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Abstract
In this paper, we provide an estimate for approximating the
generalized-Euler-constant function γ (z) =

∑∞
k=1 z

k–1( 1k – ln
k+1
k ) by its partial sum

γN–1(z) when 0 < z < 1. We obtain an asymptotic expansion for the
generalized-Euler-constant function and show that the coefficients of the asymptotic
expansion are explicitly expressed by the Eulerian fractions. Also, we find a recurrence
relation for those coefficients. Using its relation with the generalized-Euler-constant
function, we establish two inequalities for the generalized Somos’ quadratic
recurrence constant. Moreover, two asymptotic expansions for the natural logarithm
of the generalized Somos quadratic recurrence constant are presented.
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1 Introduction
Somos’ quadratic recurrence constant σ arises in the study of the asymptotic behavior of
the sequence (see [8, p. 446] and [21, 27]):

gn ∼ σ 2n

n

(

1 +
2
n

–
1
n2 +

4
n3 –

21
n4 +

138
n5 –

1091
n6 +

10,088
n7 –

106,918
n8

+
1,279,220

n9 –
17,070,418

n10 +
251,560,472

n11 –
4,059,954,946

n12 + · · ·
)–1

, (1.1)

where gn are recursively defined by

g0 = 1, gn = ng2
n–1, n = 1, 2, . . . , (1.2)

with the first few terms

g0 = 1, g1 = 1, g2 = 2, g3 = 12, g4 = 576, g5 = 1,658,880, . . . .
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The constant σ is usually defined by

σ =

√

1

√

2
√

3
√

4 · · · =
∞∏

k=1

k
1

2k = 1.66168794 · · · (1.3)

or

σ = exp

{

–
∫ 1

0

1 – x
(2 – x) ln x

dx
}

= exp

{

–
∫ 1

0

∫ 1

0

x
(2 – xy) ln(xy)

dx dy
}

. (1.4)

See [9, 20–22]. The constant σ appears in many important problems in pure and applied
analysis and it has been investigated by a large number of researchers [3, 5, 9, 10, 12, 13,
15, 17–19, 25, 30].

Recently, Sondow and Hadjicostas [25] introduced and studied the generalized-Euler-
constant function γ (z) defined by the power series

γ (z) =
∞∑

k=1

zk–1
(

1
k

– ln
k + 1

k

)

(1.5)

when |z| ≤ 1. There exist integral representations for the function

γ (z) =
∫ 1

0

1 – x + ln x
(1 – xz) ln x

dx = –
∫ 1

0

∫ 1

0

1 – x
(1 – xyz) ln(xy)

dx dy. (1.6)

Its values include Euler’s constant γ = γ (1) and the “alternating Euler constant” log 4
π

=
γ (–1), see for example [23, 24]. In particular, at z = 1/2, the function takes the value

γ

(
1
2

)

= 2 ln
2
σ

, (1.7)

which is equivalent to

σ = 2 exp

{

–
1
2
γ

(
1
2

)}

. (1.8)

Mortici [15] proved that, for n ≥ 1, it follows that

270(n + 1)
2n(270n3 + 1530n2 + 1065n + 6293)

< γ

(
1
2

)

– γn

(
1
2

)

<
18

2n(18n2 + 84n – 13)
, (1.9)

where the partial sum of γ (z)

γn(z) =
n∑

k=1

zk–1
(

1
k

– ln
k + 1

k

)

, |z| ≤ 1.

Lu and Song [13] improved Mortici’s estimate and proved that, for n ≥ 1,

690n2 + 3524n + 145
6(2n)(n + 1)2(115n2 + 894n + 779)

< γ

(
1
2

)

– γn

(
1
2

)
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<
48n + 127

3(2n)(16n + 85)(n + 1)2 . (1.10)

You and Chen [30] improved these inequalities by using continued fraction. Very recently,
Chen and Han [5] obtained new lower bounds for γ (1/2) – γn(1/2):

1
2n

(
1

(n + 1)2 –
8

3(n + 1)3 +
23

2(n + 1)4 –
332

5(n + 1)5 +
479

(n + 1)6 –
29,024

7(n + 1)7

)

< γ

(
1
2

)

– γn

(
1
2

)

<
1
2n

(
1

(n + 1)2 –
8

3(n + 1)3 +
23

2(n + 1)4 –
332

5(n + 1)5 +
479

(n + 1)6

)

. (1.11)

In their paper, Chen and Han pointed out that the lower bound in (1.11) is sharper than
the one in (1.10) for n ≥ 24, and the upper bound in (1.11) is sharper than the one in (1.10)
for n ≥ 18. Moreover, they gave the following asymptotic expansion:

γ

(
1
2

)

– γn

(
1
2

)

∼ 1
2n

{
a2

(n + 1)2 +
a3

(n + 1)3 +
a4

(n + 1)4 +
a5

(n + 1)5 +
a6

(n + 1)6 + · · ·
}

, n → ∞ (1.12)

with a recursive formula for successively determining the coefficients

a2 = 1,

ak =
2(–1)k

k
+

k–1∑

j=2

(–1)k–j
(

k – 1
k – j

)

aj, k ≥ 3.
(1.13)

Recently, there have been several interesting works related to approximations of Eu-
ler’s constant γ = γ (1), see for example [4, 16, 28] and the references therein. Also, some
works related to approximations of γ (z) at special values 1/2, 1/3, and 1/4 appear in [3, 5,
13–15, 29, 30]. Motivated by these, the first aim of this paper is to give an approximation
for γ (z) when 0 < z < 1. Specifically, we give a general inequality for the error bound of
γ (z) – γN–1(z). The second aim is to establish an asymptotic expansion for γ (z) – γN–1(z)
whose coefficients can be computed explicitly and recursively. In particular, we generalize
inequality (1.11) and asymptotic expansion (1.12) due to Chen and Han. Using the rela-
tion between the generalized Somos’ quadratic recurrence constant and the generalized-
Euler-constant function established by Sondow and Hadjicostas [25], we find approximate
estimates for the generalized Somos’ quadratic recurrence constant and its natural loga-
rithm, respectively. Moreover, two asymptotic expansions for the natural logarithm of the
generalized Somos’ quadratic recurrence constant are presented.

2 Preliminaries
Let us recall the following classical result [2, 7, 11]:

∞∑

k=0

knzk =
An(z)

(1 – z)n+1 , |z| < 1, (2.1)
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where An(z) is the Eulerian polynomial of degree n, and it can be defined by the exponential
generating function

∞∑

n=0

An(z)
tn

n!
=

1 – z
1 – zet(1–z) . (2.2)

By (2.2), An(x) may be explicitly written as

A0(z) = 1,

An(z) =
n∑

k=1

A(n, k)zk , n ≥ 1,
(2.3)

where A(n, k) are known as the Eulerian numbers, the numbers of permutations of the
numbers 1 to n in which exactly k elements are greater than the previous element, and
they can be expressed by

A(n, k) =
k∑

i=1

(–1)i
(

n + 1
i

)

(k – i)n. (2.4)

Therefore, one may easily obtain

A0(z) = 1, A1(z) = z, A2(z) = z2 + z, A3(z) = z3 + 4z2 + z, . . .

For z �= 1, denote the Eulerian fraction

bn(z) =
An(z)

(1 – z)n+1 . (2.5)

From (2.2) it is clear that

∞∑

k=0

bk(z)
tk

k!
=

1
1 – zet , (2.6)

which implies that bk(z) can be computed by the following recurrence relation:

b0(z) =
1

1 – z
, (2.7)

bk(z) =
z

1 – z

k–1∑

j=0

(
k
j

)

bj(z), k ≥ 1. (2.8)

Also, we can obtain an explicit expression [11] as follows:

bk(z) =
k∑

j=0

j!S(k, j)
zj

(1 – z)j+1 , (2.9)

where S(k, j) are the Stirling numbers of the second kind.
It is worth noting that a general summation formula for power series using the Eulerian

fractions was established in the recent paper [26].
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Lemma 2.1 (cf. Theorem 4.2 [26]) Let m be a positive integer, and both P and Q be non-
negative integers. Suppose that f (x) has the (m + 1)th continuous derivative on [P, Q]. For
0 < z < 1, f (m)(x) and f (m+1)(x) keep opposite signs in (P, Q). Then there exists a number
θ ∈ (0, 1) such that

Q–1∑

k=P

f (k)zk =
m–1∑

k=0

bk(z)
k!

[
zPf (k)(P) – zQf (k)(Q)

]
+ θ

bm(z)
m!

[
zPf (m)(P) – zQf (m)(Q)

]
. (2.10)

Remark 2.1 It is well known that the Euler–Maclaurin formula [1] is usually applied to
treat the summation S =

∑b
k=a f (k), and it was also used to approximate the generalized-

Euler-constant function γ (z), see [12]. It seems that the above lemma is more suitable to
treat a general summation formula for power series with the form S =

∑b
k=a f (k)zk (0 < z <

1). The lemma provides us a new approach to estimate γ (z), and it will play a key role in
the next section.

Remark 2.2 In particular, if

lim
Q→+∞ zQf (k)(Q) = 0, 0 ≤ k ≤ m, (2.11)

as Q → +∞, then (2.10) can be rewritten as

∞∑

k=P

f (k)zk = zP

{m–1∑

k=0

bk(z)
k!

f (k)(P) + θ
bm(z)

m!
f (m)(P)

}

. (2.12)

Obviously, taking f (x) = xn, P = 0, and m = n + 1, (2.12) reduces to (2.1).

3 Estimate of the generalized-Euler-constant function
Let N be a positive integer. In this section, by using (2.12) we first give a general inequality
for the error bound of γ (z) – γN–1(z) when 0 < z < 1.

Theorem 3.1 Let p and q be any positive integers. If N ≥ – c2p+3(z)
c2p+2(z) , then we have

γ (z) – γN–1(z) > zN–1
2p+1∑

k=2

ck(z)
Nk , 0 < z < 1. (3.1)

If N ≥ – c2q+2(z)
c2q+1(z) , then we have

γ (z) – γN–1(z) < zN–1
2q∑

k=2

ck(z)
Nk , 0 < z < 1. (3.2)

In the above inequalities, the coefficients ck(z) are explicitly expressed by

ck(z) =
(–1)k

k

[
1 – z

z
bk(z) – kbk–1(z)

]

, k ≥ 2, (3.3)

where bk(z) are the Eulerian fractions introduced in the second section.
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Proof Write

f (t) =
1
t

– ln
t + 1

t
. (3.4)

After simple calculations, we arrive at

f (i)(t) = (–1)i(i – 1)!
[

i
ti+1 +

1
(t + 1)i –

1
ti

]

(3.5)

=
(–1)i(i – 1)!
ti+1(t + 1)i

i∑

k=0

(
i
k

)(

i –
k

i – k + 1

)

tk , i ≥ 1, (3.6)

which implies that

(–1)if (i)(t) > 0, t > 0. (3.7)

By (3.4) and (3.6), for each i ≥ 0, we also have

lim
t→+∞ ztf (i)(t) = 0, 0 < z < 1. (3.8)

Therefore, according to (2.12), for 0 < z < 1, there exists θ ∈ (0, 1) such that

γ (z) – γN–1(z) =
1
z

∞∑

k=N

(
1
k

– ln
k + 1

k

)

zk

= zN–1

[m–1∑

k=0

bk(z)
k!

f (k)(N) + θ
bm(z)

m!
f (m)(N)

]

, (3.9)

where m is a positive integer. It follows from (3.4) and (3.5) that

γ (z) – γN–1(z) = zN–1

{

b0(z)
(

1
N

– ln
N + 1

N

)

+
m–1∑

k=1

(–1)kbk(z)
k

(
k

Nk+1 +
1

(N + 1)k –
1

Nk

)

+ θ
(–1)mbm(z)

m

(
m

Nm+1 +
1

(N + 1)m –
1

Nm

)}

. (3.10)

By the Taylor expansion we have

ln
N + 1

N
=

m∑

j=1

(–1)j–1

jNj +
(–1)m

(m + 1)Nm+1
1

(1 + φ0
N )m+1

, (3.11)

1
(N + 1)k =

1
Nk

{m–k∑

j=0

(
k + j – 1

j

)
(–1)j

Nj +
(

m
k – 1

)
(–1)m+1–k

Nm+1–k(1 + φk
N )m+1

}

, (3.12)
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where 0 < φk < 1 for k = 0, 1, . . . , m – 1. When m ≥ 3, substituting (3.11) and (3.12) into
(3.10) yields

γ (z) – γN–1(z) = zN–1

{ m∑

k=2

(–1)kb0(z)
kNk +

(–1)m+1b0(z)
(m + 1)Nm+1

1
(1 + φ0

N )m+1

+
m∑

k=2

(–1)k–1bk–1(z)
Nk +

m–1∑

k=1

m–k∑

j=0

(–1)k+jbk(z)
kNk+j

(
k + j – 1

j

)

+
(–1)m+1

Nm+1

m–1∑

k=1

bk(z)
k

( m
k–1

)

(1 + φk
N )m+1

–
m–1∑

k=1

(–1)kbk(z)
k

1
Nk + ε

}

, (3.13)

where

ε = θ
(–1)mbm(z)

m

(
m

Nm+1 +
1

(N + 1)m –
1

Nm

)

. (3.14)

Taking u = k + j, we obtain

m–1∑

k=1

m–k∑

j=0

(–1)k+jbk(z)
kNk+j

(
k + j – 1

j

)

=
m–1∑

k=1

(–1)kbk(z)
kNk +

m–1∑

k=1

m–k∑

j=1

(–1)k+jbk(z)
kNk+j

(
k + j – 1

j

)

=
m–1∑

k=1

(–1)kbk(z)
kNk +

m∑

u=2

(–1)u

Nu

u–1∑

k=1

bk(z)
k

(
u – 1
k – 1

)

=
m–1∑

k=1

(–1)kbk(z)
kNk +

m–1∑

u=2

(–1)u

Nu

u–1∑

k=1

bk(z)
k

(
u – 1
k – 1

)

+
(–1)m

Nm

m–1∑

k=1

(
m – 1
k – 1

)
bk(z)

k
.

Since

1
k

(
u – 1
k – 1

)

=
1
u

(
u
k

)

,

we have

m–1∑

k=1

(–1)kbk(z)
kNk +

m–1∑

u=2

(–1)u

Nu

u–1∑

k=1

bk(z)
k

(
u – 1
k – 1

)

=
m–1∑

k=1

(–1)kbk(z)
kNk +

m–1∑

u=2

(–1)u

uNu

u–1∑

k=1

(
u
k

)

bk(z)

= –
b1(z)

N
+

m–1∑

k=2

(–1)k

kNk

(

bk(z) +
k–1∑

j=1

(
k
j

)

bj(z)

)

=
m–1∑

k=1

(–1)k

kNk

k∑

j=1

(
k
j

)

bj(z).
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Therefore,

γ (z) – γN–1(z) = zN–1

{ m∑

k=2

(–1)kb0(z)
kNk +

(–1)m+1b0(z)
(m + 1)Nm+1

1
(1 + φ0

N )m+1

+
m∑

k=2

(–1)k–1bk–1(z)
Nk +

m–1∑

k=1

(–1)k

kNk

k∑

j=1

(
k
j

)

bj(z)

+
(–1)m

Nm

m–1∑

k=1

(
m – 1
k – 1

)
bk(z)

k
+

(–1)m+1

Nm+1

m–1∑

k=1

bk(z)
k

( m
k–1

)

(1 + φk
N )m+1

–
m–1∑

k=1

(–1)kbk(z)
k

1
Nk + ε

}

.

Because of (2.8) and (3.3) it follows that

γ (z) – γN–1(z) = zN–1

{m–1∑

k=2

ck(z)
Nk + T1 + T2 + ε

}

, (3.15)

where

T1 =
(–1)mb0(z)

mNm +
(–1)m+1b0(z)
(m + 1)Nm+1

1
(1 + φ0

N )m+1
, (3.16)

T2 =
(–1)m

mNm

m–2∑

k=1

(
m
k

)

bk(z) +
(–1)m+1

(m + 1)Nm+1

m–1∑

k=1

bk(z)
(m+1

k
)

(1 + φk
N )m+1

. (3.17)

Observe that

T1 + T2 =
(–1)m

Nm

{
1
m

m–2∑

k=0

(
m
k

)

bk(z) –
1

(m + 1)N

m–1∑

k=0

bk(z)
(m+1

k
)

(1 + φk
N )m+1

}

, (3.18)

which implies that

(–1)m(T1 + T2) > 0, (3.19)

if

N ≥
1

m+1
∑m–1

k=0
(m+1

k
)
bk(z)

1
m

∑m–2
k=0

(m
k
)
bk(z)

. (3.20)

According to (2.8) and (3.3), (3.20) is equivalent to

N ≥ –
cm+1(z)
cm(z)

. (3.21)

Thus, if m = 2q + 1 and N ≥ – cm+1(z)
cm(z) , then

T1 + T2 < 0, ε < 0.
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As a consequence, by (3.15) we have

γ (z) – γN–1(z) < zN–1
2q∑

k=2

ck(z)
Nk .

Similarly, if m = 2p + 2 and N ≥ – cm+1(z)
cm(z) , then

T1 + T2 > 0, ε > 0,

which implies

γ (z) – γN–1(z) > zN–1
2p+1∑

k=2

ck(z)
Nk .

This completes the proof. �

The coefficients ck(z) in Theorem 3.1 are computed explicitly. In the following theorem,
we provide an alternative approach to compute the coefficients recursively.

Theorem 3.2 The coefficients ck(z) in Theorem 3.1 can be determined by the following
recurrence relation:

c2(z) =
1

2(1 – z)
, (3.22)

ck(z) =
z

1 – z

k–1∑

j=2

(–1)k–j
(

k – 1
j – 1

)

cj(z) +
(–1)k

k(1 – z)
, k ≥ 3. (3.23)

Proof From (3.3) and (2.9) it is easy to verify that

c2(z) =
1
2

[
1 – z

z
b2(z) – 2b1(z)

]

=
1

2(1 – z)
.

For k ≥ 3, by (2.7), (2.8), and (3.3), we calculate the right-hand side of (3.23):

z
1 – z

k–1∑

j=1

(–1)k–j
(

k – 1
j – 1

)

cj(z) +
(–1)k

k(1 – z)

= (–1)k

{
z

1 – z

k–1∑

j=1

1
j

(
k – 1
j – 1

)[
1 – z

z
bj(z) – jbj–1(z)

]

+
1

k(1 – z)

}

= (–1)k

{
1
k

k–1∑

j=0

(
k
j

)

bj(z) –
1 – z

z

k–1∑

j=1

(
k – 1
j – 1

)

bj–1(z)

}

=
(–1)k

k

{
1 – z

z
bk(z) – kbk–1(z)

}

= ck(z).

Thus, the proof is complete. �
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Remark 3.1 By the above recurrence relation, we obtain the first few cases of ck(z):

c2(z) =
1

2(1 – z)
, c3(z) = –

2z + 1
3(1 – z)2 ,

c4(z) =
3z2 + 8z + 1

4(1 – z)3 , c5(z) = –
4z3 + 33z2 + 22z + 1

5(1 – z)4 ,

c6(z) =
5z4 + 104z3 + 198z2 + 52z + 1

6(1 – z)5 ,

c7(z) = –
6z5 + 285z4 + 1208z3 + 906z2 + 114z + 1

7(1 – z)6 .

Observing the above, we find the following properties for ck(z).

Theorem 3.3 For 0 < z < 1, the coefficients ck(z) in Theorem 3.1 satisfy

(–1)kck(z) > 0, k ≥ 2. (3.24)

In particular, if 1
7 < z < 1, then

∣
∣ck(z)

∣
∣ <

∣
∣ck+1(z)

∣
∣, k ≥ 2. (3.25)

Proof By (2.8), we have

ck(z) =
(–1)k

k

k–2∑

j=0

(
k
j

)

bj(z), (3.26)

which implies that (3.24) is true because bj(z) > 0 for all j ≥ 0 and 0 < z < 1. By (3.26), we
further have

∣
∣ck+1(z)

∣
∣ –

∣
∣ck(z)

∣
∣ =

k–2∑

j=0

[
1

k + 1

(
k + 1

j

)

–
1
k

(
k
j

)]

bj(z) +
k
2

bk–1(z). (3.27)

For 1 ≤ j ≤ k – 2,

1
k + 1

(
k + 1

j

)

–
1
k

(
k
j

)

=
[

1
k + 1 – j

–
1
k

](
k
j

)

≥ 0. (3.28)

Thus,

∣
∣ck+1(z)

∣
∣ –

∣
∣ck(z)

∣
∣ ≥

[
1

k + 1
–

1
k

]

b0(z) +
k
2

bk–1(z). (3.29)

From (2.8) it follows that

bk–1(z) >
z

1 – z
b0(z). (3.30)

By (3.29) and (3.30), we obtain

∣
∣ck+1(z)

∣
∣ –

∣
∣ck(z)

∣
∣ >

[
1

k + 1
–

1
k

+
kz

2(1 – z)

]

b0(z). (3.31)
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It is easy to verify that when 1/7 < z < 1 there holds

1
k + 1

–
1
k

+
kz

2(1 – z)
> 0, (3.32)

which implies that (3.25) is true. �

The following theorem gives the conditions for N in a simpler form than those in The-
orem 3.1.

Theorem 3.4 Let p and q be any positive integers. If N ≥ (2p + 2)( (p+1)z
1–z + 1

3 ), then

γ (z) – γN–1(z) > zN–1
2p+1∑

k=2

ck(z)
Nk , 0 < z < 1. (3.33)

If N ≥ (2q + 1)((q + 1
2 ) z

1–z + 1
3 ), then

γ (z) – γN–1(z) < zN–1
2q∑

k=2

ck(z)
Nk , 0 < z < 1. (3.34)

Proof By (2.8) we have

m–2∑

k=0

bk(z)
m

(
m
k

)

–
1
N

m–1∑

k=0

bk(z)
m + 1

(
m + 1

k

)

=
m–2∑

k=0

bk(z)
m

(
m
k

)

–
1
N

m–2∑

k=0

bk(z)
m + 1

(
m + 1

k

)

–
m

2N
z

1 – z

m–2∑

k=0

(
m – 1

k

)

bk(z)

=
1
N

m–2∑

k=0

bk(z)
(

m
k

)[
N
m

–
1

m + 1 – k
–

m – k
2

z
1 – z

]

.

If N ≥ m( 1
3 + m

2
z

1–z ), we have

N
m

–
1

m + 1 – k
–

m – k
2

z
1 – z

≥ 0

for all k = 0, 1, . . . , m – 2. This implies (3.19) is true. The proof left is similar to that of
Theorem 3.1. �

Remark 3.2 In Theorems 3.1 and 3.4, the conditions for N are sufficient but not necessary.
It is possible to relax the conditions for N . Even we conjecture that, for some fixed z ∈ (0, 1),
Theorem 3.1 is true for any positive integer N .

Remark 3.3 In a nutshell, according to Theorems 3.1 and 3.4, for sufficiently large N and
any positive integers p and q, we have

zN–1
2p+1∑

k=2

(–1)k

kNk

[
1 – z

z
bk(z) – kbk–1(z)

]

< γ (z) – γN–1(z)
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< zN–1
2q∑

k=2

(–1)k

kNk

[
1 – z

z
bk(z) – kbk–1(z)

]

. (3.35)

In particular, when z = 1/2, there holds

(
1
2

)N–1 2p+1∑

k=2

(–1)k

kNk

[

bk

(
1
2

)

– kbk–1

(
1
2

)]

< γ

(
1
2

)

– γN–1

(
1
2

)

<
(

1
2

)N–1 2q∑

k=2

(–1)k

kNk

[

bk

(
1
2

)

– kbk–1

(
1
2

)]

, (3.36)

which generalizes the result (1.11) due to Chen and Han [5] for large N . In view of (3.36),
a variety of simple inequalities for γ ( 1

2 ) – γN–1( 1
2 ) are derived for sufficiently large N by

choosing different parameters p and q.

1
2N–1

(
1

N2 –
8

3N3

)

< γ

(
1
2

)

– γN–1

(
1
2

)

<
1

2N–1
1

N2 , (p = q = 1),

1
2N–1

(
1

N2 –
8

3N3 +
23

2N4 –
332
5N5

)

< γ

(
1
2

)

– γN–1

(
1
2

)

<
1

2N–1

(
1

N2 –
8

3N3 +
23

2N4

)

, (p = q = 2),

1
2N–1

(
1

N2 –
8

3N3 +
23

2N4 –
332
5N5 +

479
N6 –

29,024
7N7

)

< γ

(
1
2

)

– γN–1

(
1
2

)

<
1

2N–1

(
1

N2 –
8

3N3 +
23

2N4 –
332
5N5 +

479
N6

)

, (p = q = 3).

Remark 3.4 The inequalities for γ ( 1
t ) –γN–1( 1

t ) were investigated by Ma and Chen [14]. In
particular, some inequalities for the cases t = 3 and t = 4 were presented, see [14, 15, 29].
As examples, here we apply Theorem 3.1 to obtain several simple and new inequalities
related to γ ( 1

3 ) – γN–1( 1
3 ) and γ ( 1

4 ) – γN–1( 1
4 ) for sufficiently large N .

Case t = 3:

1
3N–1

(
3

4N2 –
5

4N3

)

< γ

(
1
3

)

– γN–1

(
1
3

)

<
1

3N–1
3

4N2 ,

1
3N–1

(
3

4N2 –
5

4N3 +
27

8N4 –
123

10N5

)

< γ

(
1
3

)

– γN–1

(
1
3

)

<
1

3N–1

(
3

4N2 –
5

4N3 +
27

8N4

)

,
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1
3N–1

(
3

4N2 –
5

4N3 +
27

8N4 –
123

10N5 +
56
N6 –

17,127
56N7

)

< γ

(
1
3

)

– γN–1

(
1
3

)

<
1

3N–1

(
3

4N2 –
5

4N3 +
27

8N4 –
123

10N5 +
56
N6

)

.

Case t = 4:

1
4N–1

(
2

3N2 –
8

9N3

)

< γ

(
1
4

)

– γN–1

(
1
4

)

<
1

4N–1
2

3N2 ,

1
4N–1

(
2

3N2 –
8

9N3 +
17

9N4 –
736

135N5

)

< γ

(
1
4

)

– γN–1

(
1
4

)

<
1

4N–1

(
2

3N2 –
8

9N3 +
17

9N4

)

,

1
4N–1

(
2

3N2 –
8

9N3 +
17

9N4 –
736

135N5 +
1594
81N6 –

48,296
567N7

)

< γ

(
1
4

)

– γN–1

(
1
4

)

<
1

4N–1

(
2

3N2 –
8

9N3 +
17

9N4 –
736

135N5 +
1594
81N6

)

.

Theorem 3.5 Let m ≥ 3 be a positive integer. For 0 < z < 1, we have the following asymp-
totic expansion:

γ (z) – γN–1(z) = zN–1
m–1∑

k=2

ck(z)
Nk + O

(
zN–1

Nm

)

, N → ∞, (3.37)

where ck(z) are described as in (3.3).

Proof By (3.15) we immediately obtain (3.37). �

Remark 3.5 When z = 1/2, we recover the result of Chen and Han [5] about asymptotic
expansion of γ ( 1

2 ) – γN–1( 1
2 ):

γ

(
1
2

)

– γN–1

(
1
2

)

=
1

2N–1

(
1

N2 –
8

3N3 +
23

2N4 –
332
5N5 +

479
N6 –

29,024
7N7 + · · ·

)

,

as N → ∞.

4 Estimate of the generalized Somos’ quadratic recurrence constant
Sondow and Hadjicostas [25] generalized Somos’ quadratic recurrence constant (1.3) as

σt =
t

√

1
t

√

2
t

√

3 t√4 · · · =
∞∏

k=1

k
1
tk . (4.1)
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Then they established the relation between the generalized Somos’ quadratic recurrence
constant σt and the function γ ( 1

t ):

γ

(
1
t

)

= t ln
t

(t – 1)σ t–1
t

, t > 1. (4.2)

Recently, Coffey [6] obtained the following integral and series representations for lnσt :

lnσt =
∫ ∞

0

(
e–x

t – 1
+

1
1 – tex

)
dx
x

(4.3)

and

lnσt =
1

t – 1

∞∑

k=1

(–1)k–1

k
Lik

(
1
t

)

=
1

t – 1

∞∑

k=1

1
k

[

Lik

(
1
t

)

– 1
]

(4.4)

in terms of the polylogarithm function. Using (4.2) and Theorem 3.1, it is natural that we
give an estimate for the generalized Somos’ quadratic recurrence constant σt :

Lt < σt < Ut , (4.5)

where the bounds

Lt =

{
t

t – 1
exp

{

–
γN–1( 1

t )
t

–
1

tN

2q∑

k=2

ck( 1
t )

Nk

}} 1
t–1

, (4.6)

Ut =

{
t

t – 1
exp

{

–
γN–1( 1

t )
t

–
1

tN

2p+1∑

k=2

ck( 1
t )

Nk

}} 1
t–1

. (4.7)

Equivalently, (4.5) leads to a general estimate for lnσt .

Theorem 4.1 Let p and q be any positive integers. For sufficiently large N , we have

1
t – 1

{

–
γN–1( 1

t )
t

– ln

(

1 –
1
t

)

–
1

tN

2q∑

k=2

ck( 1
t )

Nk

}

< lnσt <
1

t – 1

{

–
γN–1( 1

t )
t

– ln

(

1 –
1
t

)

–
1

tN

2p+1∑

k=2

ck( 1
t )

Nk

}

, (4.8)

where ck(z) are described as in (3.3).

As a consequence, we easily obtain an asymptotic expansion for lnσt .

Theorem 4.2 As N → ∞, the following asymptotic expansion holds:

lnσt =
1

t – 1

{

–
γN–1( 1

t )
t

– ln

(

1 –
1
t

)

–
1

tN

m–1∑

k=2

ck( 1
t )

Nk

}

+ O
(

1
NmtN

)

, (4.9)

where m ≥ 3.
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Remark 4.1 Theorems 4.1 and 4.2 show that the function

1
t – 1

{

–
γN–1( 1

t )
t

– ln

(

1 –
1
t

)

–
1

tN

m–1∑

k=2

ck( 1
t )

Nk

}

is a good approximation of lnσt with the error term O(1/(NmtN )). In particular, for large
t, the approximation effect is great.

When t = 2, we have the following estimate and asymptotic expansion for lnσ .

Corollary 4.1 Let p and q be any positive integers. For sufficiently large N , we have

–
γN–1( 1

2 )
2

+ ln 2 –
1

2N

2q∑

k=2

ck( 1
2 )

Nk < lnσ < –
γN–1( 1

2 )
2

+ ln 2 –
1

2N

2p+1∑

k=2

ck( 1
2 )

Nk . (4.10)

Corollary 4.2 As N → ∞, the following asymptotic expansion holds:

lnσ = –
γN–1( 1

2 )
2

+ ln 2 –
1

2N

m–1∑

k=2

ck( 1
2 )

Nk + O
(

1
Nm2N

)

, (4.11)

where m ≥ 3.

In fact, according to Definition (4.1) and Lemma 2.1 or (2.12), we find an alternative
approach to get the estimate for lnσt .

Theorem 4.3 Let N be any positive integer. Then, for t > 1 and m ≥ 1, we have

lnσt = λN–1

(
1
t

)

–
ln N

tN–1(t – 1)
–

1
tN

{m–1∑

k=1

(–1)kbk( 1
t )

kNk + κ
(–1)mbm( 1

t )
mNm

}

, (4.12)

where 0 < κ < 1 and λn(z) =
∑n

k=1(ln k)zk .

Proof Taking f (x) = ln x and z = 1/t in (2.12), we immediately obtain (4.12). �

It should be noted that the number N in Theorem 4.3 is not restricted except N is a
positive integer. By Theorem 4.3, it is clear that the following corollary is true.

Corollary 4.3 For t > 1 and m ≥ 1, we have

lnσt = λN–1

(
1
t

)

–
ln N

tN–1(t – 1)
–

1
tN

m–1∑

k=1

(–1)kbk( 1
t )

kNk + O
(

1
NmtN

)

, (4.13)

as N → ∞.

Also, we can obtain a new type of approximation for lnσt similar to Theorem 3.1.
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Corollary 4.4 For any positive integers p, q, and N , there holds

λN–1

(
1
t

)

–
ln N

tN–1(t – 1)
–

1
tN

2p∑

k=1

(–1)kbk( 1
t )

kNk

< lnσt < λN–1

(
1
t

)

–
ln N

tN–1(t – 1)
–

1
tN

2q–1∑

k=1

(–1)kbk( 1
t )

kNk . (4.14)

In particular, when t = 2 we have

λN–1

(
1
2

)

–
ln N
2N–1 –

1
2N

2p∑

k=1

(–1)kbk( 1
2 )

kNk

< lnσ < λN–1

(
1
2

)

–
ln N
2N–1 –

1
2N

2q–1∑

k=1

(–1)kbk( 1
2 )

kNk , (4.15)

and

lnσ = λN–1

(
1
2

)

–
ln N
2N–1 –

1
2N

m–1∑

k=1

(–1)kbk( 1
2 )

kNk + O
(

1
Nm2N

)

, (4.16)

as N → ∞.
Finally, we get a new estimate for γ (z) when 0 < z < 1.

Corollary 4.5 For any positive integers p, q, and N , there holds

(1 – z)zN–2
2q–1∑

k=1

(–1)kbk(z)
kNk < γ (z) –

(

zN–2 ln N –
1 – z

z2 λN–1(z) –
ln(1 – z)

z

)

< (1 – z)zN–2
2p∑

k=1

(–1)kbk(z)
kNk . (4.17)

Proof Using relation (4.2) and Corollary 4.3 and replacing t by 1/z, we have the desired
result. �

In a similar manner, we obtain the following asymptotic expansion for γ (z).

Corollary 4.6 Let m ≥ 1 be a positive integer. For 0 < z < 1, we have

γ (z) = zN–2 ln N –
1 – z

z2 λN–1(z) –
ln(1 – z)

z

+ (1 – z)zN–2
m–1∑

k=1

(–1)kbk(z)
kNk + O

(
zN–2

Nm

)

, (4.18)

as N → ∞.

Remark 4.2 Unlike Theorem 3.1, the number N in (4.17) is not restricted except N is a
positive integer. In other words, identity (4.17) is true for all N ≥ 1.
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Remark 4.3 If we approximate γ (z) by the function zN–2 ln N – 1–z
z2 λN–1(z) – ln(1–z)

z as N →
∞, then we arrive at the error bound O(zN–2/N). By Theorem 3.5, we conclude that it
is better that we approximate γ (z) by its partial sum γN–1(z) because the error bound is
O(zN–1/N2).
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