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Abstract
In this paper, we present a sequential semidefinite programming (SSDP) algorithm for
nonlinear semidefinite programming. At each iteration, a linear semidefinite
programming subproblem and a modified quadratic semidefinite programming
subproblem are solved to generate a master search direction. In order to avoid
Maratos effect, a second-order correction direction is determined by solving a new
quadratic programming. And then a penalty function is used as a merit function for
arc search. The superlinear convergence is shown under the strict complementarity
and the strong second-order sufficient conditions with the sigma term. Finally, some
preliminary numerical results are reported.

Keywords: Nonlinear semidefinite programming; Penalty function; Sequential
semidefinite programming; Global convergence; Superlinear convergence

1 Introduction
Consider the following nonlinear semidefinite programming (NLSDP) with a negative
semidefinite matrix constraint:

min f (x)

s.t. A(x) � 0,
(1.1)

where f : Rn → R, A : Rn → S
m, Sm is the set of m-order symmetric matrix and S

m
+ (Sm

– )
is the set of m-order positive (negative) semidefinite matrix. A(x) � 0 means that A(x) is
a negative semidefinite matrix.

Nonlinear semidefinite programming has many applications both in theory and in the
real world. Many convex optimization problems, such as variational inequality problems,
fixed point problems [1–3], can be reformulated as convex NLSDP. Robust control prob-
lems, optimal structural design, and truss design problems can be reformulated as NLSDP
(see [4–6]). There are a lot of literature for NLSDP on algorithms, for example, the aug-
mented Lagrangian method [7–12], primal-dual interior point method [13, 14], and se-
quential semidefinite programming (SSDP) method [15–21]. Our research focus is on the
SSDP method.

SSDP method, which is a generalization of SQP method for classic nonlinear program-
ming, is one of effective methods for nonlinear semidefinite programming. For example,
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Correa and Ramirez [16] proposed a global SSDP algorithm for NLSDP. Recently, as illus-
trated by the extensive numerical experiments in [20, 21], SSDP algorithm has performed
very well in finding a solution to NLSDP. At each iteration of SSDP method, a special
quadratic semidefinite programming subproblem is solved to generate a search direction.
However, just as traditional SQP method, most of existing SSDP methods also have some
inherent pitfalls, e.g., (1) the first direction finding subproblem (DFP for short), namely
a quadratic semidefinite programming (QSDP for short), is not ensured to be consistent.
The algorithm in [21] is based on the assumption that the optimal solution of the first
DFP exists. The algorithm in [20] directly goes to feasibility restoration phase when the
first DFP is inconsistent. As we know, feasibility restoration phase will increase the com-
putational cost. (2) The optimal solution to the first DFP is not ensured to be an improving
direction, so it is possible that Maratos effect occurs. As a result, the superlinear conver-
gence is not guaranteed to obtain.

Since NLSDP contains a negative semidefinite matrix constraint, it is more difficult to
deal with these drawbacks comparing with SQP method for classic nonlinear program-
ming. In this paper, we borrow the ideas of modified strategy of quadratic programming
subproblem for nonlinear programming from [22]. We first construct a linear semidefi-
nite programming (LSDP for short), and then by means of the solution of the LSDP we
construct a special QSDP to yield the master search direction, which is ensured to be con-
sistent. In order to avoid the Maratos effect, a second-order correction direction is intro-
duced which is determined by solving a new quadratic programming. A penalty function
is used as a merit function for arc search. The proposed algorithm possesses superlin-
ear convergence under the strict complementarity and the strong second-order sufficient
conditions with the sigma term.

The paper is organized as follows. Some notations and preliminaries are described in the
next section. In Sect. 3, we present our algorithm in detail and analyze its feasibility. Under
some mild conditions, the global convergence and superlinear convergence are shown in
Sect. 4 and Sect. 5, respectively. In Sect. 6, the preliminary numerical results are reported.
Some concluding remarks are given in the last section.

2 Preliminaries
In this section, for the sake of convenience, some definitions, notations, and results for
NLSDP are introduced.

The differential operator DA(x) : Rn → S
m is defined by

DA(x)d :=
n∑

i=1

di
∂A(x)
∂xi

, ∀d ∈ R
n. (2.1)

The adjoint operator DA(x)∗ of DA(x) is defined by

DA(x)∗Z =
(〈

∂A(x)
∂x1

, Z
〉
, . . . ,

〈
∂A(x)
∂xn

, Z
〉)T

, ∀Z ∈ S
m, (2.2)

where 〈A, B〉 means the inner product of the matrix A and B, which is defined by 〈A, B〉 =
Tr(AB) for any A, B ∈ S

m, Tr(·) is the trace of a matrix.
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The operator D2A(x) : Rn ×R
n → S

m is defined by

dTD2A(x)d̄ :=
n∑

i,j=1

did̄j
∂2A(x)
∂xi∂xj

, ∀d, d̄ ∈ R
n. (2.3)

Definition 2.1 Given x ∈R
n, if there exists a matrix Λ ∈ S

m
+ such that

∇f (x) + DA(x)∗Λ = 0, (2.4a)

A(x) � 0, (2.4b)

Tr
(
ΛA(x)

)
= 0, (2.4c)

then x is called a KKT point of NLSDP (1.1), the matrix Λ is called the Lagrangian multi-
plier, (2.4a)–(2.4c) is called the KKT conditions of NLSDP (1.1).

Let λ1, . . . ,λn be the eigenvalues of A (∈R
n×n), and let λ1(A) be the largest eigenvalue of

A. The following results will be used in the subsequent analysis.

Lemma 2.1 ([23]) For any A, B ∈ S
m, the following inequality is true:

Tr(AB) ≤
m∑

i=1

λi(A)λi(B), (2.5)

the equality holds if and only if there exists an invertible matrix P such that P–1AP and
P–1BP are diagonal.

Based on Lemma 2.1, the following result is obvious.

Lemma 2.2 For any A ∈ S
m, B ∈ S

m
+ , the following inequality is true:

Tr(AB) ≤ λ1(A) Tr(B). (2.6)

Lemma 2.3 ([24] (Weyl’s inequality)) Suppose A, B ∈ S
m, then λ1(A + B) ≤ λ1(A) + λ1(B).

Lemma 2.4 For any A, B ∈ S
m, if λ1(A + B) < λ1(A), then the following inequality is true:

λ1(A + ηB) ≤ λ1(A), ∀η ∈ (0, 1).

Proof If λ1(B) ≤ 0, then it follows from Lemma 2.3 that

λ1(A + ηB) ≤ λ1(A) + λ1(ηB) ≤ λ1(A),

that is, the result is true.
If λ1(B) > 0, note that λ1(A + B) < λ1(A) and η ∈ (0, 1), then it follows from Lemma 2.3

that

λ1(A + ηB) = λ1
(
A + B + (η – 1)B

)

≤ λ1(A + B) + λ1
(
(η – 1)B

)
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≤ λ1(A) + (η – 1)λ1(B)

≤ λ1(A),

so the result is proved. �

Let xk be the current iterative point, motivated by the idea in [22], we construct a linear
SDP subproblem (LSDP) as follows:

LSDP
(
xk) min z

s.t. A
(
xk) + DA

(
xk)d � zEm, (2.7)

z ≥ 0, ‖d‖ ≤ 1,

where Em is the m-order identity matrix.
It is known that LSDP(xk) (2.7) has optimal solutions. Let ((̂dk)T, zk)T be an optimal

solution of LSDP(xk) (2.7). Now we construct a quadratic semidefinite programming
(QSDP(xk , Hk)) by means of zk as follows:

QSDP
(
xk , Hk

)
min ∇f

(
xk)Td +

1
2

dTHkd

s.t. A
(
xk) + DA

(
xk)d � zkEm,

(2.8)

where Hk ∈ S
n is the Hesse matrix or an approximation of the Hesse matrix of the La-

grangian function of NLSDP (1.1) at xk .
Generally, the optimal solution dk to QSDP(xk , Hk) (2.8) cannot be guaranteed to avoid

the Maratos effect and get superlinear convergence, so it needs a modification. To this
end, motivated by the ideas in [20], we introduce a second-order correction direction by
solving the following subproblem:

min ∇f
(
xk)T(dk + d

)
+

1
2
(
dk + d

)THk
(
dk + d

)

s.t. N̄T
k
(
A
(
xk + dk) + DA

(
xk)d

)
N̄k = –

∥∥dk∥∥�Em–r ,
(2.9)

where � ∈ (2, 3), r = rank(A(xk) + DA(xk)dk), N̄k = (pk
1, pk

2, . . . , pk
m–r) ∈ R

m×(m–r), and
{pk

1, pk
2, . . . , pk

m–r} is an orthogonal basis for the null space of the matrix A(xk) + DA(xk)dk .
The following basic assumptions are required.

A 1 The functions f (x) and A(x) are continuously differentiable.

A 2 There exist two positive constants a and ā such that

a‖d‖2 ≤ dTHkd ≤ ā‖d‖2, ∀d ∈R
n.

Under Assumptions A1–A2, the following lemma follows.

Lemma 2.5 Suppose that Assumptions A1–A2 hold. Then subproblem QSDP(xk , Hk) (2.8)
has a unique solution dk , and there exists a matrix Λk ∈ S

m
+ satisfying the KKT conditions
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of QSDP(xk , Hk) (2.8), i.e.,

∇f
(
xk) + DA

(
xk)∗Λk + Hkdk = 0, (2.10a)

A
(
xk) + DA

(
xk)dk � zkEm, (2.10b)

Tr
(
Λk
(
A
(
xk) + DA

(
xk)dk – zkEm

))
= 0. (2.10c)

Define a measure of constraint violation for NLSDP (1.1) as follows:

P(x) = λ1
(
A(x)

)
+, (2.11)

where λ1(A(x))+ = max{λ1(A(x)), 0}. Obviously, P(x) = 0 if and only if x is a feasible point
of NLSDP (1.1).

By means of P(x), we define a penalty function as a merit function for arc search:

θα(x) = f (x) + αP(x) = f (x) + αλ1
(
A(x)

)
+, (2.12)

where α > 0 is a penalty parameter. The function θα(x) comes from the Han penalty func-
tion for nonlinear programming.

Lemma 2.6 Suppose that Assumptions A1–A2 hold, dk is the optimal solution of QSDP(xk ,
Hk) (2.8). Then the directional derivative θ ′

α(xk ; dk) satisfies the following inequality:

θ ′
α

(
xk ; dk)

≤ ∇f
(
xk)Tdk – α

(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
)

(2.13)

≤ –
(
dk)THkdk + Tr

(
Λk
(
A
(
xk) – zkEm

))
– α
(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
)
, (2.14)

where zk is the optimal value of LSDP(xk) (2.7), Λk is a KKT multiplier of QSDP(xk , Hk)
(2.8) corresponding to the constraint.

Proof First, it follows from (2.10a) that

�f
(
xk)Tdk = –

n∑

i=1

dk
i Tr

(
Λk

∂A(xk)
∂xi

)
–
(
dk)THkdk . (2.15)

Since λ1(·)+ is convex, we obtain

λ1

(
A
(
xk) + t

n∑

i=1

dk
i
∂A(xk)

∂xi

)

+

≤ (1 – t)λ1
(
A
(
xk))

+ + tλ1

(
A
(
xk) +

n∑

i=1

dk
i
∂A(xk)

∂xi

)

+

≤ (1 – t)λ1
(
A
(
xk))

+ + tλ1(zkEm)+,
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the last inequality above is due to (2.10b). By the definition of directional derivative and
the above inequality, we get

[
λ1(·)+

]′(A
(
xk); DA

(
xk)dk)

= lim
t→0+

t–1

[
λ1

(
A
(
xk) + t

n∑

i=1

dk
i
∂A(xk)

∂xi

)

+

– λ1
(
A
(
xk))

+

]

≤ lim
t→0+

t–1[(1 – t)λ1
(
A
(
xk))

+ + tλ1(zkEm)+ – λ1
(
A
(
xk))

+

]

= –
(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
)
. (2.16)

Combining with the definition of the directional derivative θ ′
α(xk ; dk) and (2.16), we have

θ ′
α

(
xk ; dk) = �f

(
xk)Tdk + α

([
λ1(·)+

]′(A
(
xk); DA

(
xk)dk))

≤ �f
(
xk)Tdk – α

(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
)
,

that is, inequality (2.13) holds.
By (2.15), we obtain

�f
(
xk)Tdk – α

(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
)

≤ –
n∑

i=1

dk
i Tr

(
Λk

∂A(xk)
∂xi

)
–
(
dk)THkdk – α

(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
)
. (2.17)

It follows from (2.10c) that

– Tr

(
Λk

( n∑

i=1

dk
i
∂A(xk)

∂xi

))
= – Tr

(
Λk
(
DA
(
xk)dk)) = Tr

(
Λk
(
A
(
xk) – zkEm

))
. (2.18)

Substituting the above equality into (2.17), one has

�f
(
xk)Tdk – α

(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
)

≤ –
(
dk)THkdk + Tr

(
Λk
(
A
(
xk) – zkEm

))
– α
(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
)
,

that is, inequality (2.14) holds. �

3 The algorithm
In this section, we first present our algorithm in detail, and then analyze its feasibility.

Algorithm A
Step 0. Given x0 ∈ R

n, H0 = En (identity matrix), t ∈ (0, 1), α0 > 0, P̄ ∈ (1, 10), σ ∈ (0, 1),
β ∈ (0, 1

2 ), η1 > 0. Let k := 0.
Step 1. Solve LSDP(xk) (2.7) to get an optimal solution ((̂dk)T, zk)T. If λ1(A(xk)) > 0 and

zk = λ1(A(xk)), then stop.
Step 2. (Generate a master direction). Solve QSDP(xk , Hk) (2.8) to get the optimal solu-

tion dk . If dk = 0, then stop.
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Step 3. (Generate a second-order correction direction). Solve subproblem (2.9) and let
d̃k be the solution. If there is no solution of subproblem (2.9) or ‖̃dk‖ > ‖dk‖, then
set d̃k = 0.

Step 4. (Update αk) The update rule of αk is as follows:

αk+1 :=

⎧
⎨

⎩
αk , if �(xk ,αk) ≤ –(dk)THkdk ;
�f (xk )Tdk +(dk )THk dk

λ1(A(xk ))+–zk
+ η1, otherwise,

(3.1)

where �(xk ,αk) is defined by

�
(
xk ,αk

)
= �f

(
xk)Tdk – αk

(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
)
, (3.2)

that is, �(xk ,αk) is the right-hand side of inequality (2.13).
Step 5. (Arc search) Let tk be the first number of the sequence {1,σ ,σ 2, . . .} satisfying the

following inequalities:

θαk+1

(
xk + tkdk + t2

k d̃k)≤ θαk+1

(
xk) + βtk�

(
xk ,αk+1

)
, if P

(
xk)≤ P̄; (3.3)

⎧
⎨

⎩
θαk+1 (xk + tkdk + t2

k d̃k) ≤ θαk+1 (xk) + βtk�(xk ,αk+1),

P(xk + tkdk) ≤ P(xk),
if P
(
xk) > P̄. (3.4)

Step 6. Let xk+1 := xk + tkdk + t2
k d̃k , update Hk by some method to Hk+1 such that Hk+1 is

positive definite. Set k := k + 1, and return to Step 1.

Remark In Algorithm A, by means of new modified strategies of subproblem, the
quadratic semidefinite programming subproblem (2.8) yielding master searching direc-
tion is guaranteed to be consistent; further, it is ensured that the solution to subproblem
(2.8) exists. This is very different from the ways in [20, 21].

In what follows, we analyze the feasibility of Algorithm A. To this end, it is necessary to
extend the definition of infeasible stationary point for nonlinear programming [25, 26] to
nonlinear semidefinite programming.

Definition 3.1 A point x̃ ∈ R
n is called an infeasible stationary point of NLSDP (1.1) if

λ1(A(̃x)) > 0 and

min
d∈Rn

max
{
λ1
(
A(̃x) + DA(̃x)d

)
, 0
}

= λ1
(
A(̃x)

)
+ = P(̃x). (3.5)

Theorem 3.1 Suppose that Assumptions A1–A2 hold, then the following two results are
true:

(1) If Algorithm A stops at Step 1, then xk is an infeasible stationary point of NLSDP
(1.1).

(2) If Algorithm A stops at Step 2, then xk is a KKT point of NLSDP (1.1).

Proof (1) If Algorithm A stops at Step 1, i.e., zk = λ1(A(xk)) = P(xk) > 0, then xk is an infea-
sible solution of NLSDP (1.1). In the following, we will prove xk is an infeasible stationary
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point of NLSDP (1.1), i.e.,

min
d∈Rn

max
{
λ1
(
A
(
xk) + DA

(
xk)d

)
, 0
}

= max
{
λ1
(
A
(
xk)), 0

}
= P
(
xk).

By contradiction, suppose that xk is not an infeasible stationary point, so there exists dk,0 ∈
R

n such that

max
{
λ1
(
A
(
xk) + DA

(
xk)dk,0), 0

}
< P
(
xk). (3.6)

If ‖dk,0‖ > 1, then 1
‖dk,0‖ < 1, so by Lemma 2.4, we have

max

{
λ1

(
A
(
xk) +

1
‖dk,0‖DA

(
xk)dk,0

)
, 0
}

< P
(
xk), (3.7)

hence, we suppose, without loss of generality, that ‖dk,0‖ ≤ 1. Let

z̃k := max
{
λ1
(
A
(
xk)) + DA

(
xk)dk,0), 0

}
< P
(
xk). (3.8)

Obviously, ((dk,0)T, z̃k)T is a feasible point of subproblem LSDP(xk) (2.7). Since zk is the
optimal value of LSDP(xk) (2.7), one has

zk ≤ z̃k < P
(
xk), (3.9)

which contradicts to zk = P(xk). Hence, if Algorithm A stops at Step 1, then xk is an infea-
sible stationary point of NLSDP (1.1).

(2) If Algorithm A stops at Step 2, i.e., dk = 0, then by the KKT conditions (2.10a)–(2.10c)
of QSDP(xk , Hk) (2.8), we obtain

∇f
(
xk) + DA

(
xk)∗Λk = 0, (3.10a)

A
(
xk)� zkEm, (3.10b)

Λk � 0, (3.10c)

Tr
(
Λk
(
A
(
xk) – zkEm

))
= 0. (3.10d)

Now we prove zk = 0. By contradiction, suppose zk �= 0, then zk > 0. So it follows that xk

is an infeasible point of NLSDP (1.1), i.e., λ1(A(xk)) > 0. It is obvious that (0,λ1(A(xk)))
is a feasible point of LSDP(xk) (2.7), so the optimal solution zk ≤ λ1(A(xk)). Since Algo-
rithm A does not stop at Step 1, one has zk < λ1(A(xk)), which implies that d = 0 is not a
feasible point of QSDP(xk , Hk) (2.8). This contradicts the fact that 0 is the optimal solution
of QSDP(xk , Hk) (2.8). Therefore, zk = 0. Substituting zk = 0 into (3.10b) and (3.10d), com-
bining with (3.10a), (3.10c), we can conclude that xk is a KKT point of NLSDP (1.1). �

Lemma 3.1 Suppose that Assumptions A1–A2 hold, if Algorithm A does not stop at Step 1
and dk �= 0, then the following conclusions are true:

(i) If P(xk) > 0, then the directional derivative P′(xk ; dk) < 0;
(ii) θ ′

αk+1
(xk ; dk) < 0;
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(iii) �(xk ,αk+1) < 0, so Algorithm A is well defined.

Proof (i) If P(xk) > 0, it means that xk is an infeasible point of NLSDP (1.1). We can prove
zk < λ1(A(xk))+. By contradiction, if zk ≥ λ1(A(xk))+, then (0T,λ1(A(xk))+) is the optimal
solution of LSDP(xk) (2.7), which implies that Algorithm A stops at Step 1. This is a con-
tradiction. So it follows from the definition of directional derivative and (2.16) that

P′(xk ; dk) =
[
λ1(·)+

]′(A
(
xk); DA

(
xk)dk)≤ –

(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
)

< 0, (3.11)

that is, the result (i) is true.
(ii) The proof is divided into two cases.
Case A. xk is a feasible point of NLSDP (1.1). We obtain zk = 0 and λ1(A(xk))+ = 0, so by

(2.14) and Lemma 2.2, we obtain

θ ′
αk+1

(
xk ; dk) ≤ –

(
dk)THkdk + Tr

(
Λk
(
A
(
xk)))

≤ –
(
dk)THkdk + Tr(Λk)λ1

(
A
(
xk))

+

= –
(
dk)THkdk < 0,

the last inequality above is due to Assumption A2 and dk �= 0.
Case B. xk is an infeasible solution of NLSDP (1.1). This implies λ1(A(xk))+ = λ1(A(xk)) >

0.
Since Algorithm A does not stop at Step 1, we have zk < λ1(A(xk)). Therefore, it follows

from (2.13), (3.1), and Assumption A2 that

θ ′
αk+1

(
xk ; dk)≤ –

(
dk)THkdk < 0.

(iii) If xk is a feasible point of NLSDP (1.1), then it is obvious that zk = λ1(A(xk))+ = 0
is the optimal value of LSDP(xk) (2.7). So �(xk ,αk+1) = �f (xk)Tdk . Note that d = 0 is a
feasible solution of QSDP(xk , Hk) (2.8), so we get

�
(
xk ,αk+1

)
= �f

(
xk)Tdk ≤ –

(
dk)THkdk < 0.

If xk is an infeasible point of NLSDP (1.1), then, according to the update rule (3.1) of αk ,
it is sufficient to consider the second part of (3.1). It follows from (3.2) and (3.1) that

�
(
xk ,αk+1

)

≤ �f
(
xk)Tdk –

(�f (xk)Tdk + (dk)THkdk

λ1(A(xk))+ – zk
+ η1

)(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
)

≤ –
(
dk)THkdk < 0. (3.12)

Further, the arc search of Algorithm A is valid. Hence, Algorithm A is well defined. �

4 Global convergence
Based on Theorem 3.1, in this section, without loss of generality, we suppose that the
sequence {xk} generated by Algorithm A is infinite. In what follows, we will prove that
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{xk} is bounded under some appropriate conditions, and that any accumulation point x∗

of {xk} is either an infeasible stationary point, or a KKT point of NLSDP (1.1). To this end,
the following additional assumptions are necessary.

A 3 For any c > 0, the level set Lc := {x ∈R
n | P(x) ≤ c} is bounded.

A 4 For any feasible point x of NLSDP (1.1), MFCQ is satisfied at x, that is, there exists
d ∈R

n such that

A(x) + DA(x)d ≺ 0.

Lemma 4.1 Suppose that Assumptions A1–A3 hold, then the iterative sequence {xk} is
bounded.

Proof One of the following situations occurs:
(i) If there exists an integer k1 such that P(xk) ≤ P̄ for any k > k1, then xk ∈ LP̄ for any

k > k1. So {xk} is also bounded because LP̄ is bounded.
(ii) If there exists an integer k2 such that P(xk) > P̄ for any k > k2, then it follows from

Step 5 that xk ∈ LP(xk2 ) for any k > k2. So {xk} is also bounded because LP(xk2 ) is
bounded.

(iii) If both (i) and (ii) do not occur, i.e., P(xk) ≤ P̄ and P(xk) > P̄ occur infinitely,
respectively, then there exists an index set {kj} satisfying

P
(
xkj
)≤ P̄, P

(
xkj+1) > P̄, ∀j ∈ {1, 2, . . .}. (4.1)

So by arc search strategy, there exists an index set {sj} associated with {kj} such that

kj < sj < kj+1, P
(
xsj
)

> P̄, P
(
xsj+1)≤ P̄, ∀j ∈ {1, 2, . . .}.

For convenience, let N := {1, 2, . . .}, Nj := {k | kj < k < kj+1}, then we obtain

{k ∈ N | k > k1} =
⋃

j

{
Nj ∪ {k2, k3, k4, . . .}}.

We know from (4.1) that {xkj} ⊆ LP̄ , so {xkj} is bounded, Hence, {xk} is bounded as long
as we can prove that there exists c̄ > 0 such that xk ∈ Lc̄, ∀j ∈ N , k ∈ Nj. Combining with the
boundedness of {xkj} and Assumption A1, we get {�f (xkj )} is bounded, i.e., there exists M >
0 such that ‖�f (xkj )‖ ≤ M for any j ∈ N . In addition, it follows from LSDP(xk) (2.7) and
QSDP(xk , Hk) (2.8) that {dkj} is bounded. In view of xkj+1 = xkj , we get {xkj+1} is bounded.
Further, one obtains {P(xkj+1)} is bounded due to the continuity of P(x). So there exists
c̄ > 0 such that P(xkj+1) ≤ c̄.

At last, by (4.1) and Step 5 in Algorithm A, one has

c̄ ≥ P
(
xkj+1)≥ P

(
xkj+2)≥ · · · ≥ P

(
xsj
)≥ P̄, (4.2)

P̄ ≥ P
(
xsj+1), P̄ ≥ P

(
xsj+2), . . . , P̄ ≥ P

(
xkj+1

)
. (4.3)

We can find kj and kj+1 such that k ∈ (kj, kj+1) for k ∈ N . So it follows from (4.2) and (4.3)
that xk ∈ Lc̄, i.e., {xk} is bounded. �
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Lemma 4.2 Suppose that Assumptions A1–A4 hold. If αk → +∞, then every accumu-
lation point x∗ of {xk} generated by Algorithm A is an infeasible stationary point of
NLSDP (1.1).

Proof If αk → +∞, then it follows from (3.1) that the sequence {�f (xk )Tdk +(dk )THk dk

λ1(A(xk ))+–zk
} di-

verges to +∞.
By (2.15) and (2.18), we have

�f (xk)Tdk + (dk)THkdk

λ1(A(xk))+ – zk
≤ Tr(Λk(A(xk) – zkEm))

λ1(A(xk) – zkEm)

≤ Tr(Λk)λ1(A(xk) – zkEm)
λ1(A(xk) – zkEm)

= Tr(Λk). (4.4)

If x∗ is a feasible point of NLSDP (1.1), then, by Assumption A4, we know that MFCQ
is satisfied at x∗. Similar to the proof of Theorem 5.1 in [27], we obtain that the set Ω of
the KKT Lagrangian multipliers for QSDP(x∗, H∗) (2.8) is nonempty and bounded. Note
that Λk

K→ Λ∗ and Λ∗ ∈ Ω , so {Λk} is bounded. Therefore it follows from (4.4) that
{�f (xk )Tdk +(dk )THk dk

λ1(A(xk ))+–zk
} is bounded. This is a contradiction. Hence, x∗ is an infeasible point,

i.e., λ1(A(x∗)) > 0. Further, it is obvious that (0,λ1(A(x∗))) is a feasible solution of LSDP(x∗)
(2.7), so z∗ ≤ λ1(A(x∗)). Let (d∗, z∗) be an optimal solution of LSDP(x∗) (2.7), then by the
constraint of LSDP(x∗) (2.7), we have

λ1
(
A
(
x∗) + DA

(
x∗)d∗)� λ1

(
A
(
x∗)),

further,

max
{
λ1
(
A
(
x∗) + DA

(
x∗)d∗), 0

}≤ λ1
(
A
(
x∗)).

Therefore, we get

min
d∈Rn

max
{
λ1
(
A
(
x∗) + DA

(
x∗)d

)
, 0
}≤ max

{
λ1
(
A
(
x∗) + DA

(
x∗)d∗), 0

}≤ λ1
(
A
(
x∗)).

Let d = 0, then max{λ1(A(x∗) + DA(x∗)d), 0} = λ1(A(x∗)), which together with the above
inequality implies

min
d∈Rn

max
{
λ1
(
A
(
x∗) + DA

(
x∗)d

)
, 0
}

= λ1(A
(
x∗),

that is, x∗ is an infeasible stationary point of NLSDP (1.1). �

In the rest of the paper, we assume αk < +∞. According to the update rule (3.1), the
following conclusion is shown easily.

Lemma 4.3 Suppose that Assumptions A1–A4 hold. Then there exists an integer k0 such
that αk ≡ αk0 � α > 0 for any k ≥ k0.
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Based on Lemma 4.3, in the rest of the paper, without loss of generality, we assume that
αk ≡ α, k = 1, 2, . . . .

Lemma 4.4 Suppose that Assumptions A1–A2 hold, xk−→x∗, Hk−→H∗. Then zk−→z∗,
dk−→d∗, where zk , z∗ are the optimal solutions of LSDP(xk) (2.7) and LSDP(x∗) (2.7), re-
spectively, and dk , d∗ are the optimal solutions of QSDP(xk , Hk) (2.8) and QSDP(x∗, H∗)
(2.8), respectively.

Proof Since zk is the optimal value of LSDP(xk) (2.7), we obtain zk < λ1(A(xk))+ due to
the fact that (0,λ1(A(xk))+) is a feasible solution of LSDP(xk) (2.7). By the boundedness of
{λ1(A(xk))} and zk > 0, it is true that {zk} is bounded. According to the sensitivity theory
of semidefinite programming in [28], we know that the first part of the conclusions is true.

Now consider the second part of the conclusions. We first prove {dk} is bounded. It
follows from LSDP(xk) (2.7) that ‖̂dk‖ ≤ 1. And obviously, d̂k is a feasible solution of
QSDP(xk , Hk) (2.8), so one obtains

∇f
(
xk)Tdk +

1
2
(
dk)THkdk ≤ ∇f

(
xk)Td̂k +

1
2
(̂
dk)THkd̂k ,

further, the above inequality gives rise to

∇f
(
xk)Tdk +

1
2
(
dk)THkdk ≤ ∥∥∇f

(
xk)∥∥∥∥̂dk∥∥ +

1
2
∥∥̂dk∥∥2ā ≤ M1 +

1
2

ā.

On the other hand, one has

∇f
(
xk)Tdk +

1
2
(
dk)THkdk ≥ –

∥∥∇f
(
xk)∥∥∥∥dk∥∥ + a

∥∥dk∥∥2 ≥ –M1
∥∥dk∥∥ + a

∥∥dk∥∥2.

The two inequalities above indicate that {dk} is bounded.
Suppose that dk �→ d∗, then there exists a subsequence {ds}K1 ⊆ {dk} converging to d̄

( �= d∗). For any feasible solution d of QSDP(x∗, H∗) (2.8), since zk→z∗, there exists a feasible
solution dm of QSDP(xs, Hs) (2.8) such that

dm K1−→ d.

Since ds is the solution of QSDP(xs, Hs) (2.8), one has

∇f
(
xs)Tds +

1
2
(
ds)THsds ≤ ∇f

(
xs)Tdm +

1
2
(
dm)THsdm.

Let s
K1−→ ∞, m

K1−→ ∞, one gets

∇f
(
x∗)Td̄ +

1
2

d̄TH∗d̄ ≤ ∇f
(
x∗)Td +

1
2

dTH∗d,

which means that d̄ is a solution of QSDP(x∗, H∗) (2.8). This contradicts the uniqueness of
the solution of QSDP(x∗, B∗) (2.8). �
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Lemma 4.5 Suppose that Assumptions A1–A4 hold, x∗ is an accumulation point of the

sequence {xk} generated by Algorithm A, i.e., xk K−→ x∗. If x∗ is not an infeasible stationary

point of NLSDP (1.1), then dk K−→ 0.

Proof By contradiction, suppose that dk
K�−→ 0, then there exist a constant b > 0 and an

index subset K ′ ⊆ K such that

∥∥dk∥∥≥ b > 0 (4.5)

for any k ∈ K ′. The following proof is divided into two steps.
Step A. We first prove t := inf{tk , k ∈ K ′} > 0.
By Taylor expansion and the boundedness of the sequence {dk}, one has

f
(
xk + tdk + t2d̃k) = f

(
xk) + t∇f

(
xk)Tdk + o(t), (4.6)

A
(
xk + tdk + t2d̃k) = A

(
xk) + t

n∑

i=1

dk
i
∂A(xk)

∂xi
+ o(t).

In view of t ≤ 1, combining with the convexity of λ1(·)+ and QSDP(xk , Hk) (2.8), one ob-
tains

λ1
(
A
(
xk + tdk + t2d̃k))

+

≤ (1 – t)λ1
(
A
(
xk))

+ + tλ1

(
A
(
xk) +

n∑

i=1

dki
∂A(xk)

∂xi

)

+

+ o(t)

≤ (1 – t)λ1
(
A
(
xk))

+ + tλ1(zkEm)+ + o(t), (4.7)

which together with (2.12), (4.6), and (4.7) gives

θα

(
xk + tdk + t2d̃k)

≤ f
(
xk) + t∇f

(
xk)Tdk + o(t) + α

[
(1 – t)λ1

(
A
(
xk))

+ + tλ1(zkEm)+ + o(t)
]

= f
(
xk) + αλ1

(
A
(
xk))

+ + t
(∇f

(
xk)Tdk – α

(
λ1
(
A
(
xk))

+ – λ1(zkEm)+
))

+ o(t)

= θα

(
xk) + t�

(
xk ,α

)
+ o(t),

so we obtain

θα

(
xk + tdk + t2d̃k) – θα

(
xk) – βt�(xk ,α

)≤ (1 – β)t�(xk ,α
)

+ o(t). (4.8)

By Lemma 4.4 and (3.12), we get

�
(
xk ,α

)≤ –
(
dk)THkdk −→ –

(
d∗)TH∗d∗ < 0 as k

(∈ K ′)−→ ∞,

so we have

�(xk ,α
)≤ –0.5

(
d∗)TH∗d∗
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for k (∈ K ′) sufficiently large. Substituting the above inequality into (4.8) gives

θα

(
xk + tdk + t2d̃k) – θα

(
xk) – βt�(xk ,α

)≤ –0.5(1 – β)t
(
d∗)TH∗d∗ + o(t), (4.9)

which means that, for k (∈ K ′) sufficiently large and t sufficiently small, inequality (3.3) or
the first inequality of (3.4) holds.

In what follows, we consider the second inequality of (3.4).
Note that P(xk) > P̄ > 0, so P(x∗) = limK ′ P(xk) ≥ P̄ > 0, which means x∗ is an infeasible

solution of NLSDP (1.1). Since x∗ is not an infeasible stationary point of NLSDP (1.1), it
follows that z∗ – λ1(A(x∗))+ < 0. Further, we have

λ1(zkEm)+ – λ1
(
A
(
xk))

+ −→ z∗ – λ1
(
A
(
x∗))

+ < 0 as k
(∈ K ′)→ ∞,

so it follows that, for k (∈ K ′) sufficiently large,

λ1(zkEm)+ – λ1
(
A
(
xk))

+ < 0.5
(
z∗ – λ1

(
A
(
x∗))

+

)
.

By (4.7), (2.11), and the above inequality, one has

P
(
xk + tdk + t2d̃k) ≤ P

(
xk) + t

(
λ1(zkEm)+ – λ1

(
A
(
xk))

+

)
+ o(t)

≤ P
(
xk) + 0.5t

(
z∗ – λ1

(
A
(
x∗))

+

)
+ o(t),

equivalently,

P
(
xk + tdk + t2d̃k) – P

(
xk)≤ 0.5t

(
z∗ – λ1

(
A
(
x∗))

+

)
+ o(t), (4.10)

which implies that, for k (∈ K ′) sufficiently large and t sufficiently small, the second in-
equality in (3.4) holds.

Summarizing the analysis above, we can conclude t := inf{tk , k ∈ K ′} > 0.
Step B. Based on t = inf{tk , k ∈ K ′} > 0, we prove a contradiction will occur.
It follows from (3.3) or (3.4) that {θα(xk)} is nonincreasing and

θα

(
xk+1)≤ θα

(
xk) – 0.5ab2βt (4.11)

for any k ∈ K ′, where b is defined in (4.5). And one obtains from (2.12) that

θα

(
xk) = f

(
xk) + α

(
λ1
(
A
(
xk))

+

)≥ f
(
xk),

combining with the boundedness of {f (xk)}, we conclude that {θα(xk)} is convergent. Tak-

ing k
K ′

−→ ∞ in (4.11), we obtain –0.5ab2βt ≥ 0. This is a contradiction. So limK dk = 0. �

Based on the above results, we are now in a position to present the global convergence
of Algorithm A.

Theorem 4.1 Suppose that Assumptions A1–A4 hold, x∗ is an accumulation point of the
sequence {xk} generated by Algorithm A. Then either x∗ is an infeasible stationary point, or
a KKT point of NLSDP (1.1).
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Proof Without loss of generality, we suppose that x∗ is not an infeasible stationary point
of NLSDP (1.1). In what follows, we show that x∗ is a KKT point of NLSDP (1.1).

By Lemmas 4.4–4.5, we know that d∗ = 0 is an optimal solution of QSDP(x∗, H∗) (2.8),
so it follows from Lemma 2.5 that there exists Λ∗ ∈ S

m
+ such that

∇f
(
x∗) + DA

(
x∗)∗Λ∗ = 0, (4.12a)

A
(
x∗)� z∗Em, (4.12b)

Tr
(
Λ∗
(
A
(
x∗) – z∗Em

))
= 0. (4.12c)

Now we prove z∗ = 0. By contradiction, if z∗ �= 0, then z∗ > 0. Since (0, λ1(A(x∗))+) is
a feasible solution of LSDP(x∗) (2.7), we get λ1(A(x∗))+ ≥ z∗ > 0, which implies x∗ is an
infeasible point of NLSDP (1.1). On the other hand, we get z∗ ≥ λ1(A(x∗))+ > 0 by (4.12b),
so z∗ = λ1(A(x∗))+. Obviously, (0, z∗ = λ1(A(x∗))+) is an optimal solution of LSDP(x∗) (2.7).
In a manner similar to the proof of Theorem 3.1, we can conclude that x∗ is an infeasible
stationary point of NLSDP (1.1), this is a contradiction.

Substituting z∗ = 0 into (4.12a)–(4.12c), one obtains

∇f
(
x∗) + DA

(
x∗)∗Λ∗ = 0,

A
(
x∗)� 0, Tr

(
Λ∗A

(
x∗)) = 0,

which means that x∗ is a KKT point of NLSDP (1.1). �

5 Superlinear convergence
In this section, we analyze the superlinear convergence of Algorithm A. At first, we prove
that a full step can be accepted for k sufficiently large, and then we present the superlinear
convergence. To this end, Assumption A1 should be strengthened as the following one:

A 5 The functions f (x) and A(x) are twice continuously differentiable.

Besides, the following assumptions are necessary:

A 6 ([20]) The sequence {xk} generated by Algorithm A is an infinite sequence, and
limk→∞ xk = x∗, where x∗ is a KKT point of NLSDP (1.1). In addition, let Λ∗ be the corre-
sponding Lagrangian multiplier.

A 7 ([29]) The constrained nondegeneracy condition holds at (x∗,Λ∗).

Denote

Y k
ij =
((

pk
i
)T ∂A(xk)

∂x1
pk

j ,
(
pk

i
)T ∂A(xk)

∂x2
pk

j , . . . ,
(
pk

i
)T ∂A(xk)

∂xn
pk

j

)T

,

where 1 ≤ i ≤ j ≤ m–r, {pk
1, . . . , pk

m–r} is an orthogonal basis, which is introduced in Sect. 2.
And let limk→∞ Y k

ij = Y ∗
ij . The constrained nondegeneracy condition (i.e., Assumption A7)

is equivalent to the fact that the matrix (Y ∗
11, Y ∗

12, Y ∗
22, Y ∗

13, Y ∗
23, Y ∗

33, . . . , Y ∗
m–r,m–r) is full of col-

umn rank, which implies that Λ∗ is unique. Based on this result, we know that subproblem
(2.9) has a unique solution.
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A 8 ([29]) The strong second-order sufficient condition holds at x∗, i.e.,

dT∇xxL
(
x∗,Λ∗

)
d + ΓA(x∗)

(
Λ∗, DA

(
x∗)d

)
> 0

for any d ∈ app(Λ∗)\{0}, where app(Λ∗) := {d | DA(x∗)d ∈ aff(C(A(x∗) + Λ∗;Sm
– ))},

ΓA(B, C) := –2〈B, CA�C〉, A� is the Moore–Penrose pseudoinverse of A.

A 9 The strict complementarity condition is satisfied at (x∗,Λ∗), i.e.,

rank
(
A
(
x∗)) = r, rank(Λ∗) = m – r.

A 10 ‖(Wk – Hk)dk‖ = o(‖dk‖), where

Wk = ∇xxL
(
xk ,Λk

)
= ∇2f

(
xk) + ∇2

xx
〈
Λk ,A

(
xk)〉,

∇2
xx
〈
Λk ,A

(
xk)〉 =

⎛

⎜⎝
〈Λk , ∂2A(xk )

∂x1∂x1
〉 . . . 〈Λk , ∂2A(xk )

∂x1∂xn
〉

. . . . . . . . .
〈Λk , ∂2A(xk )

∂xn∂x1
〉 . . . 〈Λk , ∂2A(xk )

∂xn∂xn
〉

⎞

⎟⎠ .

Based on Assumptions A5–A6, we know that zk = 0 for sufficiently large k, so for suf-
ficiently large k, the two subproblems LSDP (2.7) and QSDP (2.8) can be replaced by the
following subproblem:

min ∇f
(
xk)Td +

1
2

dTHkd

s.t. A
(
xk) + DA

(
xk)d � 0.

(5.1)

The following conclusions are the results in [20], which are important for the analysis
of the acceptance of full step size (i.e., Lemma 5.2).

Lemma 5.1 Suppose that Assumptions A2–A10 hold, then the following conclusions are
true:

(i) limk→∞ Λk = Λ∗.
(ii) rank(A(xk) + DA(xk)dk) = rank(A(x∗)) = r for all k sufficiently large.

(iii) If d̃k is a solution to subproblem (2.9), then there exists Φ̂k ∈ S
q such that

∇f
(
xk) + Hkdk + Hkd̃k + DA

(
xk)∗N̄T

k Φ̂kN̄k = 0. (5.2)

(iv) ‖̃dk‖ = O(‖dk‖2),‖Φk – Φ̂k‖ = O(‖dk‖2) for all k sufficiently large, where Φk satisfies
Λk = N̄kΦkN̄T

k .
(v) λ1(A(xk + dk + d̃k)) ≤ 0 holds for all k sufficiently large.

Based on Lemma 5.1, we are now in a position to show that the full size step can be
accepted for k sufficiently large, which plays a key role for the superlinear convergence.

Lemma 5.2 Suppose that Assumptions A2–A10 hold, then the full step size can be ac-
cepted, i.e., tk ≡ 1 for k sufficiently large.
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Proof By Lemma 5.1(v), we know λ1(A(xk + dk + d̃k)) ≤ 0 for all k sufficiently large, this
implies P(xk) ≤ P̄ for all k sufficiently large. So according to the arc search strategy (see
Step 5 in Algorithm A), it is sufficient to prove

θα

(
xk + dk + d̃k)≤ θα

(
xk) + β�k

for k sufficiently large, or equivalently,

Tk := θα

(
xk + dk + d̃k) – θα

(
xk) – β�k ≤ 0 (5.3)

for k sufficiently large.
By (2.12), Taylor expansion, and Lemma 5.1(iv), (v), we obtain

θα

(
xk + dk + d̃k) – θα

(
xk)

= ∇f
(
xk)Tdk + ∇f

(
xk)Td̃k +

1
2
(
dk)T∇2f

(
xk)dk – αP

(
xk) + o

(∥∥dk∥∥2). (5.4)

It follows from the constraints of subproblem (2.9) that

N̄T
k
(
A
(
xk + dk))N̄k = –N̄T

k
(
DA
(
xk )̃dk)N̄k + o

(∥∥dk∥∥2), (5.5)

which gives rise to

–
〈
DA
(
xk )̃dk , N̄kΦ̂kN̄T

k
〉

=
〈
A
(
xk + dk), N̄kΦ̂kN̄T

k
〉
+ o
(∥∥dk∥∥2).

By (5.2), (2.2), and the above equality, one has

�f
(
xk)Td̃k = –

〈
DA
(
xk )̃dk , N̄kΦ̂kN̄T

k
〉
–
(
dk + d̃k)TBkd̃k

=
〈
A
(
xk + dk), N̄kΦ̂kN̄T

k
〉
+ o
(∥∥dk∥∥2)

=
〈
N̄T

k A
(
xk + dk)N̄k , Φ̂k

〉
+ o
(∥∥dk∥∥2)

=
〈
N̄T

k A
(
xk + dk)N̄k , Φ̂k – Φk

〉

+
〈
N̄T

k A
(
xk + dk)N̄k ,Φk

〉
+ o
(∥∥dk∥∥2)

=
〈
A
(
xk + dk), N̄kΦkN̄T

k
〉
+ o
(∥∥dk∥∥2),

where the last equality is due to Lemma 5.1(iv) and (5.5).
Note that N̄kΦkN̄T

k = Λk , by Taylor expansion and (2.10c), we get

�f
(
xk)Td̃k =

〈
A
(
xk) + DA

(
xk)dk +

1
2
(
dk)TD2A

(
xk)dk ,Λk

〉
+ o
(∥∥dk∥∥2)

=
〈

1
2
(
dk)TD2A

(
xk)dk ,Λk

〉
+ o
(∥∥dk∥∥2)

=
1
2
(
dk)T∇2

xx
〈
Λk ,A

(
xk)〉dk + o

(∥∥dk∥∥2). (5.6)
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By (5.3), (5.4), and (5.6), we have

Tk = ∇f
(
xk)Tdk – αP

(
xk) + ∇f

(
xk)Td̃k +

1
2
(
dk)T∇2f

(
xk)dk

+ o
(∥∥dk∥∥2) – β�k

= ∇f
(
xk)Tdk – αP

(
xk) +

1
2
(
dk)T∇2

xx
〈
Λk ,A

(
xk)〉dk

+
1
2
(
dk)T∇2f

(
xk)dk – β�k + o

(∥∥dk∥∥2). (5.7)

It follows from (3.2) and (3.12) that

∇f
(
xk)Tdk – αP

(
xk) = �k ≤ –

(
dk)THkdk . (5.8)

Noting that 1
2 – β > 0, it follows from (5.7), (5.8), and Assumption A2 that

Tk ≤
(

1
2

– β

)
�k +

1
2
(
dk)T(Wk – Hk)dk + o

(∥∥dk∥∥2)

≤ –
(

1
2

– β

)
a
∥∥dk∥∥2 +

1
2
(
dk)T(Wk – Hk)dk + o

(∥∥dk∥∥2),

which together with Assumption A10 gives

Tk ≤ –
(

1
2

– β

)
a
∥∥dk∥∥2 + o

(∥∥dk∥∥2)≤ 0

for k sufficiently large. So we get the conclusion. �

Based on Lemma 5.2, we now present the superlinear convergence of Algorithm A. The
proof is similar to that of Theorem 3.3 in [17].

Theorem 5.1 Suppose that Assumptions A2–A10 hold, the sequence {xk} generated by
Algorithm A is superlinearly convergent, that is, ‖xk+1 – x∗‖ = o(‖xk – x∗‖).

6 Numerical experiments
In this section, preliminary numerical experiments of Algorithm A are implemented. The
tested problems are chosen from [13, 30]. Algorithm A was coded by Matlab (2017a) and
run on a computer with 3.60 GHz CPU with Windows 7 (64 bite) system.

The parameters are chosen as follows:

α0 = 80.1, P̄ = 5, η1 = 0.1, η2 = 0.2, β = 0.4;

The stop criterion is: ‖dk‖ ≤ 10–6.
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Problem 1 ([30])

min f (x) = sin x1 + cos x2

s.t.

(
x1 1
1 x2

)
� 0,

x = (x1, x2)T ∈R
2.

(6.1)

Problem 2 ([30])

min f (x) = e–x1–x2

s.t

(
x1 1
1 x2

)
� 0,

x = (x1, x2)T ∈R
2.

(6.2)

For the above two tested problems, we compare Algorithm A with the algorithm in [30].
The numerical results are listed in Table 1. The meaning of the notations in Table 1 is
described as follows:

x0 : the initial point, Iter : the number of iterations,
time : the CPU time, ffinal : the final objective value.

The numerical results in Table 1 indicate that Algorithm A is much more robust than
Algorithm [30], although the CPU time of Algorithm A is more than that of Algorithm
[30]. The less time of Algorithm [30] is due to the fact that Algorithm [30] only solves a
subproblem at each iteration.

Table 1 Numerical results

Problem n m x0 Algorithm A Algorithm [30]

Iter time (s) ffinal Iter time (s) ffinal

Problem 1 2 2 (1, 2) 9 1.43 –2.000 10 1.12 –2.000
2 2 (–5, 4) 9 1.24 –2.000 11 1.08 –2.000
2 2 (–4, –2) 10 1.04 –2.000 10 1.01 –2.000
2 2 (–4, 5) 9 1.16 –2.000 9 1.26 –2.000
2 2 (10, –10) 7 1.36 –2.000 4 0.32 –1.102
2 2 (2, 1) 11 1.35 –2.000 4 0.30 –2.244
2 2 (1, –10) 8 0.91 –2.000 3 0.45 –1.891

Problem 2 2 2 (1, 1) 2 0.68 7.389 3 0.35 7.389
2 2 (1, –7) 5 0.93 7.389 5 0.79 7.389
2 2 (9, –11) 6 0.91 7.389 6 0.81 7.389
2 2 (1, 5) 6 1.43 7.389 9 1.12 7.389
2 2 (1, 4) 5 0.72 7.389 4 1.04 5.431
2 2 (0, 4) 6 0.78 7.389 4 0.58 8.175
2 2 (0, 2) 5 0.61 7.389 3 0.43 7.842
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Table 2 Numerical results of NCM

n m x0 Algorithm A-Iter

10 5 Algorithm A 5
(0.5, . . . , 0.5)T Algorithm in [31] 8

Algorithm in [13] 9

45 10 Algorithm A 15
(0.5, . . . , 0.5)T Algorithm in [31] 8

Algorithm in [13] 10

105 15 Algorithm A 4
(0.5, . . . , 0.5)T Algorithm in [31] 10

Algorithm in [13] 11

190 20 Algorithm A 2
(0.5, . . . , 0.5)T Algorithm in [31] 11

Algorithm in [13] 12

Problem 3 ([13]) The nearest correlation matrix (NCM) problem:

min f (X) =
1
2
‖X – C‖2

F

s.t X � εI,

Xii = 1, i = 1, 2, . . . , m,

(6.3)

where C ∈ S
m is a given matrix, X ∈ S

m, ε is a scalar.
In the implementation, ε = 10–3, the matrix C is generated randomly, and its diagonal

elements are 1. We test ten times for every fixed dimensionality.
The numerical results are listed in Table 2. The meaning of the notations in Table 2 is

described as follows:

n : the dimensionality of x; m : the order of the matrix A(x);
A-Iter : the average iterative number.

The numerical results in Table 2 indicate that the average iterative number of Algo-
rithm A is less than that of the other two algorithms. Hence, Algorithm A is comparable.

7 Concluding remarks
In this paper, we have presented a new SSDP algorithm for nonlinear semidefinite pro-
gramming. Two subproblems, which are constructed skillfully, are solved to generate the
master search directions. In order to avoid the Maratos effect, a second-order correction
direction is introduced by solving a new quadratic programming. A penalty function is
used as a merit function for arc search. The global convergence and superlinearly conver-
gence of the proposed algorithm are shown under some mild conditions. The preliminary
numerical results indicate that the proposed algorithm is effective and comparable.
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