dθ ds

∥∥∥∥

+ μ

∥∥∥∥
∫ t

t–ε

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ dθ ds

∥∥∥∥

+ μ

∥∥∥∥
∫ t

t–ε

∫ ∞

δ

E–1θ (t – s)μ–1Ψμ(θ )S
(
(t – s)μθ

)
z(s) dθ ds

∥∥∥∥
}

≤ μM‖E–1‖‖E‖[‖x0‖ + ‖q(x)‖]
Γ (ν(1 – μ))

sup
t∈J

t(1–ν)(1–μ)
∫ t

0
(t – s)ν(1–μ)–1sμ–1 ds

∫ δ

0
θΨμ(θ ) dθ

+ μM
∥∥E–1∥∥ sup

t∈J
t(1–ν)(1–μ)

∫ t

0
(t – s)μ–1gk(s) ds

∫ δ

0
θΨμ(θ ) dθ

+ μM
∥∥E–1∥∥‖B‖∥∥W –1∥∥ sup

t∈J
t(1–ν)(1–μ)

∫ t

0
(t – s)μ–1

×
[
‖x1‖ +

μM‖E–1‖‖E‖[‖x0‖ + ‖q(x)‖]
Γ (ν(1 – μ))

∫ a

0
(a – η)ν(1–μ)–1ημ–1 dη

+ μM
∥∥E–1∥∥

∫ a

0
(a – s)μ–1gk(η) dη + μM

∥∥E–1∥∥
∫ a

0
(a – s)μ–1hk(η) dη

+ μM
∥∥E–1∥∥∫ a

0
(a – s)μ–1z(η) dη

]
(s) ds

∫ δ

0
θΨμ(θ ) dθ

+ μM
∥∥E–1∥∥ sup

t∈J
t(1–ν)(1–μ)

∫ t

0
(t – s)μ–1hk(s) ds

∫ δ

0
θΨμ(θ ) dθ

+ μM
∥∥E–1∥∥ sup

t∈J
t(1–ν)(1–μ)

∫ t

0
(t – s)μ–1z(s) ds

∫ δ

0
θΨμ(θ ) dθ

+ μM
∥∥E–1∥∥ sup

t∈J
t(1–ν)(1–μ)

∫ t

t–ε

(t – s)μ–1gk(s) ds
∫ ∞

δ

θΨμ(θ ) dθ

+ μM
∥∥E–1∥∥‖B‖∥∥W –1∥∥ sup

t∈J
t(1–ν)(1–μ)

∫ t

t–ε

(t – s)μ–1

×
[
‖x1‖ +

μM‖E–1‖‖E‖[‖x0‖ + ‖q(x)‖]
Γ (ν(1 – μ))

∫ a

0
(a – η)ν(1–μ)–1ημ–1 dη

+ μM
∥∥E–1∥∥

∫ a

0
(a – s)μ–1gk(η) dη + μM

∥∥E–1∥∥
∫ a

0
(a – s)μ–1hk(η) dη

+ μM
∥∥E–1∥∥

∫ a

0
(a – s)μ–1z(η) dη

]
(s) ds

∫ ∞

δ

θΨμ(θ ) dθ

+ μM
∥∥E–1∥∥ sup

t∈J
t(1–ν)(1–μ)

∫ t

t–ε

(t – s)μ–1hk(s) ds
∫ ∞

δ

θΨμ(θ ) dθ

+ μM
∥∥E–1∥∥ sup

t∈J
t(1–ν)(1–μ)

∫ t

t–ε

(t – s)μ–1z(s) ds
∫ ∞

δ

θΨμ(θ ) dθ .
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Now we see that ‖Φ(t) – Φε,δ(t)‖Y → 0 as ε → 0, δ → 0. Therefore, the set
∏

(t), t > 0 is
totally bounded, i.e., relatively compact in X. From the above (and step 2) and the Ascoli–
Arzela theorem, we see that Vr is completely continuous.

Step 4: Vr has a closed graph.
Let xn → x∗ as n → ∞ in C(J , X), Φn ∈ Vr(xn) and Φn → Φ∗ as n → ∞ in C(J , X). We

prove that Φ∗ ∈ Vr(x∗). Now Φn ∈ Vr(xn), so there exist zn ∈ N(xn), fn = f (t, xn(t)), Rn(τ ) =∫ τ

0 H(τ ,η, xn(η)) dη and gn = g(t, s, xn(s), Rn(τ )) in L2(J , X) with

Φn(t) = E–1Sν,μ(t)E
[
x0 – q(x)

]
+

∫ t

0
E–1Pμ(t – s)fn

(
s, x(s)

)
ds +

∫ t

0
E–1Pμ(t – s)Bu(s) ds

+
∫ t

0
E–1Pμ(t – s)

∫ s

0
gn

(
s, τ , x(τ ), Rn(τ )

)
dτ ds+

∫ t

0
E–1Pμ(t – s)zn(s) ds. (3.5)

From (H5)–(H8), {zn, fn, gn}n≥1 ⊆ L2(J , X) are bounded. Hence we assume that

zn → z∗, fn → f∗, gn → g∗, weakly in L2(J , X). (3.6)

From (3.5), (3.6) and compactness of Pμ(t), we have

Φn(t) → E–1Sν,μ(t)E
[
x0 – q(x)

]
+

∫ t

0
E–1Pμ(t – s)f∗

(
s, x(s)

)
ds

+
∫ t

0
E–1Pμ(t – s)Bu(s) ds +

∫ t

0
E–1Pμ(t – s)

∫ s

0
g∗

(
s, τ , x(τ ), R∗(τ )

)
dτ ds

+
∫ t

0
E–1Pμ(t – s)z∗(s) ds.

Note that Φn → Φ∗ in C(J , X) and zn ∈ N(xn). Hence, from Lemma 2.4 we obtain z∗ ∈
N(x∗) and Φ∗ ∈ Vr(x∗), which implies Vr has a closed graph and Vr is u.s.c.

Step 5: A priori estimate.
From steps 1–4, we see that Vr is u.s.c. and is compact convex valued and Vr(Br) is

a relatively compact set (here r > 0). We now prove that the set Ω = {x ∈ C(J , X) : λx ∈
Vr(x),λ > 0} is bounded. For all x ∈ ω, there exist z ∈ N(x) and f , g in L2(J , X) with

x(t) = λ–1E–1Sν,μ(t)E
[
x0 – q(x)

]
+ λ–1

∫ t

0
E–1Pμ(t – s)f

(
s, x(s)

)
ds

+ λ–1
∫ t

0
E–1Pμ(t – s)Bu(s) ds

+ λ–1
∫ t

0
E–1Pμ(t – s)

{∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ

}
ds

+ λ–1
∫ t

0
E–1Pμ(t – s)z(s) ds. (3.7)

Then from assumptions (H5)–(H8), we derive

∥∥x(t)
∥∥

Y = sup
t∈J

t(1–ν)(1–μ)∥∥x(t)
∥∥

= sup t(1–ν)(1–μ)
{∥∥∥∥λ–1E–1Sν,μ(t)E

[
x0 – q(x)

]
+ λ–1

∫ t

0
E–1Pμ(t – s)f

(
s, x(s)

)
ds
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+ λ–1
∫ t

0
E–1Pμ(t – s)Bu(s) ds

+ λ–1
∫ t

0
E–1Pμ(t – s)

{∫ s

0
g
(
s, τ , x(τ ), R(τ )

)
dτ

}
ds

+ λ–1
∫ t

0
E–1Pμ(t – s)z(s) ds

∥∥∥∥
}

≤ sup t(1–ν)(1–μ)
{
λ–1∥∥E–1∥∥∥∥Sν,μ(t)

∥∥‖E‖(‖x0‖ +
∥∥q(x)

∥∥)

+ λ–1
∫ t

0

∥∥E–1∥∥∥∥Pμ(t – s)
∥∥∥∥f

(
s, x(s)

)∥∥ds

+ λ–1
∫ t

0

∥∥E–1∥∥∥∥Pμ(t – s)
∥∥‖B‖∥∥u(s)

∥∥ds

+ λ–1
∫ t

0

∥∥E–1∥∥∥∥Pμ(t – s)
∥∥

∫ s

0

∥∥g
(
s, τ , x(τ ), R(τ )

)
dτ

∥∥ds

+ λ–1
∫ t

0

∥∥E–1∥∥∥∥Pμ(t – s)
∥∥∥∥z(s)

∥∥ds
}

≤ Mλ–1

Γ (ν(1 – μ) + μ)
∥∥E–1∥∥‖E‖(‖x0‖ +

∥∥q(x)
∥∥)

+
Maν(μ–1)+1λ–1‖E–1‖

Γ (μ + 1)

×
[

N1r + N2 +
a

μ + 1

(
L1

(
r +

a
μ + 2

(L3r + L4)
)

+ L2

)

+ ‖ζ‖ + kr + ‖B‖‖u‖
]

.

It follows from (3.7) and λ–1 < 1 that ‖x(t)‖Y ≤ r. Hence, ‖x‖C = supt∈J ‖x(t)‖Y ≤ r, which
implies the set Ω is bounded.

From Theorem 2.1, Vr has a fixed point, i.e., the system (3.1) is controllable and the proof
is complete. �

4 Constrained controllability
In this section, we present the constrained local controllability of Sobolev-type nonlocal
Hilfer fractional differential system with the Clarke subdifferential in Banach spaces in the
following form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dν,μ
0+ (Ex(t)) + Ax(t)

= Bu(t) + f1(t, x(t), u(t)) +
∫ t

0 g1(t, s, x(s),
∫ s

0 H(s, τ , x(τ )) dτ , u(s)) ds

+ ∂Z(t, x(t)), t ∈ J = (0, a],

I(1–ν)(1–μ)
0+ x(0) + q(x) = x0,

(4.1)

where the nonlinear operators f1 : J × X × U → Y , H : J × J × X → X, g1 : J × J × X × X ×
U → Y and ∂Z(t, ·) is the Clarke subdifferential of Z(t, ·).

In this section, we need the following hypotheses:
(H10) Let ‖Bu(t)‖ ≤ MB‖u(t)‖U for all u(t) ∈ U on J where MB > 0.
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(H11) f1 : J × X × U → Y is a uniformly continuous function in t and there exist
constants L5 > 0 such that for all t ∈ J , v1, v2 ∈ X , u1, u2 ∈ U we have

∥∥f1(t, v1, u1) – f1(t, v2, u2)
∥∥ ≤ L5

(‖v1 – v2‖ + ‖u1 – u2‖U
)
.

(H12) g1 : J × J × X × X × U → Y is a uniformly continuous function in t and there
exist constants L6 > 0 such that for all t, s ∈ J , v1, v2 ∈ X , u1, u2 ∈ U we have

∥∥g1(t, s, v1, u1) – g1(t, s, v2, u2)
∥∥ ≤ L6

(‖v1 – v2‖ + ‖u1 – u2‖U
)
.

The mild solution of the system (4.1) takes the form

x(t) = E–1Sν,μ(t)E
[
x0 – q(x)

]
+

∫ t

0
E–1Pμ(t – s)Bu(s) ds

+
∫ t

0
E–1Pμ(t – s)f1

(
s, x(s), u(s)

)
ds

+
∫ t

0
E–1Pμ(t – s)

{∫ s

0
g1

(
s, τ , x(τ ), R(τ ), u(τ )

)
dτ

}
ds

+
∫ t

0
E–1Pμ(t – s)z(s) ds, t ∈ J , (4.2)

where

R(τ ) =
∫ τ

0
H

(
τ ,η, x(η)

)
dη.

The constrained set of controls is considered to be a closed convex cone with empty
interior and vertex at origin. Let U0 ⊂ U be the constrained set of controls and let the set
of admissible controls be

Uad = L2(J ; U0) ⊂ V = L2(J ; U).

Definition 4.1 The attainable set at time a > 0, denoted by KT (U0), is defined as

KT (U0) =
{

x ∈ X : x = x(a, u), u(a) ∈ U0 a.e. in J
}

,

where x(t, u) is a solution of (4.1).

Let us consider the Sobolev-type linear Hilfer fractional differential system

⎧⎨
⎩

Dν,μ
0+ (Ey(t)) + Ay(t) = Bv(t), t ∈ J = (0, a],

I(1–ν)(1–μ)
0+ y(0) = 0.

(4.3)

The mild solution of (4.3) is

y(t, v) =
∫ t

0
E–1Pμ(t – s)Bv(s) ds, t ∈ J . (4.4)
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Let us define the following operators:
B : U → C(J , X) by

Bu(·) =
∫ ·

0
E–1Pμ(· – s)Bu(s) ds,

F : X × U → C(J , X) by

F (x, u)(·) =
∫ ·

0
E–1Pμ(· – s)f1

(
s, x(s), u(s)

)
ds,

and
G : X × X × U → C(J , X) by

G(x, u)(·) =
∫ ·

0
E–1Pμ(· – s)

{∫ s

0
g1

(
s, τ , x(τ ), R(τ ), u(τ )

)
dτ

}
ds.

Let us put the following hypotheses:
(H13) The nonlinear function f1, g1 satisfies:

f1
(
t, x(t), u(t)

)|u=0 = 0, Dxf1
(
t, x(t), u(t)

)|u=0 = 0,

Duf1
(
t, x(t), u(t)

)|u=0 = 0, g1
(
t, x(t), u(t)

)|u=0 = 0,

Dxg1
(
t, x(t), u(t)

)|u=0 = 0 and Dug1
(
t, x(t), u(t)

)|u=0 = 0,

where Dx and Du denote the Frechet derivative on space U .
(H14) B, F and G are continuously differentiable in U .
(H15) The linear control system (4.3) is U0-exactly globally controllable on J .

Definition 4.2 The system (4.1) is said to be U0-exactly locally controllable on J if the
attainable set KT (U0) contains a neighborhood of x(0) ∈ X in the space X.

Definition 4.3 The system (4.1) is said to be U0-exactly globally controllable on J if
KT (U0) = X.

The main result observes the application of the generalized open mapping theorem, so
we recall it in the following lemma.

Lemma 4.1 ([40]) Let X, Y be Banach spaces and F : Br(x0) ⊂ X → Y such that

∥∥Fx – Fx̄ – T(x – x̄)
∥∥ ≤ k‖x – x̄‖ on Br(x0) × Br(x0),

for some k > 0 and T ∈ L(X, Y ) with rank(T) = Y . Then Bρ(Fx0) ⊂ FBr(x0) for some ρ > 0
provided that k is sufficiently small.

Theorem 4.1 Under the assumptions (H1)–(H4), (H8) and (H10)–(H15) the nonlinear
control system (4.1) is U0-exactly locally controllable on J .
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Proof Let us define an operator H : Uad → X by H(u) = x(a, u), which maps control to the
final state of the trajectory. Then the integral equation (4.2) implies

H(u) = E–1Sν,μ(a)E
[
x0 –q(x)

]
+Bu(a)+F (x, u)(a)+G(x, u)(a)+

∫ a

0
E–1Pμ(a – s)z(s) ds.

By hypothesis (H14), H is differentiable in Uad. Thus

DuH(u) = Du
(
(Bu)(a)

)
+ Du

(
F (x, u)(a)

)
+ Du

(
G(x, u)(a)

)
. (4.5)

We have

Du
(
(Bu)(a)

)
=

∫ a

0
E–1Pμ(a – s)B ds,

Du
(
F (x, u)(a)

)
=

∫ a

0
E–1Pμ(a – s)Duf1

(
s, x(s), u(s)

)
ds,

and

Du
(
G(x, u)(a)

)
=

∫ a

0
E–1Pμ(a – s)

{∫ s

0
Dug1

(
s, τ , x(τ ), R(τ ), u(τ )

)
dτ

}
ds.

Then, by using hypothesis (H13) in (4.5), we get

DuH(u)|u=0v =
∫ a

0
E–1Pμ(a – s)Bv(s) ds = y(a, v).

By hypothesis (H15), the linear control system (4.3) is U0-exactly globally control-
lable, therefore the map DuH(u)|u=0, mapping v �→ y(a, v), is a surjective map with
DuH(0)(Uad) = X. Now, let u1, u2 ∈ Uad corresponding to x1(t) = x(t, u1) and x2(t) =
x(t, u2), respectively. Then, for all t ∈ J ,

∥∥x1(t) – x2(t)
∥∥

≤
∥∥∥∥
∫ t

0
E–1Pμ(t – s)B

(
u1(s) – u2(s)

)
ds

∥∥∥∥

+
∥∥∥∥
∫ t

0
E–1Pμ(t – s)

[
f1

(
s, x(s), u(s)

)
– f2

(
s, x(s), u(s)

)]
ds

∥∥∥∥

+
∥∥∥∥
∫ t

0
E–1Pμ(t – s)

×
{∫ s

0

[
g1

(
s, τ , x(τ ), R(τ ), u(τ )

)
– g2

(
s, τ , x(τ ), R(τ ), u(τ )

)]
dτ ds

}∥∥∥∥

≤ M‖E–1‖
Γ (μ)

∫ t

0
MB(t – s)μ–1∥∥(

u1(s) – u2(s)
)∥∥ds

+
M‖E–1‖
Γ (μ)

∫ t

0
L5(t – s)μ–1[∥∥(

x1(s) – x2(s)
)∥∥ +

∥∥(
u1(s) – u2(s)

)∥∥]
ds

+
M‖E–1‖
Γ (μ)

∫ t

0
L6(t – s)μ–1

∫ s

0

[∥∥(
x1(τ ) – x2(τ )

)∥∥ +
∥∥(

u1(τ ) – u2(τ )
)∥∥]

dτ ds
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≤ M‖E–1‖
Γ (μ)

∫ t

0
(t – s)μ–1

[
(MB + L5)

∥∥(
u1(s) – u2(s)

)∥∥ + L6

∫ s

0

∥∥(
u1(τ ) – u2(τ )

)∥∥dτ

]
ds

+
M‖E–1‖
Γ (μ)

∫ t

0
(t – s)μ–1

[
L5

∥∥(
x1(s) – x2(s)

)∥∥ + L6

∫ s

0

∥∥(
x1(τ ) – x2(τ )

)∥∥dτ

]
ds.

By Gronwall’s inequality,

∥∥x1(t) – x2(t)
∥∥ ≤ M‖E–1‖

Γ (μ)

∫ t

0
(t – s)μ–1

×
[

(MB + L5)
∥∥(

u1(s) – u2(s)
)∥∥ + L6

∫ s

0

∥∥(
u1(τ ) – u2(τ )

)∥∥dτ

]
ds

× e( M‖E–1‖
Γ (μ)

∫ t
0 (t–s)μ–1(L5+L5s) ds).

Therefore

∥∥H(u1) – H(u2)
∥∥ ≤ ∥∥x1(a) – x2(a)

∥∥

≤ Maμ‖E–1‖
Γ (μ + 1)

(
MB + L5 +

a
μ + 1

L6

)
e( Maμ‖E–1‖

Γ (μ+1) (L5+ a
μ+1 L6))‖u1 – u2‖V

and

∥∥DuH(0)(u1 – u2)
∥∥ =

∥∥∥∥
∫ a

0
E–1Pμ(a – s)B

(
u1(s) – u2(s)

)
ds

∥∥∥∥

≤ Maμ‖E–1‖MB

Γ (μ + 1)
‖u1 – u2‖V .

Now

∥∥H(u1) – H(u2) – DuH(0)(u1 – u2)
∥∥

≤ ∥∥H(u1) – H(u2)
∥∥ +

∥∥DuH(0)(u1 – u2)
∥∥

≤ Maμ‖E–1‖
Γ (μ + 1)

(
MB + L5 +

a
μ + 1

L6

)
e( Maμ‖E–1‖

Γ (μ+1) (L5+ a
μ+1 L6))‖u1 – u2‖V

+
Maμ‖E–1‖MB

Γ (μ + 1)
‖u1 – u2‖V

≤ Maμ‖E–1‖
Γ (μ + 1)

[(
MB + L5 +

a
μ + 1

L6

)
e(

Maμ‖E–1‖(L5+ a
μ+1 L6)

Γ (μ+1) ) + MB

]
‖u1 – u2‖V .

Thus, by Lemma 4.1, the operator H transforms a neighborhood of zero in Uad onto a
neighborhood of H(0) in the Banach space X. This proves the theorem. �

Remark 1 Controllability for a nonlinear fractional system was studied by many authors.
However, to the best of our knowledge, there are no results on the controllability of non-
local Hilfer fractional differential equations with the Clarke subdifferential.

Remark 2 Constrained controllability of for nonlinear fractional system was studied by
few authors. However, to the best of our knowledge, there are no results on the con-
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strained local controllability of nonlocal Hilfer fractional differential equations with the
Clarke subdifferential.

Remark 3 The study may be improved by finding the sufficient conditions for control-
lability and constrained local controllability of a Sobolev-type nonlocal Hilfer fractional
stochastic differential equation system with the Clarke subdifferential.

5 Applications
Example 5.1 Consider the following Sobolev-type nonlocal Hilfer fractional differential
system with the Clarke subdifferential in Banach spaces:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
1
2 , 2

3
0+ (x(t, y) – xyy(t, y)) – xyy(t, y)

= Bu(t, y) + 1
30 cos(x(t, y)) +

∫ t
0 ( 1

s2+9 + 1
9
∫ s

0
1

(2+τ )2 dτ ) ds

+ ∂Z(t, x(t, y)), 0 ≤ y ≤ π , t ∈ J = (0, 1],

x(t, 0) = x(t,π ) = 0, t ∈ J ,

I
1
2 , 1

3
0+ x(0, y) +

∑m
i=1 cix(ti, y) = x0(y),

(5.1)

where D
1
2 , 2

3
0+ is the Hilfer fractional derivative, ν = 1

2 , μ = 2
3 . Let X = Y = L2(0,π ) and de-

fine the operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y by Ax = –xyy, Ex = x – xyy

where D(A), D(E) is given by {x ∈ X : x, xy are absolutely continuous and xyy ∈ X, x(0) =
x(π ) = 0}. The functions x(t)(y) = x(t, y), Bu(t)(y) = Bu(t, y), f (t, x(t))(y) = 1

30 cos(x(t, y)),
g(t, s, x(s),

∫ s
0 H(s, τ , x(τ )) dτ )(y) = 1

s2+9 + 1
9
∫ s

0
1

(2+τ )2 dτ , H(s, τ , x(τ )) = 1
9

1
(2+τ )2 , ∂Z(t, x(t))(y) =

∂Z(t, x(t, y)) and q(x)(y) =
∑m

i=1 cix(ti, y).
It is easy to verify that the function f satisfies hypothesis (H6) with N1 = N2 = 1

30 .
Then A and E can be written as

Ax =
∞∑

n=1

n2(x, xn)xn, x ∈ D(A),

Ex =
∞∑

n=1

(
1 + n2)(x, xn)xn, x ∈ D(E),

where xn(y) =
√

2
π

sin ny, n = 1, 2, 3, . . . , is the orthogonal set of eigenvectors of A and (x, xn)
is the L2 inner product. Moreover, for x ∈ X, we get

E–1x =
∞∑

n=1

1
1 + n2 (x, xn)xn,

–AE–1x =
∞∑

n=1

–n2

1 + n2 (x, xn)xn.

It is well known that A generates a compact semigroup {T(t), t > 0} in X and

T(t)x =
∞∑

n=1

e
–n2

1+n2 t(x, xn)xn, x ∈ X,
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with

∥∥T(t)
∥∥ ≤ e–t ≤ 1.

Moreover, the two operators P 2
3

(t) and S 1
2 , 2

3
(t) satisfy

∥∥P 2
3

(t)
∥∥ ≤ Mt –1

3

Γ ( 2
3 )

,
∥∥S 1

2 , 2
3

(t)
∥∥ ≤ Mt

–1
6

Γ ( 5
6 )

.

We note that L2 = 1
9 , L4 = 1

36 and choose other constants such that all hypotheses (H1)–
(H9) are satisfied and

M
∥∥E–1∥∥

(
1 +

M‖E–1‖‖B‖‖W –1‖
Γ ( 5

3 )

)[‖E‖(‖x0‖ + ‖q‖)
Γ ( 5

6 )
+

M
Γ ( 5

3 )

(
1

30
r +

1
30

+
3
5

(
L1

(
r +

3
8

(
L3r +

1
36

))
+

1
9

)
+ ‖ζ‖ + kr

)]
+

M
Γ ( 5

3 )
∥∥E–1∥∥‖B‖∥∥W –1∥∥‖x1‖ ≤ r.

Hence, all the hypotheses of Theorem 3.1 are satisfied and the system (5.1) is controllable
on J = (0, 1].

Example 5.2 Consider the following Sobolev-type nonlocal Hilfer fractional differential
system with the Clarke subdifferential in Banach spaces:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
1
3 , 3

4
0+ (x(t,ς ) – xςς (t,ς )) – xςς (t,ς )

= Bu(t,ς ) + G1(t, x(t,ς ), u(t,ς ))

+
∫ t

0 G2(t, s, x(s,ς ),
∫ s

0 G3(s, τ , x(τ ,ς )) dτ , u(s,ς )) ds

+ ∂Z(t, x(t,ς )), 0 ≤ ς ≤ π , t ∈ J = (0, 1],

x(t, 0) = x(t,π ) = 0, t ∈ J ,

I
2
3 , 1

4
0+ x(0,ς ) +

∑m
i=1 cix(ti,ς ) = x0(ς ),

(5.2)

where D
1
3 , 3

4
0+ is the Hilfer fractional derivative, ν = 1

3 , μ = 3
4 . Let X = Y = L2(0,π ) and define

the operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y by Ax = –xςς , Ex = x – xςς where
D(A), D(E) is given by {x ∈ X : x, xς are absolutely continuous and xςς ∈ X, x(0) = x(π ) = 0}.
The functions x(t)(ς ) = x(t,ς ), Bu(t)(ς ) = Bu(t,ς )∂Z(t, x(t))(ς ) = ∂Z(t, x(t,ς )), q(x)(ς ) =∑m

i=1 cix(ti,ς ), f1(t, x(t), u(t))(ς ) = G1(t, x(t,ς ), u(t,ς )), g1(t, s, x(s),
∫ s

0 H(s, τ , x(τ )) dτ ,
u(s))(ς ) = G2(t, s, x(s,ς ),

∫ s
0 G3(s, τ , x(τ ,ς )) dτ , u(t,ς )).

Then A and E can be written as

Ax =
∞∑

n=1

n2(x, xn)xn, x ∈ D(A),

Ex =
∞∑

n=1

(
1 + n2)(x, xn)xn, x ∈ D(E),
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where xn(ς ) =
√

2
π

sin nς , n = 1, 2, 3, . . . , is the orthogonal set of eigenvectors of A and
(x, xn) is the L2 inner product. Moreover, for x ∈ X, we get

E–1x =
∞∑

n=1

1
1 + n2 (x, xn)xn,

–AE–1x =
∞∑

n=1

–n2

1 + n2 (x, xn)xn.

It is well known that A generates a compact semigroup {T(t), t > 0} in X and

T(t)x =
∞∑

n=1

e
–n2

1+n2 t(x, xn)xn, x ∈ X,

with

∥∥T(t)
∥∥ ≤ e–t ≤ 1.

Moreover, the two operators P 3
4

(t) and S 1
3 , 3

4
(t) satisfy

∥∥P 3
4

(t)
∥∥ ≤ Mt –1

4

Γ ( 3
4 )

,
∥∥S 1

3 , 3
4

(t)
∥∥ ≤ Mt

–1
6

Γ ( 5
6 )

.

Take L2[0,π ] as the control space and U0 = {u(t) ∈ U : u(t,ς ) ≥ 0}. The space of admis-
sible controls is Uad = L2(J ; U0) ⊂ V = L2(J ; U) and the attainable set is

KT (U0) =
{

x ∈ X : x = x(t, u), u(t,ς ) ∈ U0
}

.

The associated linear control system of the nonlocal Hilfer fractional differential system
with the Clarke subdifferential (5.2) takes the form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D
1
3 , 3

4
0+ (y(t,ς ) – yςς (t,ς )) – yςς (t,ς )

= Bv(t,ς ), 0 ≤ ς ≤ π , t ∈ J = (0, 1],

y(t, 0) = y(t,π ) = 0, t ∈ J ,

I( 2
3 )( 1

4 )
0+ y(0,ς ) = 0,

(5.3)

with mild solution in the form

y(t, v) =
∫ t

0
E–1Pμ(t – s)Bv(s,ς ) ds, t ∈ J . (5.4)

We can prove that all the hypotheses (H10)–(H15) are satisfied. Hence, Theorem 4.1 is
satisfied and the nonlinear control system (5.2) is U0-exactly locally controllable on J =
(0, 1].
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6 Conclusion
In this paper, by using fractional calculus and the Sadovskii fixed point theorem, we stud-
ied the sufficient conditions for controllability of Sobolev-type nonlocal Hilfer fractional
differential systems with Clarke’s subdifferential. In addition, we established the con-
strained local controllability for Sobolev-type nonlocal Hilfer fractional differential sys-
tems with Clarke’s subdifferential. Also, we provided two examples to illustrate our results.
In the future we aim to study the existence of mild solution for a class of noninstantaneous
and nonlocal impulsive Hilfer fractional stochastic integrodifferential equations with frac-
tional Brownian motion and Poisson jumps.
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