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Abstract
In the presented paper, Levinson’s inequality for 3-convex function is generalized by
using two Green’s functions. Čebyšev, Grüss, and Ostrowski-type new bounds are
found for the functionals involving data points of two types. Moreover, the main
results are applied to information theory via f -divergence, Rényi divergence, Rényi
entropy, Shannon entropy, and Zipf–Mandelbrot law.
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1 Introduction and preliminaries
In [12], Ky Fan’s inequality is generalized by Levinson for 3-convex functions as follows:

Theorem A Let f : I = (0, 2α) →R with f (3)(t) ≥ 0. Let xk ∈ (0,α) and pk > 0. Then

J1(f ) ≥ 0, (1)

where

J1
(
f (·)) =

1
Pn

n∑

ρ=1

pρ f (2α – xρ) – f

(
1

Pn

n∑

ρ=1

pρ(2α – xρ)

)

–
1

Pn

n∑

ρ=1

pρ f (xρ)

+ f

(
1

Pn

n∑

ρ=1

pρxρ

)

. (2)

Working with the divided differences, the assumptions of differentiability on f can be weak-
ened.

In [18], Popoviciu noted that (1) is valid on (0, 2a) for 3-convex functions, while in [2],
Bullen gave a different proof of Popoviciu’s result and also the converse of (1).

Theorem B (a) Let f : I = [a, b] → R be a 3-convex function and xn, yn ∈ [a, b] for n =
1, 2, . . . , k such that

max{x1 . . . xk} ≤ min{y1 . . . yk}, x1 + y1 = · · · = xk + yk (3)
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and pn > 0. Then

J2(f ) ≥ 0, (4)

where

J2
(
f (·)) =

1
Pk

k∑

ρ=1

pρ f (yρ) – f

(
1

Pk

k∑

ρ=1

pρyρ

)

–
1

Pk

k∑

ρ=1

pρ f (xρ) + f

(
1

Pk

k∑

ρ=1

pρxρ

)

. (5)

(b) If f is continuous and pρ > 0, (4) holds for all xρ , yρ satisfying (3), then f is 3-convex.

In [17], Pečarić weakened assumption (3) and proved that inequality (1) still holds, i.e.,
the following result holds:

Theorem C Let f : I = [a, b] →R be a 3-convex function, pk > 0, and let for k = 1, . . . , n, xk ,
yk be such that xk + yk = 2c̆, xk + xn–k+1 ≤ 2c̆ and pk xk +pn–k+1xn–k+1

pk +pn–k+1
≤ c̆. Then (4) holds.

In [15], Mercer made a notable work by replacing the condition of symmetric distribu-
tion of points xi and yi with symmetric variances of points xi and yi. The second condition
is a weaker condition.

Theorem D Let f be a 3-convex function on [a, b], pk be positive such that
∑n

k=1 pk = 1.
Also let xk , yk satisfy (3) and

n∑

ρ=1

pρ

(

xρ –
n∑

ρ=1

pρxρ

)2

=
n∑

ρ=1

pρ

(

yρ –
n∑

ρ=1

pρyρ

)2

. (6)

Then (1) holds.

On the other hand, the error function eF (t) can be represented in terms of the Green’s
function GF ,n(t, s) of the boundary value problem

z(n)(t) = 0,

z(i)(a1) = 0, 0 ≤ i ≤ p,

z(i)(a2) = 0, p + 1 ≤ i ≤ n – 1,

eF (t) =
∫ a2

a1

GF ,n(t, s)f (n)(s) ds, t ∈ [a, b],

where

GF ,n(t, s) =
1

(n – 1)!

⎧
⎨

⎩

∑p
i=0

( n–1
i

)
(t – a1)i(a1 – s)n–i–1, a1 ≤ s ≤ t;

–
∑n–1

i=p+1
( n–1

i

)
(t – a1)i(a1 – s)n–i–1, t ≤ s ≤ a2.

(7)

The following result holds in [1]:
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Theorem E Let f ∈ Cn[a, b], and let PF be its ’two-point right focal’ interpolating polyno-
mial. Then, for a ≤ a1 < a2 ≤ b and 0 ≤ p ≤ n – 2,

f (t) = PF (t) + eF (t)

=
p∑

i=0

(t – a1)i

i!
f (i)(a1)

+
n–p–2∑

j=0

( j∑

i=0

(t – a1)p+1+i(a1 – a2)j–i

(p + 1 + i)!(j – i)!

)

f (p+1+j)(a2)

+
∫ a2

a1

GF ,n(t, s)f (n)(s) ds, (8)

where GF ,n(t, s) is the Green’s function, defined by (7).

Let f ∈ Cn[a, b], and let PF be its ‘two-point right focal’ interpolating polynomial for
a ≤ a1 < a2 ≤ b. Then, for n = 3 and p = 0, (8) becomes

f (t) = f (a1) + (t – a1)f (1)(a2) + (t – a1)(a1 – a2)f (2)(a2) +
(t – a1)2

2
f (2)(a2)

+
∫ a2

a1

G1(t, s)f (3)(s) ds, (9)

where

G1(t, s) =

⎧
⎨

⎩
(a1 – s)2, a1 ≤ s ≤ t;

–(t – a1)(a1 – s) + 1
2 (t – a1)2, t ≤ s ≤ a2.

(10)

For n = 3 and p = 1, (8) becomes

f (t) = f (a1) + (t – a1)f (1)(a2) +
(t – a1)2

2
f (2)(a2) +

∫ a2

a1

G2(t, s)f (3)(s) ds, (11)

where

G2(t, s) =

⎧
⎨

⎩

1
2 (a1 – s)2 + (t – a1)(a1 – s), a1 ≤ s ≤ t;

– 1
2 (t – a1)2, t ≤ s ≤ a2.

(12)

The presented work is organized as follows: In Sect. 2, Levinson’s inequality for 3-convex
function is generalized by using two Green’s functions defined by (10) and (12). In Sect. 3,
Čebyšev, Grüss, and Ostrowski-type new bounds are found for the functionals involving
data points of two types. In Sect. 4, the main results are applied to information theory via
f -divergence, Rényi divergence, Rényi entropy, Shannon entropy, and Zipf–Mandelbrot
law.

2 Main results
First we give an identity involving Jensen’s difference of two different data points. Then we
give an equivalent form of identity by using the Green’s function defined by (10) and (12).

RETRACTED A
RTIC

LE



Adeel et al. Journal of Inequalities and Applications        (2019) 2019:212 Page 4 of 19

Theorem 1 Let f ∈ C3[ζ1, ζ2] such that f : I = [ζ1, ζ2] → R, (p1, . . . , pn) ∈ R
n, (q1, . . . , qm) ∈

R
m such that

∑n
ρ=1 pρ = 1 and

∑m
�=1 q� = 1. Also let xρ , y� ,

∑n
ρ=1 pρxρ ,

∑m
�=1 q�y� ∈ I . Then

J
(
f (·)) =

1
2

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( m∑

ρ=1

pρxρ

)2]

f (2)(ζ2)

+
∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds, (13)

where

J
(
f (·)) =

m∑

�=1

q�f (y�) – f

( m∑

�=1

q�y�

)

–
n∑

ρ=1

pρ f (xρ) + f

( n∑

ρ=1

pρxρ

)

(14)

and

J
(
Gk(·, s)

)
=

m∑

�=1

q�Gk(y�, s) – Gk

( m∑

�=1

q�y�, s

)

–
n∑

ρ=1

pρGk(xρ , s) + Gk

( n∑

ρ=1

pρxρ , s

)

, (15)

for Gk(·, s) (k = 1, 2) defined in (10) and (12) respectively.

Proof (i) For k = 1.
Using (9) in (14), we have

J
(
f (·)) =

m∑

�=1

q�

[
f (ζ1) + (y� – ζ1)f (1)(ζ2) + (y� – ζ1)(ζ1 – ζ2)f (2)(ζ2)

+
(y� – ζ1)2

2
f (2)(ζ2) +

∫ ζ2

ζ1

G1(y�, s)f (3)(s) ds
]

–

[

f (ζ1) +

( m∑

�=1

q�y� – ζ1

)

f (1)(ζ2) +

( m∑

�=1

q�y� – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

+
(
∑m

�=1 q�y� – ζ1)2

2
f (2)(ζ2) +

∫ ζ2

ζ1

G1

( m∑

�=1

q�y� , s

)

f (3)(s) ds

]

–
n∑

ρ=1

pρ

[
f (ζ1) + (xρ – ζ1)f (1)(ζ2) + (xρ – ζ1)(ζ1 – ζ2)f (2)(ζ2)

+
(xρ – ζ1)2

2
f (2)(ζ2) +

∫ ζ2

ζ1

G1(xρ , s)f (3)(s) ds
]

+

[

f (ζ1) +

( n∑

ρ=1

pρxρ – ζ1

)

f (1)(ζ2) +

( n∑

ρ=1

pρxρ – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

+
(
∑n

ρ=1 pρxρ – ζ1)2

2
f (2)(ζ2) +

∫ ζ2

ζ1

G1

( n∑

ρ=1

pρxρ , s

)

f (3)(s) ds

]

.
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J
(
f (·)) = f (ζ1) +

( m∑

�=1

q�y� – ζ1

)

f (1)(ζ2) +

( m∑

�=1

q�y� – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

+
(
∑m

�=1 q�y2
� – 2ζ1

∑m
�=1 q�y� + ζ 2

1 )f (2)(ζ2)
2

+
m∑

i=1

q�

∫ ζ2

ζ1

G1(y�, s)f (3)(s) ds

– f (ζ1) –

( m∑

�=1

q�y� – ζ1

)

f (1)(ζ2) –

( m∑

�=1

q�y� – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

–
((
∑m

�=1 q�y�)2 – 2ζ1
∑m

�=1 q�y� + ζ 2
1 )f (2)(ζ2)

2

–
∫ ζ2

ζ1

G1

( m∑

�=1

q�y�, s

)

f (3)(s) ds

– f (ζ1) –

( n∑

ρ=1

pρxρ – ζ1

)

f (1)(ζ2) –

( n∑

ρ=1

pρxρ – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

–
(
∑n

ρ=1 pρx2
ρ – 2ζ1

∑n
ρ=1 pρxρ + ζ 2

1 )f (2)(ζ2)
2

–
n∑

ρ=1

pρ

∫ ζ2

ζ1

G1(xρ , s)f (3)(s) ds

+ f (ζ1) +

( n∑

ρ=1

pρxρ – ζ1

)

f (1)(ζ2) +

( n∑

ρ=1

pρxρ – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

+
((
∑n

ρ=1 pρxρ)2 – 2ζ1
∑n

ρ=1 pρxρ + ζ 2
1 )f (2)(ζ2)

2

+
∫ ζ2

ζ1

G1

( n∑

ρ=1

pρxρ , s

)

f (3)(s) ds,

J
(
f (·)) =

1
2

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( n∑

ρ=1

pρxρ

)2]

f (2)(ζ2)

+
m∑

�=1

q�

∫ ζ2

ζ1

G1(y�, s)f (3)(s) ds –
∫ ζ2

ζ1

G1

( m∑

�=1

q�y� , s

)

f (3)(s) ds

–
n∑

ρ=1

pρ

∫ ζ2

ζ1

G1(xρ , s)f (3)(s) ds +
∫ ζ2

ζ1

G1

( n∑

ρ=1

pρxρ , s

)

f (3)(s) ds.

After rearranging, we have (13).
(ii) For k = 2
Using (11) in (14) and following similar steps as in the proof of (i), we get (13). �

Corollary 1 Let f ∈ C3[0, 2α] such that f : I = [0, 2α] →R, x1, . . . , xn ∈ (0,α), (p1, . . . , pn) ∈
R

n such that
∑n

ρ=1 pρ = 1. Also let xρ ,
∑n

ρ=1 pρ(2α – xρ),
∑n

ρ=1 pρxρ ∈ I . Then

J
(
f (·)) =

∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds, 0 ≤ ζ1 < ζ2 ≤ 2α, (16)

where J(f (·)) and J(G(·, s)) are defined in (14) and (15) respectively.
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Proof Choosing I = [0, 2α], y� = (2α – xρ), x1, . . . , xn ∈ (0,α), pρ = q� , and m = n in Theo-
rem 1, after simplification we get (16). �

Theorem 2 Let f : I = [ζ1, ζ2] → R be a 3-convex function. Also let (p1, . . . , pn) ∈ R
n,

(q1, . . . , qm) ∈ R
m be such that

∑n
ρ=1 pρ = 1 and

∑m
�=1 q� = 1 and xρ , y� ,

∑n
ρ=1 pρxρ ,

∑m
�=1 q�y� ∈ I .
If

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( n∑

ρ=1

pρxρ

)2]

f (2)(ζ2) ≥ 0, (17)

then the following statements are equivalent:
For f ∈ C3[ζ1, ζ2],

n∑

ρ=1

pρ f (xρ) – f

( n∑

ρ=1

pρxρ

)

≤
m∑

�=1

q�f (y�) – f

( m∑

�=1

q�y�

)

. (18)

For all s ∈ I ,

n∑

ρ=1

pρGk(xρ , s) – Gk

( n∑

ρ=1

pρxρ , s

)

≤
m∑

�=1

q�Gk(y�, s) – Gk

( m∑

�=1

q�y� , s

)

, (19)

where Gk(·, s) are defined by (10) and (12) for k = 1, 2 respectively.
Moreover, inequality in (18) is reversed iff inequality in (19) is reversed.

Proof (18) ⇒ (19): Let (18) be valid. Then, as the function Gk(·, s) (s ∈ I) is also continuous
and 3-convex, it follows that also for this function (18) holds, i.e., (19) is valid.

(19) ⇒ (18): If f is 3-convex, then without loss of generality we can suppose that there
exists the third derivative of f . Let f ∈ C3[ζ1, ζ2] be a 3-convex function and (19) hold. Then
we can represent function f in the form (9). Now, by means of some simple calculations,
we can write

m∑

�=1

q�f (y�) – f

( m∑

�=1

q�y�

)

–
n∑

ρ=1

pρ f (xρ) + f

( n∑

ρ=1

pρxρ

)

=
1
2

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( n∑

ρ=1

pρxρ

)2]

f (2)(ζ2)

+
∫ ζ2

ζ1

( m∑

�=1

q�Gk(y� , s) – Gk

( m∑

�=1

q�(y�, s)

)

–
n∑

ρ=1

pρGk(xρ , s) + Gk

( n∑

ρ=1

pρxρ , s

))

f (3)(s) ds.

By the convexity of f , we have f (3)(s) ≥ 0 for all s ∈ I . Hence, if for every s ∈ I , (19) is
valid, then it follows that for every 3-convex function f : I →R, with f ∈ C3[ζ1, ζ2], (18) is
valid. �
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Remark 1 If the expression

m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( n∑

ρ=1

pρxρ

)2

and f (2)(ζ2) have different signs in (17), then inequalities (18) and (19) are reversed.

Next we have the results about generalization of Bullen-type inequality (for real weights)
given in [2] (see also [16] and [11]).

Corollary 2 Let f : I = [ζ1, ζ2] → R be a 3-convex function and f ∈ C3[ζ1, ζ2], x1, . . . , xn,
y1, . . . , ym ∈ I such that

max{x1, . . . , xn} ≤ min{y1, . . . , ym} (20)

and

x1 + y1 = · · · = xn + ym. (21)

Also let (p1, . . . , pn) ∈ R
n, (q1, . . . , qm) ∈ R

m be such that
∑n

ρ=1 pρ = 1 and
∑m

�=1 q� = 1 and
xρ , y� ,

∑n
ρ=1 pρxρ ,

∑m
�=1 q�y� ∈ I . If (17) holds, then (18) and (19) are equivalent.

Proof By choosing xρ and y� such that conditions (20) and (21) hold in Theorem 2, we get
the required result. �

Remark 2 If pρ = q� are positive and xρ , y� satisfy (20) and (21), then inequality (18) re-
duces to Bullen’s inequality given in [16, p. 32, Theorem 2] for m = n.

Next we have a generalized form (for real weights) of Bullen-type inequality given in
[17] (see also [16]).

Corollary 3 Let f : I = [ζ1, ζ2] →R be a 3-convex function and f ∈ C3[ζ1, ζ2], (p1, . . . , pn) ∈
R

n, (q1, . . . , qm) ∈ R
m be such that

∑n
ρ=1 pρ = 1 and

∑m
�=1 q� = 1. Also let x1, . . . , xn

and y1, . . . , ym ∈ I be such that xρ + y� = 2c, and for ρ = 1, . . . , n, xρ + xn–ρ+1 and
pρxρ+pn–ρ+1xn–ρ+1

pρ+pn–ρ+1
≤ c. If (17) holds, then (18) and (19) are equivalent.

Proof Using Theorem 2 with the conditions given in the statement, we get the required
result. �

Remark 3 In Theorem 2, if m = n, pρ = q� are positive, xρ + y� = 2c, xρ + xn–ρ+1 and
pρxρ+pn–ρ+1xn–ρ+1

pρ+pn–ρ+1
≤ c. Then (18) reduces to a generalized form of Bullen’s inequality defined

in [16, p. 32, Theorem 4].

In [15], Mercer made a notable work by replacing condition (21) of symmetric distribu-
tion of points xρ and y� with symmetric variances of points xρ and y� for ρ = 1, . . . , n and
� = 1, . . . , m.

So in the next result we use Mercer’s condition (6), but for ρ = � and m = n.
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Corollary 4 Let f : I = [ζ1, ζ1] → R be a 3-convex function and f ∈ C3[ζ1, ζ2], pρ , qρ be
positive such that

∑n
ρ=1 pρ = 1 and

∑n
ρ=1 qρ = 1. Also let xρ , yρ satisfy (20) and

n∑

ρ=1

pρ

(

xρ –
n∑

ρ=1

pρxρ

)2

=
n∑

ρ=1

pρ

(

yρ –
n∑

ρ=1

qρyρ

)2

. (22)

If (17) holds, then (18) and (19) are equivalent.

Proof For positive weights, using (6) and (20) in Theorem 2, we get the required result. �

Next we have the results that lean on the generalization of Levinson-type inequality
given in [12] (see also [16]).

Corollary 5 Let f : I = [0, 2α] → R be a 3-convex function and f ∈ C3[0, 2α], x1, . . . , xn ∈
(0,α), (p1, . . . , pn) ∈R

n and
∑n

ρ=1 pρ = 1. Also let xρ ,
∑n

ρ=1 pρ(2α –xρ),
∑n

ρ=1 pρxρ ∈ I . Then
the following are equivalent:

n∑

ρ=1

pρ f (xρ) – f

( n∑

ρ=1

pρxρ

)

≤
n∑

ρ=1

pρ f (2α – xρ) – f

( n∑

ρ=1

pρ(2α – xρ)

)

. (23)

For all s ∈ I ,

n∑

ρ=1

pρGk(xρ , s) – Gk

( n∑

ρ=1

pρxρ , s

)

≤
n∑

ρ=1

pρGk(2α – xρ , s)

– Gk

( n∑

ρ=1

pρ(2α – xρ), s

)

, (24)

where Gk(·, s) is defined in (10) and (12) for k = 1, 2 respectively.

Proof If I = [0, 2α], (x1, . . . , xn) ∈ (0,α), pρ = q� , m = n, and y� = (2α – xρ) in Theorem 2
with 0 ≤ ζ1 < ζ2 ≤ 2α, we get the required result. �

Remark 4 In Corollary 5, if pρ are positive, then inequality (23) reduces to Levinson’s
inequality given in [16, p. 32, Theorem 1].

3 New bounds for Levinson-type functionals
Consider the Čebyšev functional for two Lebesgue integrable functions f1, f2 : [ζ1, ζ2] →R

Θ(f1, f2) =
1

ζ2 – ζ1

∫ ζ2

ζ1

f1(x)f2(x) dx

–
1

ζ2 – ζ1

∫ ζ2

ζ1

f1(x) dx × 1
ζ2 – ζ1

∫ ζ2

ζ1

f2(x) dx, (25)

where the integrals are assumed to exist.
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Theorem F ([3]) Let f1 : [ζ1, ζ2] →R be a Lebesgue integrable function and f2 : [ζ1, ζ2] →R

be an absolutely continuous function with (·, –ζ1)(·, –ζ2)[f ′
2]2 ∈ L[ζ1, ζ2]. Then

∣
∣Θ(f1, f2)

∣
∣ ≤ 1√

2
[
Θ(f1, f1)

] 1
2 1√

ζ2 – ζ1

(∫ ζ2

ζ1

(t – ζ1)(ζ2 – t)
[
f ′
2(t)

]2 dt
) 1

2
. (26)

1√
2 is the best possible.

Theorem G ([3]) Let f1 : [ζ1, ζ2] →R be absolutely continuous with f ′
1 ∈ L∞[ζ1, ζ2], and let

f2 : [ζ1, ζ2] →R be monotonic nondecreasing on [ζ1, ζ2]. Then

∣
∣Θ(f1, f2)

∣
∣ ≤ 1

2(ζ2 – ζ1)
∥
∥f ′∥∥∞

∫ ζ2

ζ1

(t – ζ1)(ζ2 – t)
[
f ′
2(t)

]
df2(t). (27)

1
2 is the best possible.

In the next result we construct the Čebyšev-type bound for our functional defined in
(5).

Theorem 3 Let f ∈ C3[ζ1, ζ2] be such that f : I = [ζ1, ζ2] → R and f (3)(·) is absolutely con-
tinuous with (· – ζ1)(ζ2 – ·)[f (4)]2 ∈ L[ζ1, ζ2]. Also let (p1, . . . , pn) ∈ R

n, (q1, . . . , qm) ∈ R
m be

such that
∑n

ρ=1 pρ = 1,
∑m

�=1 q� = 1, xρ , y� ,
∑n

ρ=1 pρxρ ,
∑m

�=1 q�y� ∈ I . Then

J
(
f (·)) =

1
2

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( m∑

�=1

pρxρ

)2]

f (2)(ζ2)

+
f (2)(ζ2) – f (2)(ζ1)

(ζ2 – ζ1)

∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds + R3(ζ1, ζ2; f ), (28)

where J(f (·)), J(Gk(·, s)) are defined in (14) and (15) respectively, and the remainder
R3(ζ1, ζ2; f ) satisfies the bound

∣∣R3(ζ1, ζ2; f )
∣∣ ≤ ζ2 – ζ1√

2
[
Θ

(
J
(
Gk(·, s)

)
, J

(
Gk(·, s)

))] 1
2 ×

1√
ζ2 – ζ1

(∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (4)(s)

]
ds

) 1
2

(29)

for Gk(·, s) (k = 1, 2) defined in (10) and (12) respectively.

Proof Setting f1 
→ J(Gk(·, s)) and f2 
→ f (3) in Theorem F, we get

∣
∣∣
∣

1
ζ2 – ζ1

∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds –

1
ζ2 – ζ1

∫ ζ2

ζ1

J
(
Gk(·, s)

)
ds × 1

ζ2 – ζ1

∫ ζ2

ζ1

f (3)(s) ds
∣
∣∣
∣

≤ 1√
2
[
Θ

(
J
(
Gk(·, s)

)
, J

(
Gk(·, s)

))] 1
2 1√

ζ2 – ζ1

(∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (4)(s)

]
ds

) 1
2

,
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∣∣
∣∣

1
ζ2 – ζ1

∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds –

f (2)(ζ2) – f (2)(ζ1)
(ζ2 – ζ1)2

∫ ζ2

ζ1

J
(
Gk(·, s)

)
ds

∣∣
∣∣

≤ 1√
2
[
Θ

(
J
(
Gk(·, s)

)
, J

(
Gk(·, s)

))] 1
2 1√

ζ2 – ζ1

(∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (4)(s)

]
ds

) 1
2

.

Multiplying (ζ2 – ζ1) on both sides of the above inequality and using estimation (29), we
get

∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3) ds =

f (2)(ζ2) – f (2)(ζ1)
(ζ2 – ζ1)

∫ ζ2

ζ1

J
(
Gk(·, s)

)
ds + R3(ζ1, ζ1; f ).

Using identity (13), we get (28). �

In the next result the bounds of Grüss-type inequalities are estimated.

Theorem 4 Let f ∈ C3[ζ1, ζ2] be such that f : I = [ζ1, ζ2] →R, f (3)(·) is absolutely continu-
ous and f (4)(·) ≥ 0 a.e. on [ζ1, ζ2]. Also let (p1, . . . , pn) ∈ R

n, (q1, . . . , qm) ∈ R
m be such that

∑n
ρ=1 pρ = 1,

∑m
�=1 q� = 1, xρ , y� ,

∑n
ρ=1 pρxρ ,

∑m
�=1 q�y� ∈ I . Then identity (28) holds, where

the remainder satisfies the estimation

∣∣R3(ζ1, ζ2; f )
∣∣ ≤ (ζ2 – ζ1)

∥∥J
(
Gk(·, s)

)′∥∥∞

[
f (2)(ζ2) + f (2)(ζ1)

2
–

f (2)(ζ2) – f (2)(ζ1)
ζ2 – ζ1

]
. (30)

Proof Setting f1 
→ J(Gk(·, s)) and f2 
→ f (3) in Theorem G, we get

∣∣∣
∣

1
ζ2 – ζ1

∫ ζ2

ζ1

J
(
Gk(·, s)

)
)f (3)(s) ds –

1
ζ2 – ζ1

∫ ζ2

ζ1

J
(
Gk(·, s)

)
ds · 1

ζ2 – ζ1

∫ ζ2

ζ1

f (3)(s) ds
∣∣∣
∣

≤ 1
2
∥
∥J

(
Gk(·, s)

)′∥∥∞
1

ζ2 – ζ1

∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (4)(s)

]
ds. (31)

Since

∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (4)(s)

]
ds

=
∫ ζ2

ζ1

[2s – ζ1 – ζ2]f 3(s) ds

= (ζ2 – ζ1)
[
f (2)(ζ2) + f (2)(ζ1)

]
– 2

(
f (2)(ζ2) – f (2)(ζ1)

)
, (32)

using (13), (31), and (32), we have (28). �

Ostrowski-type bounds for a newly constructed functional defined in (5).

Theorem 5 Let f ∈ C3[ζ1, ζ2] be such that f : I = [ζ1, ζ2] → R and f (2)(·) is absolutely con-
tinuous. Also let (p1, . . . , pn) ∈R

n, (q1, . . . , qm) ∈R
m be such that

∑n
ρ=1 pρ = 1,

∑m
�=1 q� = 1,

xρ , y� ,
∑n

ρ=1 pρxρ ,
∑m

�=1 q�y� ∈ I . Also let (r, s) be a pair of conjugate exponents, that is,
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1 ≤ r, s,≤ ∞, 1
r + 1

s = 1. If |f (3)|r : [ζ1, ζ2] → R is a Riemann integrable function, then

∣
∣∣
∣∣
J
(
f (·)) –

1
2

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( m∑

�=1

pρxρ

)2]

f (2)(ζ2)

∣
∣∣
∣∣

≤ ∥∥f (3)∥∥
r

(∫ ζ2

ζ1

∣∣J
(
Gk(·, s)

)
ds

∣∣s
) 1

s
. (33)

Proof Rearrange identity (13) in the following way:

∣
∣∣
∣∣
J
(
f (·)) –

1
2

( m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( m∑

ρ=1

pρxρ

)2)

f (2)(ζ2)

∣
∣∣
∣∣

≤
∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds. (34)

Employing the classical Holder’s inequality to R.H.S of (34) yields (33). �

4 Application to information theory
The idea of Shannon entropy is the focal job of data hypothesis once in a while alluded as
measure of uncertainty. The entropy of a random variable is characterized regarding its
probability distribution and can be shown to be a decent measure of randomness or un-
certainty. Shannon entropy permits to evaluate the normal least number of bits expected
to encode a series of images dependent on the letters in order size and the recurrence of
the symbols.

Divergences between probability distributions have been acquainted with measure of
the difference between them. A variety of sorts of divergences exist, for instance the f -
difference (particularly, Kullback–Leibler divergence, Hellinger distance, and total varia-
tion distance), Rényi divergence, Jensen–Shannon divergence, and so forth (see [13, 21]).
There are a lot of papers managing inequalities and entropies, see, e.g., [8, 10, 20] and
the references therein. Jensen’s inequality assumes a crucial role in a portion of these in-
equalities. In any case, Jensen’s inequality deals with one sort of information focuses and
Levinson’s inequality manages two types of information points.

Zipf ’s law is one of the central laws in data science, and it has been utilized in linguistics.
George Zipf in 1932 found that we can tally how frequently each word shows up in the
content. So on the off chance that we rank (r) word as per the recurrence of word event
(f ), at that point the result of these two numbers is steady (C) : C = r × f . Aside from the
utilization of this law in data science and linguistics, Zipf ’s law is utilized in city population,
sun powered flare power, site traffic, earthquake magnitude, the span of moon pits, and so
forth. In financial aspects this distribution is known as the Pareto law, which analyzes the
distribution of the wealthiest individuals in the community [6, p. 125]. These two laws are
equivalent in the mathematical sense, yet they are involved in different contexts [7, p. 294].

4.1 Csiszár divergence
In [4, 5] Csiszár gave the following definition:
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Definition 1 Let f be a convex function fromR
+ toR

+. Let r̃, k̃ ∈R
n
+ be such that

∑n
s=1 rs =

1 and
∑n

s=1 qs = 1. Then an f -divergence functional is defined by

If (r̃, k̃) :=
n∑

s=1

qsf
(

rs

qs

)
.

By defining the following:

f (0) := lim
x→0+

f (x); 0f
(

0
0

)
:= 0; 0f

(
a
0

)
:= lim

x→0+
xf

(
a
0

)
, a > 0,

he stated that nonnegative probability distributions can also be used.
Using the definition of f -divergence functional, Horv́ath et al. [9] gave the following

functional:

Definition 2 Let I be an interval contained in R and f : I → R be a function. Also let
r̃ = (r1, . . . , rn) ∈R

n and k̃ = (k1, . . . , kn) ∈ (0,∞)n be such that

rs

ks
∈ I, s = 1, . . . , n.

Then

Îf (r̃, k̃) :=
n∑

s=1

ksf
(

rs

ks

)
.

We apply a generalized form of Bullen’s inequality (18) (for positive weights) to Îf (r̃, k̃).
Let us denote the following set of assumptions by G :
Let f : I = [α,β] →R be a 3-convex function. Also let (p1, . . . , pn) ∈R

+, (q1, . . . , qm) ∈R
+

be such that
∑n

s=1 ps = 1 and
∑m

s=1 qs = 1 and xs, ys,
∑n

s=1 psxs,
∑m

s=1 qsys ∈ I .

Theorem 6 Assume G.
Let r̃ = (r1, . . . , rn), k̃ = (k1, . . . , kn) be in (0,∞)n, and w̃ = (w1, . . . , wm), t̃ = (t1, . . . , tm) be in

(0,∞)m such that

rs

ks
∈ I, s = 1, . . . , n,

and

wu

tu
∈ I, u = 1, . . . , m.

Then

(i)
1

∑n
s=1 ks

Îf (r̃, k̃) – f

( n∑

s=1

rs∑n
s=1 ks

)

≤ 1
∑m

u=1 tu
Îf (w̃, t̃) – f

( m∑

u=1

wu∑m
u=1 tu

)

. (35)

(ii) If x → xf (x) (x ∈ [a, b]) is 3-convex, then

1
∑n

s=1 ks
Îidf (r̃, k̃) – f

( n∑

s=1

rs∑n
s=1 ks

)

≤ 1
∑m

u=1 tu
Îidf (w̃, t̃) – f

( m∑

u=1

wu∑m
u=1 tu

)

, (36)
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where

Îidf (r̃, k̃) =
n∑

s=1

rsf
(

rs

ks

)

and

Îidf (w̃, t̃) =
m∑

u=1

wuf
(

wu

tu

)
.

Proof (i) Taking ps = ks∑n
s=1 ks

, xρ = rs
ks

, qs = tu∑m
u=1 tu

, and ys = wu
tu

in inequality (18) (for positive
weights), we have

n∑

s=1

ks∑n
s=1 ks

f
(

rs

ks

)
– f

( n∑

s=1

rs∑n
s=1 ks

)

≤
m∑

u=1

tu∑m
u=1 tu

f
(

wu

tu

)
– f

( m∑

u=1

wu∑m
u=1 tu

)

. (37)

Multiplying (37) by the sum
∑n

s=1 ks, we get

Îf (r̃, k̃) – f

( n∑

s=1

rs∑n
s=1 ks

) n∑

s=1

ks ≤
m∑

u=1

tu∑m
u=1 tu

f
(

wu

tu

) n∑

u=1

ku

– f

( m∑

u=1

wu∑m
u=1 tu

) n∑

s=1

ks. (38)

Now again multiplying (38) by the sum
∑m

u=1 tu, we get

m∑

u=1

tuÎf (r̃, k̃) – f

( n∑

s=1

rs∑n
s=1 ks

) n∑

s=1

ks

m∑

u=1

tu

≤
n∑

s=1

ksÎf (w̃, t̃) – f

( m∑

u=1

wu∑m
u=1 tu

) n∑

s=1

ks

m∑

u=1

tu.

If we divide the above inequality with the product
∑n

s=1 ks
∑m

u=1 tu, we get (35).
(ii) Using f := idf (where “id” is the identity function) in (18)(for positive weights), we

have

n∑

s=1

psxsf (xs) –
n∑

s=1

psxsf

( n∑

s=1

psxs

)

≤
m∑

u=1

quyuf (yu) –
m∑

u=1

quyuf

( m∑

u=1

quyu

)

.

Using the same steps as in the proof of (i), we get (36). �

4.2 Shannon entropy
Definition 3 (see [9]) The Shannon entropy of positive probability distribution r̃ =
(r1, . . . , rn) is defined by

S := –
n∑

s=1

rs log(rs). (39)
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Corollary 6 Assume G.
If k̃ = (k1, . . . , kn) ∈R

n
+, t̃ = (t1, . . . , tm) ∈R

m
+ and if base of log is greater than 1, then

1
∑n

s=1 ks

[

S +
n∑

s=1

rs log(ks)

]

+

[ n∑

s=1

rs∑n
s=1 ks

log

( n∑

s=1

rs∑n
s=1 ks

)]

≤ 1
∑m

u=1 tu

[

S̃ +
m∑

u=1

wu log(tu)

]

+

[ m∑

u=1

wu∑m
u=1 tu

log

( m∑

u=1

wu∑m
u=1 tu

)]

, (40)

where S is defined in (39), and

S̃ := –
m∑

u=1

wu log(wu).

If base of log is less than 1, then inequality (40) is reversed.

Proof The function f 
→ –x log(x) is 3-convex for base of log is greater than 1. So, using
f := –x log(x) in Theorem 6(i), we get (40). �

Remark 5 If k and t are positive probability distributions, then (40) becomes

[

S +
n∑

s=1

rs log(ks)

]

+

[ n∑

s=1

rs log

( n∑

s=1

rs

)]

≤
[

S̃ +
m∑

s=1

ws log(ts)

]

+

[ m∑

s=1

ws log

( m∑

s=1

ws

)]

. (41)

Definition 4 (see [9]) For r̃ and q̃, where r̃, q̃ ∈ R
n
+ the Kullback–Leibler divergence is

defined by

D(r̃, q̃) :=
n∑

s=1

rs log

(
rs

qs

)
. (42)

Corollary 7 Assume G.
Let r̃ = (r1, . . . , rn), k̃ = (k1, . . . , kn) ∈R

n
+, and w̃ := (w1, . . . , wm), t̃ = (t1, . . . , tm) ∈R

m
+ be such

that
∑n

s=1 rs,
∑n

s=1 ks,
∑m

s=1 ws, and
∑m

s=1 ts be equal to 1, then

n∑

s=1

(
rs

ks

)
D(r̃, k̃) –

m∑

s=1

(
ws

ts

)
D(w̃, t̃) ≥ 0, (43)

where base of log is greater than 1.
If base of log is less than 1, then the signs of inequality in (43) are reversed.

Proof In Theorem 6(ii), replacing f by –x log(x), we have

∑n
s=1( rs

ks
)

∑n
s=1 ks

D(r̃, k̃) –
n∑

s=1

rs∑n
s=1 ks

log

( n∑

s=1

rs∑n
s=1 ks

)

≥
∑m

s=1( ws
ts

)
∑m

s=1 ts
D(w̃, t̃) –

m∑

s=1

ws∑n
s=1 ts

log

( m∑

s=1

ws∑m
s=1 ts

)

. (44)
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Now simply taking
∑n

s=1 rs,
∑n

s=1 ks,
∑m

s=1 ws, and
∑m

s=1 ts are equal to 1 and after rearrang-
ing, we get (43). �

4.3 Rényi divergence and entropy
The Rényi divergence and Rényi entropy are given in [19].

Definition 5 Let r̃, q̃ ∈R
n
+ be such that

∑n
1 ri = 1 and

∑n
1 qi = 1, and let δ ≥ 0, δ �= 1.

(a) The Rényi divergence of order δ is defined by

Dδ(r̃, q̃) :=
1

δ – 1
log

( n∑

i=1

qi

(
ri

qi

)δ
)

. (45)

(b) The Rényi entropy of order δ of r̃ is defined by

Hδ(r̃) :=
1

1 – δ
log

( n∑

i=1

rδ
i

)

. (46)

These definitions also hold for nonnegative probability distributions. If δ → 1 in (45),
we have (42), and if δ → 1 in (46), then we have (39).

Now we obtain inequalities for the Rényi divergence.

Theorem 7 Assume G.
Let r̃ = (r1, . . . , rn), k̃ = (k1, . . . , kn) ∈ R

n
+, w̃ = (w1, . . . , wm), and t̃ = (t1, . . . , tm) ∈R

m
+ .

(i) If base of log is greater than 1 and 0 ≤ δ ≤ θ are such that δ, θ �= 1, then

Dθ (r̃, k̃) – Dδ(r̃, k̃) ≤Dθ (w̃, t̃) – Dδ(w̃, t̃). (47)

If base of log is less than 1, then inequality (47) holds in reverse.
(ii) If θ > 1 and if base of log is greater than 1, then

Dθ (r̃, k̃) – D1(r̃, k̃) ≤Dθ (w̃, t̃) – D1(w̃, t̃). (48)

(iii) If δ ∈ [0, 1) and if base of log is greater than 1, then

D1(r̃, k̃) – Dδ(r̃, k̃) ≤D1(w̃, t̃) – Dδ(w̃, t̃). (49)

Proof With the mapping f defined by f : (0,∞) →R by f (t) := t
θ–1
δ–1 and using

ps := rs, xs :=
(

rs

ks

)δ–1

, s = 1, . . . , n,

and

qu := wu, yu :=
(

wu

tu

)δ–1

, u = 1, . . . , m,

in (18) (for positive weights) and after simplifications, we have

n∑

s=1

ks

(
rs

ks

)θ

–

( n∑

s=1

ks

(
rs

ks

)δ
) θ–1

δ–1

≤
m∑

u=1

tu

(
wu

tu

)θ

–

( m∑

u=1

tu

(
wu

tu

)δ
) θ–1

δ–1

(50)
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if either 0 ≤ δ < 1 < γ or 1 < δ ≤ θ , and inequality (50) holds in reverse if 0 ≤ δ ≤ γ < 1.
Raising the power 1

θ–1 in (50),

( n∑

s=1

ks

(
rs

ks

)θ
) 1

θ–1

–

( n∑

s=1

ks

(
rs

ks

)δ
) 1

δ–1

≤
( m∑

u=1

tu

(
wu

tu

)θ
) 1

θ–1

–

( m∑

u=1

tu

(
wu

tu

)δ
) 1

δ–1

. (51)

For base of log is greater than 1, the log function is increasing, therefore on taking log in
(51), we get (47). If base of log is less than 1, inequality in (47) is reversed. If δ = 1 = θ , and
by taking the limit, we have (48) and (49) respectively. �

Theorem 8 Assume G.
Let r̃ = (r1, . . . , rn), k̃ = (k1, . . . , kn) ∈ R

n
+, w̃ = (w1, . . . , wm), and t̃ = (t1, . . . , tm) ∈R

m
+ .

If either 1 < δ and base of log is greater than 1 or δ ∈ [0, 1) and base of log is less than 1,
then

1
∑n

s=1 ks( rs
ks

)δ

n∑

s=1

ks

(
rs

ks

)δ

log

(
rs

ks

)
– Dδ(r̃, k̃)

≤ 1
∑n

s=1 ks( rs
ks

)δ

m∑

s=1

ts

(
ws

ts

)δ

log

(
ws

ts

)
–

∑m
s=1 ts( ws

ts
)δ

∑n
s=1 ks( rs

ks
)δ
Dδ(w̃, t̃). (52)

If either 1 < δ and base of log is greater than 1 or δ ∈ [0, 1) and base of log is less than 1,
inequality in (52) is reversed.

Proof The proof is only for the case when δ ∈ [0, 1) and base of log is greater than 1, and
similarly the remaining cases are simple to prove.

The function x 
→ xf (x) (x > 0) is 3-convex for base of log is less than 1. Also 0 > 1
1–δ

and
choosing I = (0,∞),

ps := rs, xs :=
(

rs

ks

)δ–1

, s = 1, . . . , n,

and

qu := wu, yu :=
(

wu

tu

)δ–1

, u = 1, . . . , m,

in (18) (for positive weights) and after simplifications, we have (52). �

Corollary 8 Assume G.
Let r̃ = (r1, . . . , rn), k̃ = (k1, . . . , kn) ∈R

n
+, w̃ = (w1, . . . , wm), and t̃ = (t1, . . . , tm) ∈R

m
+ be such

that
∑n

s=1 rs,
∑n

s=1 ks,
∑m

u=1 wu, and
∑m

u=1 tu are equal to 1.
(i) If base of log is greater than 1 and 0 ≤ δ ≤ θ such that δ, θ �= 1, then

Hθ (r̃) – Hδ(r̃) ≥Hθ (w̃) – Hδ(w̃). (53)
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The reverse inequality holds in (53) if base of log is less than 1.
(ii) If 1 < θ and base of log is greater than 1, then

Hθ (r̃) – S ≥Hθ (w̃) – S̃ . (54)

The reverse inequality holds in (54) if base of log is greater than 1.
(iii) If 0 ≤ δ < 1 and base of log is greater than 1, then

S – Hδ(r̃) ≥ S̃ – Hδ(w̃). (55)

If base of log is less than 1, the inequality in (55) is reversed.

Proof (i) Suppose k̃, t̃ = 1
n . Then from (45) we have

Dδ(r̃, q̃) =
1

δ – 1
log

( n∑

s=1

nδ–1rδ
s

)

= log(n) +
1

δ – 1
log

( n∑

s=1

rδ
s

)

and

Dδ(w̃, t̃) =
1

δ – 1
log

( n∑

s=1

nδ–1wδ
s

)

= log(n) +
1

δ – 1
log

( n∑

s=1

wδ
s

)

.

We have

Hδ(r̃) = log(n) – Dδ

(
r̃,

1
n

)
(56)

and

Hδ(w̃) = log(n) – Dδ

(
w̃,

1
n

)
. (57)

We get (53) after using Theorem 7(i), (56) and (57).
Statements (ii) and (iii) are similarly proved. �

Corollary 9 Assume G.
Let r̃ = (r1, . . . , rn), k̃ = (k1, . . . , kn), w̃ = (w1, . . . , wm), and t̃ = (t1, . . . , tn) be positive proba-

bility distributions.
If either δ ∈ [0, 1) and base if log is greater than 1, or δ > 1 and base if log is less than 1,

then

–
1

∑n
s=1 rδ

s

n∑

s=1

rδ
s log(rs) – Hδ(r) ≥ 1

∑m
s=1 wδ

s

m∑

s=1

wδ
s log(ws) –

∑m
s=1 wδ

s∑n
s=1 rδ

s
Hδ(w). (58)

The inequality in (58) is reversed if either δ ∈ [0, 1) and base if log is less than 1, or δ > 1
and the base of log is greater than 1.

Proof Proof is similar to Corollary 8 �
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4.4 Zipf–Mandelbrot law
In [14] the authors gave some contribution in analyzing the Zipf–Mandelbrot law which
is defined as follows:

Definition 6 The Zipf–Mandelbrot law is a discrete probability distribution depending
on three parameters: N ∈ {1, 2, . . . , }, φ ∈ [0,∞), and t > 0, and is defined by

f (s;N ,φ, t) :=
1

(s + φ)tHN ,φ,t
, s = 1, . . . ,N ,

where

HN ,φ,t =
N∑

ν=1

1
(ν + φ)t .

For all values of N , if the total mass of the law is taken, then for 0 ≤ φ, 1 < t, s ∈ N , the
density function of the Zipf–Mandelbrot law becomes

f (s;φ, t) =
1

(s + φ)tHφ,t
,

where

Hφ,t =
∞∑

ν=1

1
(ν + φ)t .

For φ = 0, the Zipf–Mandelbrot law becomes Zipf ’s law.

Conclusion 1 Assume G.
Let r̃ and w̃ be the Zipf–Mandelbrot laws. By Corollary 8(iii). If δ ∈ [0, 1) and base of log

is greater than 1, then

S = –
n∑

s=1

1
(s + k)sHN ,k,v

log

(
1

(s + k)sHN ,k,v

)
–

1
1 – δ

log

(
1

Hδ
N ,k,v

n∑

s=1

1
(s + k)δs

)

≥ S̃

= –
m∑

s=1

1
(s + w)sHN ,w,v

log

(
1

(s + w)sHN ,w,v

)
–

1
1 – δ

log

(
1

Hδ
N ,w,v

m∑

s=1

1
(s + w)δs

)

.

The inequality is reversed if base of log is less than 1.
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16. Mitrinović, D.S., Pečarić, J., Fink, A.M.: Classical and New Inequalities in Analysis, vol. 61. Kluwer Academic, Dordrecht

(1992)
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