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Abstract
In this article, we investigate a system of two viscoelastic equations with Dirichlet
boundary conditions. Under some suitable assumptions on the function gi(·), fi(·, ·)
(i = 1, 2) and the initial data, we obtain general and optimal decay results. Moreover,
for certain initial data, we establish a finite time blow-up result. This work generalizes
and improves earlier results in the literature. The conditions of the relaxation functions
g1(t) and g2(t) in our work are weak and seldom appear in previous literature, which is
an important breakthrough.
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1 Introduction
In this paper, we investigate the following initial-boundary problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt – �u +
∫ t

0 g1(t – τ )�u(τ ) dτ + ut = f1(u, v), x ∈ Ω , t > 0,

vtt – �v +
∫ t

0 g2(t – τ )�v(τ ) dτ + vt = f2(u, v), x ∈ Ω , t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω , t ≥ 0,

u(x, 0) = u0, ut(x, 0) = u1, v(x, 0) = v0, vt(x, 0) = v1, x ∈ Ω ,

(1.1)

where Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω , u and v repre-
sent the transverse displacements of wave. The functions g1 and g2 denote the kernel of
the memory term, and the nonlinear functions f1 and f2 will be specified later. Problem
(1.1) describes the propagation of some material possessing a capacity of storage and dis-
sipation of mechanical energy. Models of this type arise in the theory of viscoelasticity and
physics.

Firstly, we present some results related to viscoelastic equations. The single viscoelastic
equation of the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|ut|ρutt – �u – �utt +
∫ t

0 g(t – τ )�u(τ ) dτ + a|ut|m–2ut = b|u|p–2u,

in Ω × (0, +∞),

u(x, t) = 0, on ∂Ω × (0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω ,

(1.2)
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which has been extensively studied by many authors, and related results concerning exis-
tence, decay, and blow-up have been recently established (see [6, 11]). Here, we understand
�utt , |ut|m–2ut ,

∫ t
0 g(t – τ ) � u(τ )dτ , and |u|p–2u to be the dispersion term, weak damping

term, viscoelasticity dissipative term, and source term, respectively. This type of problem
usually appears as a model in nonlinear viscoelasticity.

As a = b = 0 in the presence of the strong damping term, Cavalcanti et al. [1] dealt with
the equation

⎧
⎪⎪⎨

⎪⎪⎩

|ut|ρutt – �u – �utt +
∫ t

0 g(t – τ )�u(τ ) dτ – γ�ut = 0, in Ω × (0, +∞),

u(x, t) = 0, on ∂Ω × (0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω ,

(1.3)

where Ω is a bounded domain with smooth boundary ∂Ω in Rn (n ≥ 1) and ρ > 0. They
established a global existence result when the constant γ ≥ 0 and an exponential decay
result for the case γ > 0. Later, this result was improved by Messaoudi and Tatar [8] to a
situation where a source term is presented. By using perturbation techniques, they estab-
lished a global existence and an exponential decay result.

When a = b = 1 in the absence of the dispersion term, the following problem

⎧
⎪⎪⎨

⎪⎪⎩

|ut|ρutt – �u +
∫ t

0 g(t – τ )�u(τ )dτ + |ut|m–2ut = |u|p–2u, in Ω × [0, T],

u(x, t) = 0, x ∈ ∂Ω ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω ,

(1.4)

in a bounded domain and m > 2, p > 2 was studied by Song [10]. The author proved the
nonexistence of global solutions of problem (1.4) with bounded positive initial energy.

The case of ρ = 0 in the absence of the viscoelasticity term problem (1.2) has been dis-
cussed by many authors. For example, Chen and Liu [2] studied the following equation:

utt – �u – ω�ut + a|ut|m–2ut = b|u|p–2u (1.5)

subject to the same boundary and initial conditions as problem (1.4). Under some suitable
conditions on the initial data, they proved the global existence of solutions in both cases
which are polynomial and exponential decay in the energy space respectively.

In the case of a = b = 1, m = 2, in the presence of the strong damping term and without
the dispersion term, the following viscoelastic equation

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ t

0 g(t – τ )�u(τ ) dτ – �ut + ut = |u|p–2u, in Ω × (0, +∞),

u(x, t) = 0, on ∂Ω × (0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω ,

(1.6)

was studied by Li and He [4]. By using some properties of the convex functions, they ob-
tained a general decay rate result. Moreover, they established a finite time blow-up result
for solutions with negative initial energy and positive initial energy.
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For a coupled system, the following system of viscoelastic equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt – �u +
∫ t

0 g1(t – τ )�u(τ ) dτ + f1(u, v) = 0, x ∈ Ω , t > 0,

vtt – �v +
∫ t

0 g2(t – τ )�v(τ ) dτ + f2(u, v) = 0, x ∈ Ω , t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω , t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω ,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω ,

(1.7)

was considered by Mustafa [9]. Under some suitable conditions, they proved the well-
posedness and obtained a generalized stability result.

In the work [5], Liu considered the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ut|ρutt – �u – γ1�utt +
∫ t

0 g(t – τ )�u(τ ) dτ + f (u, v) = 0, x ∈ Ω , t > 0,

|vt|ρvtt – �v – γ2�vtt +
∫ t

0 h(t – τ )�v(τ ) dτ + k(u, v) = 0, x ∈ Ω , t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω , t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω ,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω ,

(1.8)

where γ1,γ2 > 0 and 0 < ρ ≤ 2
n–2 if n ≥ 3 or ρ > 0 if n = 1, 2. Under the following assump-

tions on the relaxation functions:

g ′
1(t) ≤ –ζ1(t)gp

1 (t), g ′
2(t) ≤ –ζ2(t)gq

2 (t), t ≥ 0,

where ζ1 and ζ2 are positive constants. By exploiting the perturbed energy method, a uni-
form decay of the energy result was established.

Recently, Houari et al. [3] investigated the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt – �u +
∫ t

0 g1(t – τ )�u(τ ) dτ + |ut|m–1ut = f1(u, v), in Ω × (0, +∞),

vtt – �v +
∫ t

0 g2(t – τ )�v(τ ) dτ + |vt|r–1vt = f2(u, v), in Ω × (0, +∞),

u(x, t) = v(x, t) = 0, on ∂Ω × (0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω ,

v(x, 0) = v0(x), vt(x, 0) = v1(x), in Ω ,

(1.9)

where Ω is an open bounded domain of Rn with a smooth boundary ∂Ω , m, r ≥ 1. Under
some suitable conditions, they obtained a general decay, which depends on the relaxation
functions.

As for a single wave equation, in the absence of the source term, the damping term
assures global existence. On the other hand, without the damping term, the source term
may cause finite time blow-up of solution. Hence, it is valuable to study the viscoelastic
equation with damping and source terms.

Our aim in this work is to establish the global existence, decay, and blow-up result of
solutions to problem (1.1). By adopting and modifying the methods used in [9], we es-
tablish the general and optimal decay and blow-up results, while we should overcome the
additional difficulty caused by the changes of the conditions of the relaxation functions
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g1(t) and g2(t). In [9], the relaxation functions gi(t) (i = 1, 2) satisfy g ′
i(t) ≤ –ζigi(t) for all

t ≥ 0, where ζi(t) are positive nonincreasing functions. In this paper, the conditions have
been replaced by g ′

i(t) ≤ –ζi(t)gγ

i (t), γ ∈ [1, 3/2). As far as we know, the conditions of the
relaxation functions gi(t) in our work seldom appear in previous literature, which is an
important breakthrough. Our main novel contribution is an extension and improvement
of the previous result from [9].

This paper is organized as follows. In Sect. 2, we give material needed for our work. In
Sect. 3, we prove the global existence. In Sect. 4, we present some technical lemmas needed
in the proof of our result. Section 5 is devoted to the general decay result. In Sect. 6, we
carry out the proof of finite time blow-up result.

2 Preliminaries
In this section, we present some material needed for our work. First, we make the following
assumptions.

(G1) gi : R+ →R+ (for i = 1, 2) are C1 nonincreasing functions satisfying

1 –
∫ ∞

0
g1(τ ) dτ = l > 0, 1 –

∫ ∞

0
g2(τ ) dτ = k > 0, gi(0) > 0. (2.1)

(G2) There exist two nonincreasing differentiable functions ζ1, ζ2 : R+ →R+, with
ζ1(0), ζ2(0) > 0 and satisfying

g ′
i(t) ≤ –ζi(t)gγ

i (t), t ≥ 0, 1 ≤ γ <
3
2

, for i = 1, 2. (2.2)

(G3) For the functions f1 and f2, we note that

f1(u, v) = |u + v|2(p+1)(u + v) + |u|pu|v|p+2, (2.3)

f2(u, v) = |u + v|2(p+1)(u + v) + |u|p+2v|v|p, (2.4)

where p satisfies

p > –1 if n = 1, 2 and – 1 < p ≤ 3 – n
n – 2

if n ≥ 3. (2.5)

It is easy to verify that

uf1 + vf2 = 2(p + 2)F(u, v), (2.6)

where

F(u, v) =
1

2(p + 2)
[|u + v|2(p+2) + 2|uv|p+2]. (2.7)

Remark 2.1 There are many functions gi(t) and ζi(t) (for i = 1, 2) satisfying (G1) and (G2).
An example of such functions is

g1(t) =
1

(1 + t)4 , ζ1(t) =
4

1 + t
,

g2(t) =
1

16(1 + t)4 , ζ2(t) =
8

1 + t
, γ =

5
4

.
(2.8)
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Definition 2.2 A pair of functions (u, v) defined on [0, T] is called a weak solution of sys-
tem (1.1) if u, v ∈ Cw([0, T], H1

0 (Ω)), ut , vt ∈ Cw([0, T], L2(Ω)), (u(x, 0), v(x, 0)) = (u0, v0) ∈
H1

0 (Ω) × H1
0 (Ω), (ut(x, 0), vt(x, 0)) = (u1, v1) ∈ H1

0 (Ω) × H1
0 (Ω) and (u, v) satisfies

∫

Ω

uttφ dx –
∫ t

0
g1(t – τ )

∫

Ω

∇φ(τ )∇u(τ ) dx dτ

+
∫

Ω

∇φ∇u dx +
∫

Ω

φut dx =
∫

Ω

f1(u, v)φ dx, (2.9)

∫

Ω

vttψ dx –
∫ t

0
g2(t – τ )

∫

Ω

∇ψ(τ )∇v(τ ) dx dτ

+
∫

Ω

∇ψ∇v dx +
∫

Ω

ψvt dx =
∫

Ω

f2(u, v)ψ dx (2.10)

for a.e. t ∈ [0, T] and all test functions φ,ψ ∈ H1
0 (Ω). Here, Cw([0, T], X) denotes the space

of weakly continuous functions from [0, T] into Banach space X.

Proposition 2.3 Let (u0, v0) ∈ H1
0 (Ω) ×H1

0 (Ω) and (u1, v1) ∈ L2(Ω) ×L2(Ω). Assume that
(G1)–(G3) hold. Then there exists a unique local weak solution (u, v) of system (1.1) defined
in [0, Tm] for some Tm > 0 small enough.

3 Global existence
In this section, we prove the global existence of the solution to system (1.1).

First, we define

I(t) =
(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2 +

(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2

+ (g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t) – 2(p + 2)
∫

Ω

F(u, v) dx, (3.1)

J(t) =
1
2

(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2 +

1
2

(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2

+
1
2

(g1 ◦ ∇u)(t) +
1
2

(g2 ◦ ∇v)(t) –
∫

Ω

F(u, v) dx, (3.2)

and the energy function associated with system (1.1)

E(t) =
1
2
‖ut‖2

2 +
1
2
‖vt‖2

2 +
1
2

(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2 +

1
2

(g1 ◦ ∇u)(t)

+
1
2

(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2 +

1
2

(g2 ◦ ∇v)(t) –
∫

Ω

F(u, v) dx, (3.3)

where

(g1 ◦ ∇u)(t) =
∫ t

0
g1(t – τ )

∥
∥∇u(t) – ∇u(τ )

∥
∥2

2 dτ , (3.4)

(g2 ◦ ∇v)(t) =
∫ t

0
g2(t – τ )

∥
∥∇v(t) – ∇v(τ )

∥
∥2

2 dτ . (3.5)
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Lemma 3.1 Let (G1)–(G3) hold and (u, v) be the solution of (1.1), then we have

dE(t)
dt

=
1
2
[(

g ′
1 ◦ ∇u

)
(t) +

(
g ′

2 ◦ ∇v
)
(t)

]
– ‖ut‖2

2

– ‖vt‖2
2 –

1
2
[
g1(t)‖∇u‖2

2 – g2(t)‖∇v‖2
2
] ≤ 0. (3.6)

Proof Multiplying the first equation in system (1.1) by ut and integrating over Ω gives

∫

Ω

ututt dx –
∫ t

0
g1(t – τ )

∫

Ω

∇ut(t)∇u(τ ) dx dτ

+
∫

Ω

∇ut∇u dx + ‖ut‖2
2 = –

∫

Ω

utf1(u, v) dx. (3.7)

Then

d
dt

{
1
2

∫

Ω

|ut|2 dx +
1
2

∫

Ω

|∇u|2 dx
}

+ ‖ut‖2
2

–
∫ t

0
g1(t – τ )

∫

Ω

∇ut(t)∇u(τ ) dx dτ = –
∫

Ω

utf1(u, v) dx. (3.8)

For the last term on the left-hand side of (3.8), we get

∫ t

0
g1(t – τ )

∫

Ω

∇ut(t)∇u(τ ) dx dτ

=
∫ t

0
g1(t – τ )

∫

Ω

∇ut(t)
[∇u(τ ) – ∇u(t)

]
dx dτ

+
∫ t

0
g1(t – τ )

∫

Ω

∇ut(t)∇u(t) dx dτ

= –
1
2

∫ t

0
g1(t – τ )

d
dt

∫

Ω

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx dτ

+
∫ t

0
g1(τ )

(
d
dt

1
2

∫

Ω

∣
∣∇u(t)

∣
∣2 dx

)

dτ

= –
1
2

d
dt

[∫ t

0
g1(t – τ )

∫

Ω

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx dτ

]

+
1
2

d
dt

[∫ t

0
g1(τ )

∫

Ω

∣
∣∇u(t)

∣
∣2 dx dτ

]

–
1
2

g1(τ )‖∇u‖2
2

+
1
2

∫ t

0
g ′

1(t – τ )
∫

Ω

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx dτ . (3.9)

By combining (3.4), (3.8), and (3.9), we deduce

d
dt

{
1
2

∫

Ω

|ut|2 dx +
1
2

∫

Ω

|∇u|2 dx
}

–
1
2

d
dt

[∫ t

0
g1(τ )

∥
∥∇u(t)

∥
∥2

2dτ

]

+
1
2

d
dt

[∫ t

0
g1(t – τ )

∫

Ω

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx dτ

]

= –
∫

Ω

utf1(u, v) dx +
1
2
(
g ′

1 ◦ ∇u
)
(t) –

1
2

g1(t)
∥
∥∇u(t)

∥
∥2

2 – ‖ut‖2
2. (3.10)
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Similarly, multiplying the second equation in (1.1) by vt and integrating over Ω yields

d
dt

{
1
2

∫

Ω

|vt|2 dx +
1
2

∫

Ω

|∇v|2 dx
}

–
1
2

d
dt

[∫ t

0
g2(τ )

∥
∥∇v(t)

∥
∥2

2dτ

]

+
1
2

d
dt

[∫ t

0
g2(t – τ )

∫

Ω

∣
∣∇v(τ ) – ∇v(t)

∣
∣2 dx dτ

]

= –
∫

Ω

vtf2(u, v) dx +
1
2
(
g ′

2 ◦ ∇v
)
(t) –

1
2

g2(t)
∥
∥∇v(t)

∥
∥2

2 – ‖vt‖2
2. (3.11)

Finally, by adding (3.10) to (3.11), (3.6) is established. �

The following lemma is important to prove the global existence of solution.

Lemma 3.2 ([3]) Assume that (2.5) holds. Then there exists η > 0 such that, for any (u, v) ∈
H1

0 (Ω) × H1
0 (Ω), we obtain

‖u + v‖2(p+2)
2(p+2) + 2‖uv‖p+2

p+2 ≤ η
(
l‖∇u‖2

2 + k‖∇v‖2
2
)p+2. (3.12)

Proof Exploiting Minkowski’s inequality, we have

‖u + v‖2
2(p+2) ≤ 2

(‖u‖2
2(p+2) + ‖v‖2

2(p+2)
)
. (3.13)

From Hölder’s inequality and Young’s inequality, we derive

‖uv‖p+2 ≤ ‖u‖2(p+2)‖v‖2(p+2) ≤ c
(
l‖∇u‖2

2 + k‖∇v‖2
2
)
. (3.14)

Then, combining (3.13), (3.14) and the embedding H1
0 (Ω) ↪→ L2(p+2)(Ω) leads to (3.12). �

Lemma 3.3 Let (u0, v0) ∈ H1
0 (Ω) × H1

0 (Ω) and (u1, v1) ∈ L2(Ω) × L2(Ω). Assume that
(G1)–(G3) hold. If

I(0) = I(u0, v0) > 0 and β = η

(
2(p + 2)

p + 1
E(0)

)p+1

< 1, (3.15)

then I(t) > 0 for t ∈ [0, Tm].

Proof Since I(0) > 0, then by the continuity of I(t), there exists T∗ < Tm such that I(t) > 0,
∀t ∈ [0, T∗]. By using (3.1) and (3.2), we have

J(t) =
p + 1

2(p + 2)

{(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2 +

(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2

+ (g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t)
}

+
1

2(p + 2)
I(t)

≥ p + 1
2(p + 2)

{(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2 +

(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2

+ (g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t)
}

. (3.16)
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From (2.1), (3.1), (3.2), and (3.6), we infer that

l‖∇u‖2
2 + k‖∇v‖2

2 ≤
(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2

+
(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2

≤ 2(p + 2)
p + 1

J(t)

≤ 2(p + 2)
p + 1

E(t)

≤ 2(p + 2)
p + 1

E(0). (3.17)

It follows from (2.7), (3.12), and (3.15) that

2(p + 2)
∫

Ω

F(u, v) dx

≤ η
(
l‖∇u‖2

2 + k‖∇v‖2
2
)p+2

≤ η
(
l‖∇u‖2

2 + k‖∇v‖2
2
)p+1(l‖∇u‖2

2 + k‖∇v‖2
2
)

≤ η

[
2(p + 2)

p + 1
E(0)

]p+1(
l‖∇u‖2

2 + k‖∇v‖2
2
)
, ∀t ∈ [

0, T∗]. (3.18)

Combining (3.15) and (3.18), we deduce that

2(p + 2)
∫

Ω

F(u, v) dx

≤ β
(
l‖∇u‖2

2 + k‖∇v‖2
2
)

≤ β

(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2 + β

(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2

≤
(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2 +

(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2, ∀t ∈ [

0, T∗]. (3.19)

Therefore

I(t) =
(

1 –
∫ t

0
g1(τ ) dτ

)

‖∇u‖2
2 +

(

1 –
∫ t

0
g2(τ ) dτ

)

‖∇v‖2
2 + (g1 ◦ ∇u)(t)

+ (g2 ◦ ∇v)(t) – 2(p + 2)
∫

Ω

F(u, v) dx > 0, ∀t ∈ [
0, T∗]. (3.20)

By repeating this procedure, T∗ is extended to Tm. �

Lemma 3.4 Assume that (G1)–(G3) hold. If (u0, v0) ∈ H1
0 (Ω) × H1

0 (Ω) and (u1, v1) ∈
L2(Ω) × L2(Ω) and satisfy (3.15), then the solution of system (1.1) is bounded and global
in time.
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Proof From Lemma 3.3, (3.6), and (3.17), we see that

E(0) ≥ E(t) =
1
2
‖ut‖2

2 +
1
2
‖vt‖2

2 + J(t)

≥ p + 1
2(p + 2)

(
l‖∇u‖2

2 + k‖∇v‖2
2
)
, (3.21)

therefore

l‖∇u‖2
2 + k‖∇v‖2

2 ≤ 2(p + 2)
p + 1

E(0), (3.22)

which implies that the solution of system (1.1) is global and bounded. �

4 Technical lemmas
In this section, we present some lemmas needed for the proof of our result.

Lemma 4.1 ([3]) There exist two constants a0 > 0 and a1 > 0 such that

a0

2(p + 2)
(|u|2(p+2) + |v|2(p+2)) ≤ F(u, v) ≤ a1

2(p + 2)
(|u|2(p+2) + |v|2(p+2)). (4.1)

Proof The right-hand side of (4.1) is trivial. If u = v = 0, for the left-hand side of (4.1), the
result is also trivial. If, without loss of generality, v �= 0, then either |u| ≤ |v| or |u| > |v|.

If |u| ≤ |v|, we have

F(u, v) =
1

2(p + 2)
|v|2(p+2)

[∣
∣
∣
∣1 +

u
v

∣
∣
∣
∣

2(p+2)

+ 2
∣
∣
∣
∣
u
v

∣
∣
∣
∣

p+2]

. (4.2)

Now we consider the continuous function

j(ω) = |1 + ω|2(p+2) + 2|ω|p+2 over [–1, 1], (4.3)

then we obtain that min j(ω) ≥ 0. If min j(ω) = 0, then there exists ω0 ∈ [–1, 1] such that

j(ω0) = |1 + ω0|2(p+2) + 2|ω0|p+2 = 0. (4.4)

This infers that |1 + ω0| = |ω0| = 0, which is impossible. Hence min j(ω) = 2a0 > 0. Thus

F(u, v) ≥ a0

p + 2
|v|2(p+2) ≥ a0

p + 2
|u|2(p+2). (4.5)

It follows from (4.5) that

2F(u, v) ≥ a0

p + 2
{|v|2(p+2) + |u|2(p+2)}, (4.6)

and then

a0

2(p + 2)
{|v|2(p+2) + |u|2(p+2)} ≤ F(u, v). (4.7)
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If |u| > |v|, we deduce that

F(u, v) =
1

2(p + 2)
|u|2(p+2)

[∣
∣
∣
∣1 +

v
u

∣
∣
∣
∣

2(p+2)

+ 2
∣
∣
∣
∣

v
u

∣
∣
∣
∣

p+2]

≥ a0

p + 2
|u|2(p+2) ≥ a0

p + 2
|v|2(p+2). (4.8)

Hence, this gives the desired result. �

Lemma 4.2 ([3]) There exist two positive constants λ1 and λ2 such that

∫

Ω

∣
∣fi(u, v)

∣
∣2 dx ≤ λi

(
l‖∇u‖2

2 + k‖∇v‖2
2
)2p+3, i = 1, 2. (4.9)

Proof From (2.3), we easily get

∣
∣f1(u, v)

∣
∣ ≤ C

(|u + v|2p+3 + |u|p+1|v|p+2)

≤ C
(|u|2p+3 + |v|2p+3 + |u|p+1|v|p+2). (4.10)

By (4.10) and Young’s inequality, with q = 2p+3
p+1 and q′ = 2p+3

p+2 , we have

|u|p+1|v|p+2 ≤ c1|u|2p+3 + c2|v|2p+3, (4.11)

therefore

∣
∣f1(u, v)

∣
∣ ≤ C

(|u|2p+3 + |v|2p+3). (4.12)

Then, by using Poincare’s inequality and (2.5), we observe that

∫

Ω

∣
∣f1(u, v)

∣
∣2 dx ≤ C

(‖∇u‖2(2p+3)
2 + ‖∇v‖2(2p+3)

2
)

≤ λ1
(
l‖∇u‖2

2 + k‖∇v‖2
2
)2p+3. (4.13)

In the same way, we have

∫

Ω

∣
∣f2(u, v)

∣
∣2 dx ≤ C

(‖∇u‖2(2p+3)
2 + ‖∇v‖2(2p+3)

2
)

≤ λ2
(
l‖∇u‖2

2 + k‖∇v‖2
2
)2p+3. (4.14)

�

Lemma 4.3 (Jensen inequality) Suppose that G is a concave function on [a, b], f : Ω →
[a, b] and h are integrable functions on Ω , with h(x) ≥ 0, and

∫

Ω
h(x) dx = r > 0, then

1
r

∫

Ω

G
[
f (x)

]
h(x) dx ≤ G

[
1
r

∫

Ω

f (x)h(x) dx
]

. (4.15)
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For the special case G(y) = y
1
γ , y ≥ 0, γ > 1, we obtain

1
r

∫

Ω

[
f (x)

] 1
γ h(x) dx ≤

[
1
r

∫

Ω

f (x)h(x) dx
] 1

γ

. (4.16)

Lemma 4.4 Assume that gi satisfies (G1) and (G2) for i = 1, 2, then

∫ +∞

0
ζi(t)g1–θ

i (t) dt < +∞, ∀0 ≤ θ < 2 – γ . (4.17)

Proof From (G1) and (G2), we see that

ζi(t)g1–θ
i (t) = ζi(t)gγ

i (t)g1–θ–γ

i (t) ≤ –g ′
i(t)g1–θ–γ

i (t). (4.18)

Integrating (4.18) over (0, +∞) and using the fact that 0 ≤ θ < 2 – γ , we get

∫ +∞

0
ζi(t)g1–θ

i (t) dt ≤ –
∫ +∞

0
g ′

i(t)g1–θ–γ

i (t) dt =
–g2–θ–γ

i (t)
2 – θ – γ

∣
∣
∣
∣

+∞

0
< +∞. (4.19)

�

Lemma 4.5 ([7]) If (G1)–(G3) hold, u ∈ L∞(0, T , H1
0 (Ω)), for 0 < θ < 1, we obtain

(g1 ◦ ∇u)(t) ≤ C
{(∫ +∞

0
g1–θ

1 (t) dt
)

E(0)
} γ –1

γ –1+θ {(
gγ

1 ◦ ∇u
)} θ

γ –1+θ (t). (4.20)

By taking θ = 1
2 , we have

(g1 ◦ ∇u)(t) ≤ C
{∫ t

0
g

1
2

1 (τ ) dτ

} 2γ –2
2γ –1 {(

gγ
1 ◦ ∇u

)} 1
2γ –1 (t). (4.21)

Proof For q > 1, we derive

(g1 ◦ ∇u)(t) =
∫ t

0
g

1–θ
q

1 (t – τ )
∥
∥∇u(t) – ∇u(τ )

∥
∥

2
q
2

× g
q–1+θ

q
1 (t – τ )

∥
∥∇u(t) – ∇u(τ )

∥
∥

2q–2
q

2 dτ . (4.22)

Applying Hölder’s inequality, we deduce

(g1 ◦ ∇u)(t) ≤
(∫ t

0
g1–θ

1 (t – τ )
∥
∥∇u(t) – ∇u(τ )

∥
∥2

2 dτ

) 1
q

×
(∫ t

0
g

q–1+θ
q–1

1 (t – τ )
∥
∥∇u(t) – ∇u(τ )

∥
∥2

2 dτ

) q–1
q

. (4.23)

By taking q = γ –1+θ

γ –1 , we arrive at

(g1 ◦ ∇u)(t) ≤ C
{(∫ t

0
g1–θ

1 (τ ) dτ

)

‖∇u‖2
L∞(0,T ,H1

0 (Ω))

} γ –1
γ –1+θ {(

gγ
1 ◦ ∇u

)} θ
γ –1+θ (t)
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≤ C
{(∫ t

0
g1–θ

1 (τ ) dτ

)

sup E(t)
} γ –1

γ –1+θ {(
gγ

1 ◦ ∇u
)} θ

γ –1+θ (t)

≤ C
{(∫ t

0
g1–θ

1 (τ ) dτ

)

sup E(0)
} γ –1

γ –1+θ {(
gγ

1 ◦ ∇u
)} θ

γ –1+θ (t)

≤ C
{(∫ t

0
g1–θ

1 (τ ) dτ

)} γ –1
γ –1+θ {(

gγ
1 ◦ ∇u

)} θ
γ –1+θ (t). (4.24)

Then, by taking θ = 1
2 in (4.24), (4.21) is established. �

Similarly,

(g2 ◦ ∇v)(t) ≤ C
{(∫ t

0
g1–θ

2 (τ ) dτ

)

E(0)
} γ –1

γ –1+θ {(
gγ

2 ◦ ∇v
)} θ

γ –1+θ (t) (4.25)

and

(g2 ◦ ∇v)(t) ≤ C
{∫ t

0
g

1
2

2 (τ ) dτ

} 2γ –2
2γ –1 {(

gγ
2 ◦ ∇v

)} 1
2γ –1 (t). (4.26)

Lemma 4.6 ([7]) Suppose that g1 satisfies (G1) and (G2), then we have

ζ1(t)(g1 ◦ ∇u)(t) ≤ C
[
–E′(t)

] 1
2γ –1 . (4.27)

Proof Multiplying both sides of (4.21) by ζ1(t) and by using (G2), (3.6), and (4.17) gives

ζ1(t)(g1 ◦ ∇u)(t) ≤ Cζ
2γ –2
2γ –1

1 (t)
[∫ t

0
g

1
2

1 (τ ) dτ

] 2γ –2
2γ –1

ζ
1

2γ –1
1 (t)

(
gγ

1 ◦ ∇u
) 1

2γ –1 (t)

≤ C
[∫ t

0
ζ1(τ )g

1
2

1 (τ )dτ

] 2γ –2
2γ –1 (

ζ1gγ
1 ◦ ∇u

) 1
2γ –1 (t)

≤ C
[∫ t

0
ζ1(τ )g

1
2

1 (τ )dτ

] 2γ –2
2γ –1 (

–g ′
1 ◦ ∇u

) 1
2γ –1 (t)

≤ C
[
–E′(t)

] 1
2γ –1 . (4.28)

�

Likewise,

ζ2(t)(g2 ◦ ∇v)(t) ≤ C
[
–E′(t)

] 1
2γ –1 . (4.29)

5 The decay result
In this section, we establish three related lemmas before proving our result.

Lemma 5.1 If (G1)–(G3) and (3.15) hold, the functional φ(t) defined by

φ(t) :=
∫

Ω

utu dx +
∫

Ω

vtv dx
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satisfies, along solutions of (1.1),

φ′(t) ≤ –
l
4
‖∇u‖2

2 +
1 – l

2l
(g1 ◦ ∇u)(t) +

(

1 +
1

4β1

)

‖ut‖2
2

–
k
4
‖∇v‖2

2 +
1 – k

2k
(g2 ◦ ∇v)(t) +

(

1 +
1

4β2

)

‖vt‖2
2

+ 2(p + 2)
∫

Ω

F(u, v) dx. (5.1)

Proof A differentiation of φ(t) with respect to t, it follows from system (1.1) that

φ′(t) =
∫

Ω

uttu dx + ‖ut‖2
2 +

∫

Ω

vttv dx + ‖vt‖2
2

=
∫

Ω

∇u(t)
∫ t

0
g1(t – τ )∇u(τ )dτ dx + ‖ut‖2

2 – ‖∇u‖2
2 –

∫

Ω

uut dx

+
∫

Ω

∇v(t)
∫ t

0
g2(t – τ )∇v(τ ) dτ dx + ‖vt‖2

2 – ‖∇v‖2
2 –

∫

Ω

vvt dx

+
∫

Ω

uf1(u, v) dx +
∫

Ω

vf2(u, v) dx. (5.2)

For the first term on the right-hand side of (5.2), by using Young’s inequality and the fact
that

∫ t
0 g1(s) ds ≤ ∫ ∞

0 g1(s) ds = 1 – l, for η = l
1–l > 0, we get

∫

Ω

∇u(t)
∫ t

0
g1(t – τ )∇u(τ )dτ dx

≤ 1
2
‖∇u‖2

2 +
1
2

∫

Ω

(∫ t

0
g1(t – τ )

(∣
∣∇u(τ ) – ∇u(t)

∣
∣ +

∣
∣∇u(t)

∣
∣
)

dτ

)2

dx

≤ 1
2
‖∇u‖2

2 +
1
2

(1 + η)
∫

Ω

(∫ t

0
g1(t – τ )

∣
∣∇u(t)

∣
∣dτ

)2

dx

+
1
2

(

1 +
1
η

)∫

Ω

(∫ t

0
g1(t – τ )

∣
∣∇u(τ ) – ∇u(t)

∣
∣dτ

)2

dx

≤ 1
2
‖∇u‖2

2 +
1 + η

2
(1 – l)2‖∇u‖2

2 +
1
2l

∫

Ω

(∫ t

0
g1(t – τ )

∣
∣∇u(τ ) – ∇u(t)

∣
∣dτ

)2

dx

≤ 2 – l
2

‖∇u‖2
2 +

1 – l
2l

(g1 ◦ ∇u)(t). (5.3)

Similar calculations also yield, for η1 = k
1–k > 0,

∫

Ω

∇v(t)
∫ t

0
g2(t – τ )∇v(τ )dτ dx ≤ 2 – k

2
‖∇v‖2

2 +
1 – k

2k
(g2 ◦ ∇v)(t). (5.4)

Applying Young’s inequality and Poincare’s inequality, for some β1 > 0, we obtain

∫

Ω

uut dx ≤ β1‖u‖2
2 +

1
4β1

‖ut‖2
2

≤ β1C2
∗‖∇u‖2

2 +
1

4β1
‖ut‖2

2. (5.5)
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Likewise, for some β2 > 0, we have

∫

Ω

vvt dx ≤ β2‖v‖2
2 +

1
4β2

‖vt‖2
2

≤ β2C2
∗‖∇v‖2

2 +
1

4β2
‖vt‖2

2. (5.6)

Inserting (5.3)–(5.6) into (5.2) yields

φ′(t) ≤ –
(

l
2

– β1C2
∗

)

‖∇u‖2
2 +

1 – l
2l

(g1 ◦ ∇u)(t)

+
(

1 +
1

4β1

)

‖ut‖2
2 –

(
k
2

– β2C2
∗

)

‖∇v‖2
2

+
1 – k

2k
(g2 ◦ ∇v)(t) +

(

1 +
1

4β2

)

‖vt‖2
2 + 2(p + 2)

∫

Ω

F(u, v) dx. (5.7)

Now, we pick β1,β2 > 0 small enough such that

l
2

– β1C2
∗ ≥ l

4
,

k
2

– β2C2
∗ ≥ k

4
. (5.8)

Finally, a combination of (5.7) and (5.8) gives (5.1). �

Lemma 5.2 Suppose that (G1)–(G3) and (3.15) hold. The functional ψ1(t) defined by

ψ1(t) := –
∫

Ω

ut

∫ t

0
g1(t – τ )

(
u(t) – u(τ )

)
dτ dx

satisfies, along solutions of (1.1),

ψ ′
1(t) ≤ [

δ + 2(1 – l)2δ + α2δl
]‖∇u‖2

2 –
g1(0)C2∗

4δ

(
g ′

1 ◦ ∇u
)
(t)

+
(

2δ +
1
2δ

+
C2∗
2δ

)

(1 – l)(g1 ◦ ∇u)(t)

+ α2δk‖∇v‖2
2 +

(

2δ –
∫ t

0
g1(τ ) dτ

)

‖ut‖2
2, (5.9)

where α2 = λ1( 2(p+2)
p+1 E(0))2p+2, λ1 is the constant in Lemma 4.2.

Proof Taking the derivative of ψ1(t) with respect to t and using system (1.1) gives

ψ ′
1(t) = –

∫

Ω

utt

∫ t

0
g1(t – τ )

(
u(t) – u(τ )

)
dτ dx

–
∫

Ω

ut

∫ t

0
g ′

1(t – τ )
(
u(t) – u(τ )

)
dτ dx –

∫ t

0
g1(τ ) dτ‖ut‖2

2

=
∫

Ω

∇u(t)
∫ t

0
g1(t – τ )

(∇u(t) – ∇u(τ )
)

dτ dx

–
∫

Ω

(∫ t

0
g1(t – τ )∇u(τ )dτ

)(∫ t

0
g1(t – τ )

(∇u(t) – ∇u(τ )
)
dτ

)

dx
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+
∫

Ω

ut

∫ t

0
g1(t – τ )

(
u(t) – u(τ )

)
dτ dx

–
∫

Ω

f1(u, v)
∫ t

0
g1(t – τ )

(
u(t) – u(τ )

)
dτ dx

–
∫

Ω

ut

∫ t

0
g ′

1(t – τ )
(∇u(t) – ∇u(τ )

)
dτ dx –

∫ t

0
g1(τ ) dτ‖ut‖2

2. (5.10)

For the first term on the right-hand side of (5.10), by exploiting (G1), Young’s inequality,
and Cauchy–Schwarz inequality, for any δ > 0, we get

∫

Ω

∇u(t)
∫ t

0
g1(t – τ )

(∇u(t) – ∇u(τ )
)

dτ dx

≤ δ‖∇u‖2
2 +

1
4δ

∫

Ω

(∫ t

0
g1(t – τ )

∣
∣∇u(τ ) – ∇u(t)

∣
∣dτ

)2

dx

≤ δ‖∇u‖2
2 +

1
4δ

∫ t

0
g1(τ ) dτ

∫ t

0
g1(t – τ )

∫

Ω

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx dτ

≤ δ‖∇u‖2
2 +

1 – l
4δ

(g1 ◦ ∇u)(t). (5.11)

As for the second term in (5.10), recall that (a + b)2 ≤ 2(a2 + b2), for η2 = 1, we obtain

∫

Ω

(∫ t

0
g1(t – τ )∇u(τ ) dτ

)(∫ t

0
g1(t – τ )

(∇u(t) – ∇u(τ )
)
dτ

)

dx

≤ δ

∫

Ω

∣
∣
∣
∣

∫ t

0
g1(t – τ )∇u(τ ) dτ

∣
∣
∣
∣

2

dx

+
1

4δ

∫

Ω

∣
∣
∣
∣

∫ t

0
g1(t – τ )

(∇u(t) – ∇u(τ )
)

dτ

∣
∣
∣
∣

2

dx

≤ δ

∫

Ω

(∫ t

0
g1(t – τ )

(∣
∣∇u(τ ) – ∇u(t)

∣
∣ +

∣
∣∇u(t)

∣
∣
)

dτ

)2

dx

+
1

4δ

∫

Ω

∣
∣
∣
∣

∫ t

0
g1(t – τ )

(∇u(t) – ∇u(τ )
)

dτ

∣
∣
∣
∣

2

dx

≤ δ(1 + η2)
∫

Ω

(∫ t

0
g1(t – τ )

∣
∣∇u(t)

∣
∣dτ

)2

dx

+ δ

(

1 +
1
η2

)∫

Ω

(∫ t

0
g1(t – τ )

∣
∣∇u(τ ) – ∇u(t)

∣
∣dτ

)2

dx

+
1

4δ

∫

Ω

∣
∣
∣
∣

∫ t

0
g1(t – τ )

(∇u(t) – ∇u(τ )
)

dτ

∣
∣
∣
∣

2

dx

≤ 2δ

∫

Ω

∣
∣
∣
∣

∫ t

0
g1(t – τ )

(∇u(t) – ∇u(τ )
)

dτ

∣
∣
∣
∣

2

dx

+ 2δ(1 – l)2‖∇u‖2
2 +

1
4δ

(∫ t

0
g1(τ ) dτ

)

(g1 ◦ ∇u)(t)

≤ 2δ(1 – l)2‖∇u‖2
2 +

(

2δ +
1
4δ

)

(1 – l)(g1 ◦ ∇u)(t). (5.12)
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The third term can be handled by

∫

Ω

ut

∫ t

0
g1(t – τ )

(
u(t) – u(τ )

)
dτ dx

≤ δ‖ut‖2
2 +

1
4δ

∫

Ω

(∫ t

0
g1(t – τ )

∣
∣u(τ ) – u(t)

∣
∣dτ

)2

dx

≤ δ‖ut‖2
2 +

C2∗
4δ

∫ t

0
g1(τ ) dτ (g1 ◦ ∇u)(t)

≤ δ‖ut‖2
2 +

C2∗(1 – l)
4δ

(g1 ◦ ∇u)(t). (5.13)

For the forth term, it follows from (4.9) that

∫

Ω

f1(u, v)
∫ t

0
g1(t – τ )

(
u(t) – u(τ )

)
dτ dx

≤ λ1δ
(
l‖∇u‖2

2 + k‖∇v‖2
2
)2p+3 +

1
4δ

∫

Ω

(∫ t

0
g1(t – τ )

∣
∣u(τ ) – u(t)

∣
∣dτ

)2

dx

≤ λ1δ

(
2(p + 2)

p + 1
E(0)

)2p+2(
l‖∇u‖2

2 + k‖∇v‖2
2
)

+
C2∗(1 – l)

4δ
(g1 ◦ ∇u)(t)

= α2δ
(
l‖∇u‖2

2 + k‖∇v‖2
2
)

+
C2∗(1 – l)

4δ
(g1 ◦ ∇u)(t), (5.14)

where α2 = λ1( 2(p+2)
p+1 E(0))2p+2.

The fifth term on the right-hand side of (5.10) can be estimated as

∫

Ω

ut

∫ t

0
g ′

1(t – τ )
(
u(t) – u(τ )

)
dτ dx

≤ δ‖ut‖2
2 +

1
4δ

∫

Ω

(∫ t

0
g ′

1(t – τ )
∣
∣u(t) – u(τ )

∣
∣dτ

)2

dx

≤ δ‖ut‖2
2 –

g1(0)C2∗
4δ

(
g ′

1 ◦ ∇u
)
(t). (5.15)

Taking into account estimates (5.11)–(5.13), estimate (5.9) is established. �

Similar computations also yield the following.

Lemma 5.3 Suppose that (G1)–(G3) and (3.15) hold. The functional ψ2(t) defined by

ψ2(t) := –vt

∫ t

0
g2(t – τ )

(
v(t) – v(τ )

)
dτ dx

satisfies, along solutions of system (1.1),

ψ ′
2(t) ≤ [

δ + 2(1 – k)2δ + α3δk
]‖∇v‖2

2 –
g2(0)C2∗

4δ

(
g ′

2 ◦ ∇v
)
(t)

+
(

2δ +
1
2δ

+
C2∗
2δ

)

(1 – k)(g2 ◦ ∇v)(t)
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+ α3δl‖∇u‖2
2 +

(

2δ –
∫ t

0
g2(τ ) dτ

)

‖vt‖2
2, (5.16)

where α3 = λ2( 2(p+2)
p+1 E(0))2p+2, λ2 is the constant in Lemma 4.2.

Now, we define the functional

W (t) = E(t) + ε1φ(t) + ε2ψ(t), (5.17)

where ε1 and ε2 are positive constants, φ(t) is given in Lemma 5.1 and ψ(t) := ψ1(t) +ψ2(t).

Lemma 5.4 ([5]) Let (u, v) be the solution of system (1.1) and assume that (3.15) holds.
Then there exist constant ε > 0 small enough and M > 0 large enough such that the following
relation

β1W (t) ≤ E(t) ≤ β2W (t), ∀t ≥ 0, (5.18)

holds for two positive constants β1 and β2.

Theorem 5.5 Assume (G1)–(G3) and (3.15) hold. Let (u0, v0) ∈ H1
0 (Ω) × H1

0 (Ω) and
(u1, v1) ∈ L2(Ω) × L2(Ω). Then, for each t0 > 0, there exist positive constants K , k, k1, k2

such that the solution of system (1.1) satisfies, for all t ≥ t0,

E(t) ≤ Ke–k
∫ t

t0
ζ (τ ) dτ , γ = 1, (5.19)

E(t) ≤ k1

[
1

1 +
∫ t

t0
ζ 2γ –1(τ ) dτ

] 1
2γ –2

, 1 < γ <
3
2

. (5.20)

Furthermore, if

∫ +∞

0

[
1

1 + tζ 2γ –1(t)

] 1
2γ –2

dt < +∞, 1 < γ <
3
2

, (5.21)

then

E(t) ≤ k2

[
1

1 +
∫ t

t0
ζ γ (τ )dτ

] 1
γ –1

, 1 < γ <
3
2

, (5.22)

where ζ (t) = min{ζ1(t), ζ2(t)}.

Proof From (G1), we know g1 and g2 are positive, then for any t ≥ t0 > 0, we have

∫ t

0
g1(τ ) dτ ≥

∫ t0

0
g1(τ )dτ = g0,

∫ t

0
g2(τ ) dτ ≥

∫ t0

0
g2(τ )dτ = h0.

Taking derivative of (5.17) with respect to t and using (3.6), (5.1), and (5.16) yields

W ′(t) = E′(t) + ε1φ
′(t) + ε2ψ

′(t)
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≤
(

1
2

–
g1(0)C2∗

4δ
ε2

)
(
g ′

1 ◦ ∇u
)
(t) +

(
1
2

–
g2(0)C2∗

4δ
ε2

)
(
g ′

2 ◦ ∇v
)
(t)

–
[

ε2(g0 – 2δ) – ε1

(

1 +
1

4β1

)]

‖ut‖2
2

–
[

ε2(h0 – 2δ) – ε1

(

1 +
1

4β2

)]

‖vt‖2
2 + 2(p + 2)ε1

∫

Ω

F(u, v) dx

–
[

lε1

4
– ε2

(
1 + 2(1 – l)2 + α2l + α3l

)
δ

]

‖∇u‖2
2

–
[

kε2

4
– ε2

(
1 + 2(1 – k)2 + α2k + α3k

)
δ

]

‖∇v‖2
2

+
[

ε1

2l
+

(

2δ +
1
2δ

+
C2∗
2δ

)

ε2

]

(1 – l)(g1 ◦ ∇u)(t)

+
[

ε2

2k
+

(

2δ +
1
2δ

+
C2∗
2δ

)

ε2

]

(1 – k)(g2 ◦ ∇v)(t). (5.23)

At this point, we pick δ > 0 small enough such that

δ ≤ min

{
g0

2
,

h0

2

}

and

4
l
δ
(
1 + 2(1 – l)2 + α2l + α3l

)
<

g0

4(1 + 1
4β1

)
,

4
k
δ
(
1 + 2(1 – k)2 + α2k + α3k

)
<

g0

4(1 + 1
4β2

)
.

As long as δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying

g0

4(1 + 1
4β1

)
ε2 < ε1 <

g0

2(1 + 1
4β1

)
ε2

and

h0

4(1 + 1
4β2

)
ε2 < ε1 <

h0

2(1 + 1
4β2

)
ε2

will make

k1 = ε2(g0 – 2δ) – ε1

(

1 +
1

4β1

)

> 0,

k2 = ε2(h0 – 2δ) – ε1

(

1 +
1

4β2

)

> 0,

k3 =
lε1

4
– ε2

(
1 + 2(1 – l)2 + α2l + α3l

)
δ > 0,

k4 =
kε2

4
– ε2

(
1 + 2(1 – k)2 + α2k + α3k

)
δ > 0.
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Hence, there exist two positive constants m and C such that

W ′(t) ≤ –mE(t) + C
[
(g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t)

]
, t ≥ t0. (5.24)

Case 1. γ = 1:
Let ζ (t) = min{ζ1(t), ζ2(t)}, since ζ1(t) and ζ2(t) are nonincreasing differentiable func-

tions, then we get that ζ (t) is nonincreasing.
When γ = 1, from (2.2), we easily get

g ′
i(t) ≤ –ζi(t)gγ

i (t) = –ζi(t)gi(t) for i = 1, 2. (5.25)

Multiplying both sides of (5.24) by ζ (t) and applying (3.6), (4.27), (4.29), and (5.25) yields

ζ (t)W ′(t) ≤ –mζ (t)E(t) + Cζ (t)(g1 ◦ ∇u)(t) + Cζ (t)(g2 ◦ ∇v)(t)

≤ –mζ (t)E(t) + Cζ1(t)(g1 ◦ ∇u)(t) + Cζ2(t)(g2 ◦ ∇v)(t)

≤ –mζ (t)E(t) + C(ζ1g1 ◦ ∇u)(t) + C(ζ2g2 ◦ ∇v)(t)

≤ –mζ (t)E(t) – C
(
g ′

1 ◦ ∇u
)
(t) – C

(
g ′

2 ◦ ∇v
)
(t)

≤ –mζ (t)E(t) – CE′(t). (5.26)

Setting F(t) = ζ (t)W (t) + CE(t), then clearly F ∼ E. Recalling that W ∼ E ≥ 0 by (3.21) and
(5.18), ζ ′(t) ≤ 0 by (G2), we get that ζ ′(t)W (t) ≤ 0, then together with (5.26), we have, for
some k > 0,

F ′(t) = ζ ′(t)W (t) + ζ (t)W ′(t) + CE′(t)

≤ ζ (t)W ′(t) + CE′(t)

≤ –mζ (t)E(t) – CE′(t) + CE′(t)

≤ –kζ (t)F(t). (5.27)

Integrating (5.27) over [t0, t] gives

F(t) ≤ F(t0)e–k
∫ t

t0
ζ (τ ) dτ , ∀t ≥ t0. (5.28)

Therefore, by using the fact that F(t) ∼ E(t), we derive

E(t) ≤ Ke–k
∫ t

t0
ζ (τ ) dτ , ∀t ≥ t0. (5.29)

Case 2. 1 < γ < 3
2 :

Multiplying both sides of (5.24) by ζ (t), using (4.27) and (4.29) leads to

ζ (t)W ′(t) ≤ –mζ (t)E(t) + Cζ (t)(g1 ◦ ∇u)(t) + Cζ (t)(g2 ◦ ∇v)(t)

≤ –mζ (t)E(t) + Cζ1(t)(g1 ◦ ∇u)(t) + Cζ2(t)(g2 ◦ ∇v)(t)

≤ –mζ (t)E(t) + C
[
–E′(t)

] 1
2γ –1 . (5.30)
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Multiplying (5.30) by ζ α(t)Eα(t), with α = 2γ – 2, we get

ζ α+1(t)Eα(t)W ′(t) ≤ –mζ α+1(t)Eα+1(t) + C(ζE)α(t)
[
–E′(t)

] 1
α+1 . (5.31)

Exploiting Young’s inequality with q = 1 + α and q′ = 1+α
α

gives

ζ α+1(t)Eα(t)W ′(t) ≤ –mζ α+1(t)Eα+1(t) + C
[
εζ α+1(t)Eα+1(t) – CεE′(t)

]

≤ –(m – εC)ζ α+1(t)Eα+1(t) – CE′(t). (5.32)

We pick ε < m
C and recall that ζ ′(t) ≤ 0, ζ (t) > 0 by (G2), E′(t) ≤ 0 by (3.6), and W ∼ E ≥ 0

by (3.21) and (5.18), then together with (5.32) we have, for some c1 > 0,

(
ζ α+1EαW

)′(t) = (α + 1)ζ α(t)ζ ′(t)Eα(t)W (t)

+ αζα+1(t)Eα–1(t)E′(t)W (t)

+ ζ α+1(t)Eα(t)W ′(t)

≤ ζ α+1(t)Eα(t)W ′(t)

≤ –c1ζ
α+1(t)Eα+1(t) – CE′(t). (5.33)

Next, we take F(t) = ζ α+1WEα + CE, which is clearly equivalent to E(t), then there exists
a0 > 0 such that

F ′(t) ≤ –c1ζ
α+1(t)Eα+1(t) ≤ –a0ζ

α+1(t)Fα+1(t). (5.34)

Integrating (5.34) over (t0, t) and recalling that F(t) ∼ E(t) and α = 2γ – 2, we obtain

E(t) ≤ k1

[
1

1 +
∫ t

t0
ζ 2γ –1(τ ) dτ

] 1
2γ –2

, ∀t ≥ t0. (5.35)

From (5.21) and (5.35), we infer that

∫ +∞

t0

E(t) dt < +∞. (5.36)

Setting λ1(t) =
∫ t

0 ‖∇u(t) – ∇u(t – τ )‖2
2 dτ , by using (3.3), we deduce

λ1(t) =
∫ t

0

∥
∥∇u(t) – ∇u(t – τ )

∥
∥2

2dτ ≤ C
∫ t

0

(∥
∥∇u(t)

∥
∥2

2 +
∥
∥∇u(t – τ )

∥
∥2

2

)
dτ

≤ C
∫ t

0

[
E(t) + E(t – τ )

]
dτ

≤ 2C
∫ t

0
E(t – τ ) dτ

= 2C
∫ t

0
E(τ ) dτ < 2C

∫ +∞

0
E(τ ) dτ < +∞. (5.37)

Similarly, let λ2(t) =
∫ t

0 ‖∇v(t) – ∇v(t – τ )‖2
2 dτ , we have λ2(t) < +∞.
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From (5.24) and recalling that ζ (t) = min{ζ1(t), ζ2(t)}, ζ1(t) and ζ2(t) are nonincreasing
differentiable functions, we arrive at

ζ (t)W ′(t) ≤ –mζ (t)E(t) + Cζ (t)
[
(g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t)

]

≤ –mζ (t)E(t) + Cζ1(t)(g1 ◦ ∇u)(t) + Cζ2(t)(g2 ◦ ∇v)(t)

≤ –mζ (t)E(t) + C
λ1(t)
λ1(t)

∫ t

0

(
ζ

γ
1 (τ )gγ

1 (τ )
) 1

γ
∥
∥∇u(t) – ∇u(t – τ )

∥
∥2

2 dτ

+ C
λ2(t)
λ2(t)

∫ t

0

(
ζ

γ
2 (τ )gγ

2 (τ )
) 1

γ
∥
∥∇v(t) – ∇v(t – τ )

∥
∥2

2 dτ . (5.38)

Exploiting Jensen’s inequality, for the second term on the right-hand side of (5.38), with
G(y) = y

1
γ , y > 0, f (τ ) = ζ γ (τ )gγ (τ ) and h(τ ) = ‖∇u(t) – ∇u(t – τ )‖2

2, where we assume that
λ1(t),λ2(t) > 0, otherwise we get ‖∇u(t) – ∇u(t – τ )‖ = ‖∇v(t) – ∇v(t – τ )‖ = 0, then by
using (5.24) we deduce

E(t) ≤ Ce–mt .

Since ζ1(t) and ζ2(t) are nonincreasing, then for some C1 > 0, estimate (5.38) becomes

ζ (t)W ′(t) ≤ –mζ (t)E(t) + Cλ1(t)
[

1
λ1(t)

∫ t

0
ζ

γ
1 (τ )gγ

1 (τ )
∥
∥∇u(t) – ∇u(t – τ )

∥
∥2

2 dτ

] 1
γ

+ Cλ2(t)
[

1
λ2(t)

∫ t

0
ζ

γ
2 (τ )gγ

2 (τ )
∥
∥∇v(t) – ∇v(t – τ )

∥
∥2

2 dτ

] 1
γ

≤ –mζ (t)E(t) + Cλ
γ –1
γ

1 (t)
[

ζ
γ –1
1 (0)

∫ t

0
ζ1(τ )gγ

1 (τ )
∥
∥∇u(t) – ∇u(t – τ )

∥
∥2

2 dτ

] 1
γ

+ Cλ
γ –1
γ

2 (t)
[

ζ
γ –1
2 (0)

∫ t

0
ζ2(τ )gγ

2 (τ )
∥
∥∇v(t) – ∇v(t – τ )

∥
∥2

2 dτ

] 1
γ

= –mζ (t)E(t) + C
(
λ1ζ1(0)

) γ –1
γ

(
–g ′

1 ◦ ∇u
) 1

γ + C
(
λ2ζ2(0)

) γ –1
γ

(
–g ′

2 ◦ ∇v
) 1

γ

≤ –mζ (t)E(t) + C1
[
–E′(t)

] 1
γ . (5.39)

Multiplying both sides of (5.39) by ζ α(t)Eα(t), with α = γ – 1, we deduce

ζ α+1(t)Eα(t)W ′(t) ≤ –mζ α+1(t)Eα+1(t) + C1ζ
α(t)Eα(t)

[
–E′(t)

] 1
α+1 . (5.40)

Applying Young’s inequality, with q = 1 + α, and q′ = 1+α
α

leads to

ζ α+1(t)Eα(t)W ′(t) ≤ –mζ α+1(t)Eα+1(t) + C1
(
σζα+1(t)Eα+1(t) – Cσ E′(t)

)

= –(m – C1σ )ζ α+1(t)Eα+1(t) – CE′(t). (5.41)

Then, by taking σ < m
C1

and recalling that ζ ′(t) ≤ 0, ζ (t) > 0 by (G2), E′(t) ≤ 0 by (3.6), and
W (t) ∼ E(t) ≥ 0 by (3.21) and (5.18), together with (5.41), we get, for some C2 > 0,

(
ζ α+1EαW

)′(t) = (α + 1)ζ α(t)ζ ′(t)Eα(t)W (t)
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+ αζα+1(t)Eα–1(t)E′(t)W (t)

+ ζ α+1(t)Eα(t)W ′(t)

≤ ζ α+1(t)Eα(t)W ′(t)

≤ –C2ζ
α+1(t)Eα+1(t) – CE′(t), (5.42)

which implies

(
ζ α+1EαW + CE

)′(t) ≤ –C2ζ
α+1(t)Eα+1(t). (5.43)

Let L = ζ α+1EαW + CE, then clearly L ∼ E, we obtain, for some C3 > 0,

L′(t) ≤ –C3ζ
α+1(t)Lα+1(t), ∀t ≥ t0. (5.44)

Integrating (5.44) over (t0, t) and recalling that L ∼ E and α = γ – 1 yields

E(t) ≤ k2

[
1

1 +
∫ t

t0
ζ γ (τ )dτ

] 1
γ –1

, ∀t ≥ t0. (5.45)

This completes the proof. �

6 The blow-up result
In this section, we carry out the proof of the finite time blow-up result.

Theorem 6.1 If (G1) and (G3) hold and the initial energy E(0) < 0. Assume that gi satisfies

∫ ∞

0
gi(τ ) dτ <

p + 1
p + 2

, i = 1, 2. (6.1)

Then the solution of system (1.1) blows up in finite time.

Proof First, we define

H(t) = –E(t), G(t) =
∫

Ω

F(u, v) dx, (6.2)

where E(t) is defined in (3.3). By (G1) and (3.6), we find that

H ′(t) = –E′(t) = –
1
2
[(

g ′
1 ◦ ∇u

)
(t) +

(
g ′

2 ◦ ∇v
)
(t)

]
+ ‖ut‖2

2

+ ‖vt‖2
2 +

g1(t)
2

‖∇u‖2
2 +

g2(t)
2

‖∇v‖2
2

≥ ‖ut‖2
2 + ‖vt‖2

2

≥ 0. (6.3)

Noting the assumption E(0) < 0, from (4.1), (6.2), and (6.3), we get

0 < H(0) ≤ H(t) ≤ G(t) ≤ c1
(‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

)
. (6.4)
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From (4.1), we see that

G(t) ≥ c0
(‖u‖2(p+2)

2(p+2) + ‖v‖2(p+2)
2(p+2)

)
. (6.5)

Let

L(t) = H1–α(t) + ε

∫

Ω

uut dx + ε

∫

Ω

vvt dx, (6.6)

where ε is a positive constant to be chosen later and

0 < α < min

{
1
2

–
1

2(p + 2)
,

p
2p + 2

}

. (6.7)

Taking the derivative of L(t) and using system (1.1) gives

L′(t) = (1 – α)H–α(t)H ′(t) + ε

∫

Ω

uutt dx + ε

∫

Ω

vvtt dx + ε‖ut‖2
2 + ε‖vt‖2

2

= (1 – α)H–α(t)H ′(t) + ε

∫ t

0
g1(t – τ )

∫

Ω

∇u(τ )∇u(t) dx dτ

+ ε

∫ t

0
g2(t – τ )

∫

Ω

∇u(τ )∇u(t) dx dτ – ε‖∇u‖2
2 – ε‖∇v‖2

2

– ε

∫

Ω

uut dx – ε

∫

Ω

vvt dx + 2(p + 2)εG(t). (6.8)

It follows from Young’s inequality that

∫ t

0
g1(t – τ )

∫

Ω

∇u(τ )∇u(t) dx dτ

=
∫ t

0
g1(t – τ )

∫

Ω

∇u(t)
(∇u(τ ) – ∇u(t)

)
dx dτ

+
∫ t

0
g1(τ ) dτ

∥
∥∇u(t)

∥
∥2

2

≥ –
∫ t

0
g1(τ ) dτ

∥
∥∇u(t)

∥
∥2

2 –
1
4

(g1 ◦ ∇u)(t)

+
∫ t

0
g1(τ ) dτ

∥
∥∇u(t)

∥
∥2

2

= –
1
4

(g1 ◦ ∇u)(t). (6.9)

Similarly,

∫ t

0
g2(t – τ )

∫

Ω

∇v(τ )∇v(t) dx dτ ≥ –
1
4

(g2 ◦ ∇v)(t). (6.10)

A combination of (6.8)–(6.10) leads to

L′(t) ≥ (1 – α)H–α(t)H ′(t) –
ε

4
(g1 ◦ ∇u)(t) –

ε

4
(g2 ◦ ∇v)(t) – ε‖∇u‖2

2
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– ε‖∇v‖2
2 – ε

∫

Ω

uut dx – ε

∫

Ω

vvt dx + ε‖ut‖2
2 + ε‖vt‖2

2

+ 2(p + 2)εG(t). (6.11)

Let 0 < r ≤ min{l, k}, then by the expression of E(t) and H(t), we obtain

–
(∥
∥∇u(t)

∥
∥2

2 +
∥
∥∇v(t)

∥
∥2

2

) ≥ 2
r

H(t) +
1
r
(‖ut‖2

2 + ‖vt‖2
2
)

–
2
r

G(t)

+
1
r
[
(g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t)

]
. (6.12)

Inserting (6.12) into (6.11), we arrive at

L′(t) ≥ (1 – α)H–α(t)H ′(t) + ε
2
r

H(t) + ε

(

1 +
1
r

)
(‖ut‖2

2 + ‖vt‖2
2
)

+ ε

(
1
r

–
1
4

)
[
(g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t)

]
+ ε

[

2(p + 2) –
2
r

]

G(t)

– ε

∫

Ω

uut dx – ε

∫

Ω

vvt dx. (6.13)

By using (G1), (6.1), and r = min{l, k}, we infer that

2(p + 2) –
2
r

> 0,
1
r

–
1
4

> 0. (6.14)

For the last two terms of (6.13), by using Hölder’s inequality and (6.3)–(6.5) yields

∫

Ω

uut dx ≤ ‖u‖2‖ut‖2

≤ |Ω| p+1
2(p+2) ‖u‖2(p+2)‖ut‖2

≤ c
–1

2(p+2)
0 |Ω| p+1

2(p+2) G
1

2(p+2) (t)‖ut‖2

≤ K1‖ut‖2G
1
2 (t)H

1
2(p+2) – 1

2 (t), (6.15)

where K1 = c
–1

2(p+2)
0 |Ω| p+1

2(p+2) .
By (6.7), we know 1

2(p+2) – 1
2 + α < 0, it follows from Young’s inequality and (6.3) that

∫

Ω

uut dx ≤ K1‖ut‖2G
1
2 (t)H

1
2(p+2) – 1

2 (t)

≤ H
1

2(p+2) – 1
2 (t)

(
δ1G(t) + K2

1 δ
– 1

2
1 ‖ut‖2

2
)

≤ δ1H
1

2(p+2) – 1
2 (0)G(t) + K2

1 δ
– 1

2
1 H

1
2(p+2) – 1

2 +α(t)H–α(t)H ′(t)

≤ δ1H
1

2(p+2) – 1
2 (0)G(t) + K2

1 δ
– 1

2
1 H

1
2(p+2) – 1

2 +α(0)H–α(t)H ′(t), ∀δ1 > 0. (6.16)

Likewise,
∫

Ω

vvt dx ≤ δ2H
1

2(p+2) – 1
2 (0)G(t) + K2

1 δ
– 1

2
1 H

1
2(p+2) – 1

2 +α(0)H–α(t)H ′(t), ∀δ2 > 0. (6.17)
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We pick

δ1 = δ2 =
1
4

[

2(p + 2) –
2
r

]

H
1

2(p+2) – 1
2 (0), (6.18)

then it follows from (6.13)–(6.18) that

L′(t) ≥ (1 – α – εK3)H–α(t)H ′(t) + ε
2
r

H(t) + ε

(

1 +
1
r

)
(‖ut‖2

2 + ‖vt‖2
2
)

+ ε

(
1
r

–
1
4

)
[
(g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t)

]
+

ε

2

[

2(p + 2) –
2
r

]

G(t), (6.19)

where

K3 = K2
1 δ

– 1
2

1 H
1

2(p+2) – 1
2 +α(0) + K2

1 δ
– 1

2
1 H

1
2(p+2) – 1

2 +α(0)

= 4
[

2(p + 2) –
2
r

]– 1
2

K2
1 H

1
4(p+2) – 1

4 +α(0). (6.20)

Now, we choose 0 < ε < 1 small enough such that

1 – α – εK3 ≥ 0. (6.21)

A combination of (6.14), (6.19), and (6.21) yields

L′(t) ≥ (1 – α – εK3)H–α(t)H ′(t) + ε
2
r

H(t) + ε

(

1 +
1
r

)
(‖ut‖2

2 + ‖vt‖2
2
)

+ ε

(
1
r

–
1
4

)
[
(g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t)

]
+

ε

2

[

2(p + 2) –
2
r

]

G(t)

≥ εC
[
H(t) + ‖ut‖2

2 + ‖vt‖2
2 + (g1 ◦ ∇u)(t) + (g2 ◦ ∇v)(t) + G(t)

]

> 0, (6.22)

where C is a positive constant. It is clear that L(t) is increasing on [0, T) and

L(t) = H1–α(t) + ε

∫

Ω

uut dx + ε

∫

Ω

vvt dx

≥ H1–α(0) + ε

∫

Ω

u0u1 dx + ε

∫

Ω

v0v1 dx. (6.23)

In the case of
∫

Ω
u0u1 dx + ε

∫

Ω
v0v1 dx ≥ 0, no further restriction on ε is needed. For the

case
∫

Ω
u0u1 dx + ε

∫

Ω
v0v1 dx < 0, we assume that

0 < ε < –
H1–α(0)

2
∫

Ω
u0u1 dx + 2

∫

Ω
v0v1 dx

. (6.24)

Therefore, in either case, we have

L(t) ≥ 1
2

H1–α(0) > 0, ∀t ∈ [0, T). (6.25)
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Now we prove that L(t) satisfies the following inequality:

L′(t) ≥ CεL
1

1–α (t), t ∈ [0, T), (6.26)

where C is a positive constant, 1 < 1
1–α

< 2 assumed by (6.7). At this point, we distinguish
two cases.

Case 1.
∫

Ω
uut dx +

∫

Ω
vvt dx ≤ 0 for some t ∈ [0, T). For such t, we obtain

L
1

1–α (t) =
(

H1–α(t) + ε

∫

Ω

uut dx + ε

∫

Ω

vvt dx
) 1

1–α ≤ H(t), (6.27)

which together with (6.22), then (6.26) follows for all such t.
Case 2.

∫

Ω
uut dx +

∫

Ω
vvt dx ≥ 0 for all t ∈ [0, T). Since 0 < α < 1

2 , 1 < 1
1–α

< 2, and 0 <
ε < 1, then we deduce

L
1

1–α (t) ≤ 2
1

1–α –1
(

H(t) +
∣
∣
∣
∣

∫

Ω

uut dx + ε

∫

Ω

vvt dx
∣
∣
∣
∣

1
1–α

)

. (6.28)

Exploiting Hölder’s inequality and Young’s inequality, we see that

∣
∣
∣
∣

∫

Ω

uut dx + ε

∫

Ω

vvt dx
∣
∣
∣
∣

1
1–α ≤ C

(‖u‖ 1
1–α
2 ‖ut‖

1
1–α
2 + ‖v‖ 1

1–α
2 ‖vt‖

1
1–α
2

)

≤ C
(‖u‖ 1

1–α
2p+2‖ut‖

1
1–α
2 + ‖v‖ 1

1–α
2p+2‖vt‖

1
1–α
2

)

≤ C
(‖u‖ 2

1–2α
2p+2 + ‖ut‖2

2 + ‖v‖ 2
1–2α
2p+2 + ‖vt‖2

2
)
. (6.29)

From (6.7), we get that 1
(1–2α)(p+1) – 1 < 0. Then, by (6.3) and (6.5), we have

‖u‖ 2
1–2α
2p+2 =

(‖u‖2p+2
2p+2

) 1
(1–2α)(p+1)

≤ CG
1

(1–2α)(p+1) (t)

≤ CG
1

(1–2α)(p+1) –1(t)G(t)

≤ CH
1

(1–2α)(p+1) –1(0)G(t)

≤ CG(t). (6.30)

Similarly,

‖u‖ 2
1–2α
2p+2 ≤ CG(t). (6.31)

By combining (6.28)–(6.31), we deduce that

L
1

1–α (t) ≤ C
(
H(t) + ‖ut‖2

2 + ‖vt‖2
2 + G(t)

)
. (6.32)

It follows from (6.22) and (6.32) that

L′(t) ≥ Cε
(
H(t) + ‖ut‖2

2 + ‖vt‖2
2 + G(t)

) ≥ CεL
1

1–α (t), (6.33)

which shows (6.26) follows for Case 2.
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Integrating (6.26) over (0, t) yields

L
α

1–α (t) ≥ 1
L –α

1–α (0) – α
1–α

Cεt
. (6.34)

This shows that G(t) blows up in finite time

T∗ ≤ 1 – α

αCεL σ
1–σ (0)

, ∀t ≥ 0. (6.35)

Therefore, the solution of system (1.1) blows up in finite time. �
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