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1 Introduction
The Wirtinger inequality was first used in Fourier analysis, then was used in 1904 to prove
the isoperimetric inequality; see [1, 2]. Since the Wirtinger inequality has been recognized
as a powerful tool to estimate the prior bounds of solutions, it has been used in many re-
search areas, such as Hamiltonian system, delay equations, biomathematics, neural net-
works, partial differential equation; see [3–8] and the relevant references therein.

In this paper, we will obtain the existence of anti-periodic solutions for inertial compet-
itive neutral-type neural networks by using the Wirtinger inequality and topology degree
theory. In 1996, Meyer, Ohl and Scheich [9] first proposed the competitive neural net-
work, the behavior of this network is characterized by an equation of neural activity as a
fast phenomenon and an equation of synaptic modification as a slow part of the neural sys-
tem. Since by a competitive neural network one can study the dynamics of complex neural
networks including the aspects of long- and short-term memory, it has received great at-
tention. Meyer, Pilyugin and Chen [10] studied global exponential stability of competitive
neural networks with different time scales. They presented a new method of analyzing the
dynamics of a biological relevant system with different time scales based on the theory of
flow invariance. After that, Meyer, Reberts and Thmmle [11] further studied the local uni-
form stability of competitive neural networks with different time scales under vanishing
perturbations. Gu, Jiang and Teng [12] obtained the existence and global exponential sta-
bility of a unique equilibrium point of competitive neural networks with different time
scales and multiple delays by using a nonlinear Lipschitz measure (NLM) method and
constructing a suitable Lyapunov functional. Liu et al. [13] obtained the existence of a pe-
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riodic solution for competitive neural networks with time-varying and distributed delays
on time scales.

On the other hand, the anti-periodic solution problem for dynamic systems is an inter-
esting topic which has been investigated by many researchers. Okochi [14] first considered
the anti-periodic solution of nonlinear abstract parabolic equations. Then anti-periodic
problems of neural networks have attracted much attention by many authors. Li, Yang
and Wu [15] discussed an anti-periodic solution for impulsive BAM neural networks with
time-varying leakage delays on time scales. Then Li et al. [16–18] further studied anti-
periodic solutions for different types of neural networks. Xu, Chen and Guo [19] stud-
ied anti-periodic oscillations of bidirectional associative memory (BAM) neural networks
with leakage delays. The existence and exponentially stability of anti-periodic solutions
for neutral BAM neural networks with time-varying delays in the leakage terms have been
obtained by Xu and Guo [20]. However, to the best of our knowledge there are only few
results on the anti-periodic solutions for neutral-type competitive neural networks with
inertial terms.

The above discussions constitute the motivation for the present paper. In this paper, we
will study a kind of neutral-type competitive neural networks with inertial terms. Based
on the Wirtinger inequality and topology degree theory, we prove the existence of anti-
periodic solutions of the above neural network. We list the main contributions of this
paper as follows:

(1) We propose a class of inertial competitive neutral-type neural networks which is
different from the existing competitive neural networks; see [9–11, 13, 15, 19].

(2) Since the model of the present paper contains neutral terms, it is very difficult to
estimate an a priori bound. In order to overcome this difficulty, we use the Wirtinger
inequality and develop some new mathematical analysis techniques.

(3) A unified framework is established to handle competitive neural networks with
neutral-type terms, time-varying delays and inertial terms.

The subsequent sections are organized as follows: In Sect. 2, the description of the
model, some useful lemmas and notations are given. In Sect. 3, sufficient conditions are es-
tablished for existence of anti-periodic solutions of considered neural networks. In Sect. 4,
an example is given to show the feasibility of our results. Finally, Sect. 5 concludes the pa-
per.

2 Model description and Lemmas
Consider the following generalized inertial competitive neutral-type neural networks with
time-varying delays:

⎧
⎪⎪⎨

⎪⎪⎩

ε(Aixi)′′(t) = –αi(t)x′
i(t) – βi(t)xi(t) +

∑n
j=1 bij(t)fj(xj(t))

+
∑n

j=1 cij(t)fj(xj(t – γij(t))) + Bi(t)
∑n

j=1 djmij(t),

m′
ij(t) = –mij(t) + djfi(xi(t)),

(2.1)

where i, j = 1, 2, . . . , n; (Aixi)(t) is a neutral operator which is defined by

(Aixi)(t) = xi(t) – cixi(t – σ ), (2.2)

ci and σ are constants with |ci| �= 1 and σ > 0; the second order derivative is an inertial
term; xi(t) is the neuron current activity level; ε > 0 is a fast time scale; αi(t) > 0 is a vari-
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able coefficient; βi(t) > 0 is a damping coefficient; bij(t) and cij(t) represent the connection
weight and the synaptic weight of delayed synaptic efficiency; mij(t) the is synaptic effi-
ciency; dj is the constant external stimulus; Bi(t) is the strength of the external stimulus;
fj(xj(t)) is the output of neurons; γij(t) > 0 is a transmission delay.

The initial values of system (2.1) are given by
⎧
⎨

⎩

xi(s) = φi(s), x′
i(s) = θi(s),

mij(s) = μij(s),
(2.3)

where i, j = 1, 2, . . . , n and s ∈ [–τ , 0] with τ = max1≤i,j≤n{σ ,γij(t), t ∈R}.
Let ε = 1 and zi(t) =

∑n
j=1 djmij(t), then (2.1) is transformed into

⎧
⎪⎪⎨

⎪⎪⎩

(Aixi)′′(t) = –αi(t)x′
i(t) – βi(t)xi(t) +

∑n
j=1 bij(t)fj(xj(t))

+
∑n

j=1 cij(t)fj(xj(t – γij(t))) + Bi(t)zi(t),

z′
i(t) = –zi(t) + dfi(xi(t)),

(2.4)

where d =
∑n

j=1 d2
j > 0. Let

yi(t) = (Aixi)′(t) + xi(t), i = 1, 2, . . . , n, (2.5)

then (2.4) can be written as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(Aixi)′(t) = –xi(t) + yi(t) := Fi(·),
y′

i(t) = –(αi(t) – 1)x′
i(t) – βi(t)xi(t) +

∑n
j=1 bij(t)fj(xj(t))

+
∑n

j=1 cij(t)fj(xj(t – γij(t))) + Bi(t)zi(t) := Gi(·),
z′

i(t) = –zi(t) + dfi(xi(t)) := Hi(·).

(2.6)

In view of the initial values of system (2.1), we can obtain the initial values of system (2.6)

⎧
⎪⎪⎨

⎪⎪⎩

(Aixi)(s) = φi(s) – ciφi(s – σ ) := ϕi(s),

yi(s) = φi(s) + θi(s) – ciθi(s – σ ) := υi(s),

zi(s) =
∑n

j=1 djmij(s) := ωi(s),

where i, j = 1, 2, . . . , n and s ∈ [–τ , 0].
Now, we give the famous Wirtinger inequality.

Lemma 2.1 ([21, 22] Wirtinger inequality) If u is a C1 function such that u(0) = u(T), then

‖u – ū‖L2 ≤ T
2π

∥
∥u′∥∥

L2
,

where ‖u′‖L2 = (
∫ T

0 |u(t)|2 dt) 1
2 and ū = 1

T
∫ T

0 |u(t)|dt.

Remark 2.1 When u is an anti-periodic function, i.e., u(t + T) = –u(t), ∀t ∈R, then

u(0) = u(2T), ū =
1
T

∫ 2T

0

∣
∣u(t)

∣
∣dt = 0,
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and the Wirtinger inequality is given by

(∫ 2T

0

∣
∣u(t)

∣
∣2 dt

) 1
2 ≤ T

π

(∫ 2T

0

∣
∣u′(t)

∣
∣2 dt

) 1
2

.

In this paper, we also need the following lemmas.

Lemma 2.2 ([22]) Let X and Y be Banach spaces, and let L : Dom L ⊂ X → Y be linear, N :
X → Y be continuous. Assume that L is one-to-one and K := L–1N is compact. Furthermore,
assume there exists a bounded and open subset Ω ⊂ X with 0 ∈ Ω such that the equation
Lu = λNu has no solutions in ∂Ω ∪ Dom L for any λ ∈ (0, 1). Then the problem Lu = Nu has
at least one solution in Ω̄ .

Lemma 2.3 ([23, 24]) Define A on CT

A : CT → CT , [Ax](t) = x(t) – cx(t – τ ), ∀t ∈R,

where CT = {x : x ∈ C(R,R), x(t +T) ≡ x(t)}, c is constant. When |c| �= 1, then A has a unique
continuous bounded inverse A–1 satisfying

[
A–1f

]
(t) =

⎧
⎨

⎩

∑
j≥0 cjf (t – jτ ), if |c| < 1,∀f ∈ CT ,

–
∑

j≥1 c–jf (t + jτ ), if |c| > 1,∀f ∈ CT .

Obviously, we have
(1) ‖A–1‖ ≤ 1

|1–|c|| ;
(2)

∫ T
0 |[A–1f ](t)|dt ≤ 1

|1–|c||
∫ T

0 |f (t)|dt, ∀f ∈ CT ;
(3)

∫ T
0 |[A–1f ](t)|2 dt ≤ 1

|1–|c||
∫ T

0 |f (t)|2 dt, ∀f ∈ CT .

In what follows, for u = (u1, u2, . . . , u3n)
, denote

‖u‖ =
3n∑

k=1

|uk|.

For i, j = 1, 2, . . . , n, we list the following notations which will be used in this paper:

α–
i = inf

t∈R
αi(t), β+

i = sup
t∈R

βi(t), b+
ij = sup

t∈R

∣
∣bij(t)

∣
∣,

b+
ij = sup

t∈R

∣
∣bij(t)

∣
∣, B+

i = sup
t∈R

∣
∣Bi(t)

∣
∣.

Throughout this paper, we need the following assumptions:
(H1) For i, j = 1, 2, . . . , n and t, x ∈R, αi,βi, bij, cij, Bi,γij ∈ C(R,R) with

αi(t + ω) = αi(t), βi(t + ω) = βi(t),

Bi(t + ω) = Bi(t), γij(t + ω) = γij(t),

bij(t + ω)fj(x) = –bij(t)fj(–x), cij(t + ω)fj(x) = –cij(t)fj(–x).
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(H2) For j = 1, 2, . . . , n and x, y ∈R, there exist positive constants Lj > 0

∣
∣fj(x) – fj(y)

∣
∣ ≤ Lj|x – y|.

(H3) For i, j = 1, 2, . . . , n

1 – γ ′
ij(t) > 0, t ∈R.

Remark 2.2 From 1 – γ ′
ij(t) > 0, t ∈R, it is easy to see that t – γij(t) has the inverse function

Γij for i, j = 1, 2, . . . , n and t ∈R. Hence, let t – γij(t) = uij, then t = Γij(uij).

3 Main results
Let

X =
{

u = (x, y, z) = (x1, . . . , xn, y1, . . . , yn, z1, . . . , zn, )
 ∈ C
(
R,R3n), u(t + ω) = –u(t)

}

with the norm

‖u‖X =
n∑

i=1

(|xi|∞ + |yi|∞ + |zi|∞
)
, |f |∞ = sup

t∈R

∣
∣f (t)

∣
∣.

Clearly, X is a Banach space. Let

L : D(L) ⊂ X → X, Lu =
(
(A1x1)′, . . . , (Anxn)′, y′

1, . . . , y′
n, z′

1, . . . , z′
n,

)
, (3.1)

where D(L) = {u : u ∈ X, (Aixi)′, y′
i, z′

i ∈ X}. Let there be a nonlinear operator N : X → X:

(Nu)(t) =
(
F1(·), . . . , Fn(·), G1(·), . . . , Gn(·), H1(·), . . . , Hn(·))
. (3.2)

Clearly,

Ker L = R
3n, Im L =

{

u : u ∈ X,
∫ 2ω

0
u(s) ds = 0

}

.

For u = (x1, . . . , xn, y1, . . . , yn, z1, . . . , zn)
 ∈ Im L, let the inverse operator of L be L–1 as fol-
lows:

(
L–1u

)
(t) =

((
A–1

1 F1x1
)
(t), . . . ,

(
A–1

n Fnxn
)
(t), (F1y1)(t), . . . ,

(Fnyn)(t), (F1z1)(t), . . . , (Fnzn)(t)
)
,

where

(Fiui)(t) =
∫ T

0
G(t, s)ui(s) ds, G(t, s) =

⎧
⎨

⎩

s
T , 0 ≤ s < t ≤ T ,
s–T

T , 0 ≤ t < s ≤ T .

Theorem 3.1 Assume that the assumptions (H1)–(H3) hold. Furthermore, the following
assumption holds:
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(H4)

Θ = min
1≤i≤n

{

1 –
n∑

i=1

ω|1 – α–
i |

|1 – |ci||π

–
n∑

i=1

[

β+
i +

n∑

j=1

(

b+
ijLj + c+

ijLj max
s∈R

1
|1 – γ ′

ij(s)|
)]

ω2

|1 – |ci||π2

–
n∑

i=1

B+
i dLiω

3

|1 – |ci||π3

}

> 0.

Then system (2.1) has at least one anti-periodic solution.

Proof Consider the operator equation

Lu = λNu, u ∈ D(L),λ ∈ (0, 1), (3.3)

where L and N are defined by (3.1) and (3.2). Let u ∈ D(L) be an arbitrary solution of (3.3),
then

⎧
⎪⎪⎨

⎪⎪⎩

(Aixi)′(t) = λFi(·),
y′

i(t) = λGi(·), i = 1, 2, . . . , n.

z′
i(t) = λHi(·),

(3.4)

Multiplying by y′
i(t) on both sides of the second equation of (3.4) and integrating it over

[0, 2ω], we have

∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

= λ

∫ 2ω

0

[

–
(
αi(t) – 1

)
x′

i(t)y′
i(t) – βi(t)xi(t)y′

i(t) +
n∑

j=1

bij(t)fj
(
xj(t)

)
y′

i(t)

+
n∑

j=1

cij(t)fj
(
xj

(
t – γij(t)

))
y′

i(t) + Bi(t)zi(t)y′
i(t)

]

= λ

∫ 2ω

0

[

–
(
αi(t) – 1

)
x′

i(t)y′
i(t) – βi(t)xi(t)y′

i(t) +
n∑

j=1

bij(t)
(
fj
(
xj(t)

)
– fj(0)

)
y′

i(t)

+
n∑

j=1

cij(t)
(
fj
(
xj

(
t – γij(t)

))
– fj(0)

)
y′

i(t)

+
n∑

j=1

(
bij(t) + cij(t)

)
fj(0)y′

i(t) + Bi(t)zi(t)y′
i(t)

]

≤ ∣
∣1 – α–

i
∣
∣
∫ 2ω

0

∣
∣x′

i(t)y′
i(t)

∣
∣dt + β+

i

∫ 2ω

0

∣
∣xi(t)y′

i(t)
∣
∣dt +

n∑

j=1

b+
ijLj

∫ 2ω

0

∣
∣xj(t)y′

i(t)
∣
∣dt
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+
n∑

j=1

c+
ijLj

∫ 2ω

0

∣
∣xj

(
t – γij(t)

)
y′

i(t)
∣
∣dt +

n∑

j=1

(
b+

ij + c+
ij
)∣
∣fj(0)

∣
∣
∫ 2ω

0

∣
∣y′

i(t)
∣
∣dt

+ B+
i

∫ 2ω

0

∣
∣zi(t)y′

i(t)
∣
∣dt. (3.5)

From (3.5) and the Hölder inequality, we have

∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt ≤ ∣

∣1 – α–
i
∣
∣

(∫ 2ω

0

∣
∣x′

i(t)
∣
∣2 dt

) 1
2
(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

+ β+
i

(∫ 2ω

0

∣
∣xi(t)

∣
∣2 dt

) 1
2
(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

+
n∑

j=1

b+
ijLj

(∫ 2ω

0

∣
∣xj(t)

∣
∣2 dt

) 1
2
(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

+
n∑

j=1

c+
ijLj

(∫ 2ω

0

∣
∣xj

(
t – γij(t)

)∣
∣2 dt

) 1
2
(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

+
n∑

j=1

√
2ω

(
b+

ij + c+
ij
)∣
∣fj(0)

∣
∣

(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

+ B+
i

(∫ 2ω

0

∣
∣zi(t)

∣
∣2 dt

) 1
2
(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

,

which results in

(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

≤ ∣
∣1 – α–

i
∣
∣

(∫ 2ω

0

∣
∣x′

i(t)
∣
∣2 dt

) 1
2

+ β+
i

(∫ 2ω

0

∣
∣xi(t)

∣
∣2 dt

) 1
2

+
n∑

j=1

b+
ijLj

(∫ 2ω

0

∣
∣xj(t)

∣
∣2 dt

) 1
2

+
n∑

j=1

c+
ijLj

(∫ 2ω

0

∣
∣xj

(
t – γij(t)

)∣
∣2 dt

) 1
2

+
n∑

j=1

√
2ω

(
b+

ij + c+
ij
)∣
∣fj(0)

∣
∣ + B+

i

(∫ 2ω

0

∣
∣zi(t)

∣
∣2 dt

) 1
2

. (3.6)

Consider the fourth term
∑n

j=1 c+
ijLj(

∫ 2ω

0 |xj(t – γij(t))|2 dt) 1
2 in (3.6). In view of Remark 2.2,

we have

n∑

j=1

c+
ijLj

(∫ 2ω

0

∣
∣xj

(
t – γij(t)

)∣
∣2 dt

) 1
2

=
n∑

j=1

c+
ijLj

(∫ 2ω–γij(0)

–γij(0)

|xj(uij(t))|2
1 – γ ′

ij(Γij(uij))
duij

) 1
2

≤
n∑

j=1

c+
ijLj max

s∈R
1

|1 – γ ′
ij(s)|

(∫ 2ω

0

∣
∣xj(t)

∣
∣2 dt

) 1
2

. (3.7)
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From (3.6) and (3.7), we have

n∑

i=1

(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

≤
n∑

i=1

∣
∣1 – α–

i
∣
∣

(∫ 2ω

0

∣
∣x′

i(t)
∣
∣2 dt

) 1
2

+
n∑

i=1

β+
i

(∫ 2ω

0

∣
∣xi(t)

∣
∣2 dt

) 1
2

+
n∑

i=1

n∑

j=1

(

b+
ijLj + c+

ijLj max
s∈R

1
|1 – γ ′

ij(s)|
)(∫ 2ω

0

∣
∣xj(t)

∣
∣2 dt

) 1
2

+
n∑

i=1

n∑

j=1

√
2ω

(
b+

ij + c+
ij
)∣
∣fj(0)

∣
∣ +

n∑

i=1

B+
i

(∫ 2ω

0

∣
∣zi(t)

∣
∣2 dt

) 1
2

=
n∑

i=1

∣
∣1 – α–

i
∣
∣

(∫ 2ω

0

∣
∣x′

i(t)
∣
∣2 dt

) 1
2

+
n∑

i=1

[

β+
i +

n∑

j=1

(

b+
ijLj + c+

ijLj max
s∈R

1
|1 – γ ′

ij(s)|
)](∫ 2ω

0

∣
∣xi(t)

∣
∣2 dt

) 1
2

+
n∑

i=1

n∑

j=1

√
2ω

(
b+

ij + c+
ij
)∣
∣fj(0)

∣
∣ +

n∑

i=1

B+
i

(∫ 2ω

0

∣
∣zi(t)

∣
∣2 dt

) 1
2

. (3.8)

Multiplying by Aix′
i(t) on both sides of the first equation of (3.4) and integrating it over

[0, 2ω], we have

∫ 2ω

0

∣
∣Aix′

i(t)
∣
∣2 dt = –λ

∫ 2ω

0
xi(t)Aix′

i(t) dt + λ

∫ 2ω

0
yi(t)Aix′

i(t) dt

= λ

∫ 2ω

0
yi(t)Aix′

i(t) dt

≤
(∫ 2ω

0

∣
∣yi(t)

∣
∣2 dt

) 1
2
(∫ 2ω

0

∣
∣Aix′

i(t)
∣
∣2 dt

) 1
2

,

which results in

(∫ 2ω

0

∣
∣Aix′

i(t)
∣
∣2 dt

) 1
2 ≤

(∫ 2ω

0

∣
∣yi(t)

∣
∣2 dt

) 1
2

. (3.9)

Using Lemma 2.3 and (3.9), we have

(∫ 2ω

0

∣
∣x′

i(t)
∣
∣2 dt

) 1
2

=
(∫ 2ω

0

∣
∣A–1

i Aix′
i(t)

∣
∣2 dt

) 1
2

≤ 1
|1 – ‖ci‖|

(∫ 2ω

0

∣
∣Aix′

i(t)
∣
∣2 dt

) 1
2

. (3.10)
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The Wirtinger inequality, (3.9) and (3.10) result in

(∫ 2ω

0

∣
∣x′

i(t)
∣
∣2 dt

) 1
2 ≤ 1

|1 – ci|
(∫ 2ω

0

∣
∣yi(t)

∣
∣2 dt

) 1
2

≤ ω

|1 – ‖ci‖|π
(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

. (3.11)

Using again the Wirtinger inequality and (3.11), we have

(∫ 2ω

0

∣
∣xi(t)

∣
∣2 dt

) 1
2 ≤ ω

π

(∫ 2ω

0

∣
∣x′

i(t)
∣
∣2 dt

) 1
2 ≤ ω2

|1 – ‖ci‖|π2

(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

. (3.12)

Multiplying by z′
i(t) on both sides of the third equation of (3.4) and integrating it over

[0, 2ω], we have

∫ 2ω

0

∣
∣z′

i(t)
∣
∣2 dt = –λ

∫ 2ω

0
zi(t)z′

i(t) dt + λ

∫ 2ω

0
dfi

(
xi(t)

)
z′

i(t) dt

≤
∫ 2ω

0
d
∣
∣fi

(
xi(t)

)
– fi(0)

∣
∣
∣
∣z′

i(t)
∣
∣dt +

∫ 2ω

0
d
∣
∣fi(0)

∣
∣
∣
∣z′

i(t)
∣
∣dt

≤ dLi

(∫ 2ω

0

∣
∣xi(t)

∣
∣2 dt

) 1
2
(∫ 2ω

0

∣
∣z′

i(t)
∣
∣2 dt

) 1
2

+ d
∣
∣fi(0)

∣
∣
√

2ω

(∫ 2ω

0

∣
∣z′

i(t)
∣
∣2 dt

) 1
2

,

which results in

(∫ 2ω

0

∣
∣z′

i(t)
∣
∣2 dt

) 1
2 ≤ dLi

(∫ 2ω

0

∣
∣xi(t)

∣
∣2 dt

) 1
2

+ d
∣
∣fi(0)

∣
∣
√

2ω. (3.13)

From (3.12) and (3.13), we have

(∫ 2ω

0

∣
∣z′

i(t)
∣
∣2 dt

) 1
2 ≤ dLiω

2

|1 – ‖ci‖|π2

(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

+ d
∣
∣fi(0)

∣
∣
√

2ω (3.14)

which together with the Wirtinger inequality results in

(∫ 2ω

0

∣
∣zi(t)

∣
∣2 dt

) 1
2 ≤ dLiω

3

|1 – ‖ci‖|π3

(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

+
ωd|fi(0)|√2ω

π
. (3.15)

From (3.8), (3.11), (3.12) and (3.15), we have

n∑

i=1

(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

≤
n∑

i=1

ω|1 – α–
i |

|1 – ‖ci‖|π
(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2
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+
n∑

i=1

[

β+
i +

n∑

j=1

(

b+
ijLj + c+

ijLj max
s∈R

1
|1 – γ ′

ij(s)|
)]

× ω2

|1 – ‖ci‖|π2

(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

+
n∑

i=1

n∑

j=1

√
2ω

(
b+

ij + c+
ij
)∣
∣fj(0)

∣
∣ +

n∑

i=1

B+
i dLiω

3

|1 – ‖ci‖|π3

(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

+
n∑

i=1

B+
i ωd|fi(0)|√2ω

π
. (3.16)

By using assumption (H4) and (3.16), we obtain

n∑

i=1

(∫ 2ω

0

∣
∣y′

i(t)
∣
∣2 dt

) 1
2

≤ 1
Θ

( n∑

i=1

n∑

j=1

√
2ω

(
b+

ij + c+
ij
)∣
∣fj(0)

∣
∣ +

n∑

i=1

B+
i ωd|fi(0)|√2ω

π

)

:= M1. (3.17)

Equations (3.11) and (3.17) result in

n∑

i=1

(∫ 2ω

0

∣
∣x′

i(t)
∣
∣2 dt

) 1
2 ≤

n∑

i=1

M1ω

|1 – ‖ci‖|π := M2. (3.18)

Equations (3.14) and (3.17) result in

n∑

i=1

(∫ 2ω

0

∣
∣z′

i(t)
∣
∣2 dt

) 1
2 ≤

n∑

i=1

M1dLiω
2

|1 – ‖ci‖|π2 + d
∣
∣fi(0)

∣
∣
√

2ω

:= M3. (3.19)

Since u ∈ X is an ω-anti-periodic function, there exist ξi,ηi, ζi ∈ [0, 2ω] such that

xi(ξi) = yi(ηi) = zi(ζi) = 0,

which results in

|xi|∞ ≤
∫ 2ω

0

∣
∣x′

i(t)
∣
∣dt ≤ √

2ω

(∫ 2ω

0

∣
∣x′

i(t)
∣
∣2 dt

) 1
2

and

n∑

i=1

|xi|∞ ≤ √
2ω

n∑

i=1

(∫ 2ω

0

∣
∣x′

i(t)
∣
∣2 dt

) 1
2

:= M̃1.
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Similarly, using (3.17) and (3.19), we also find that there exist positive constants M̃2, M̃3

such that

n∑

i=1

|yi|∞ ≤ M̃2, (3.20)

n∑

i=1

|zi|∞ ≤ M̃3. (3.21)

From (3.19)–(3.21), we get

‖u‖X =
n∑

i=1

(|xi|∞ + |yi|∞ + |zi|∞
) ≤ M̃1 + M̃2 + M̃3 := M̃.

Let

Ω =
{

u ∈ X : ‖u‖X < M̃ + 1
}

.

From Lemma 2.2, the operator equation Lu = Nu has at least one ω-anti-periodic solution
in X. Thus, system (2.1) has at least one ω-anti-periodic solution. �

Remark 3.1 We very much want to obtain the globally exponential stability of system (2.1)
with initial values conditions (2.3). But transforming system (2.6) of system (2.1) contains
a neutral term Aixi which makes constructing the appropriate Lyapinov function very dif-
ficult. Hence, we wish that some authors will develop new methods to derive globally ex-
ponential stability of system (2.1) in the future.

4 A numerical example
In this section, a numerical example is given to illustrate the effectiveness of the results
obtained in this paper.

Example 4.1 Consider the following inertial competitive neutral-type neural networks:

⎧
⎪⎪⎨

⎪⎪⎩

(Aixi)′′(t) = –αi(t)x′
i(t) – βi(t)xi(t) +

∑2
j=1 bij(t)fj(xj(t))

+
∑2

j=1 cij(t)fj(xj(t – γij(t))) + Bi(t)
∑n

j=1 djmij(t),

m′
ij(t) = –mij(t) + djfi(xi(t)),

(4.1)

where i, j = 1, 2,

[
A1x1(t)
A2x2(t)

]

=

[
x1(t) – 1

2 x1(t – π )
x2(t) – 1

3 x2(t – π )

]

,

f1(x) = f2(x) =
1
5

x, d1 = d2 =
1
5

,
[
α1(t)
α2(t)

]

=

[
1

100 cos 2t + 101
100

1
100 sin2 t + + 101

100

]

,

[
β1(t)
β2(t)

]

=

[
1

25 cos2 t + 1
25

1
25 sin2 t + 1

25

]

,
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[
b11(t) b12(t)
b21(t) b22(t)

]

=

[
1
5 cos 2t 1

5 cos2 t
– 1

5 cos2 t – 1
5 cos2 t

]

,

[
c11(t) c12(t)
c21(t) c22(t)

]

=

[
cos2 t – 1

4
1
2 cos2 t

1
2 cos2 t – 1

4
1
4 cos2 t

]

,

[
B1(t)
B2(t)

]

=

[
1
2 sin2 t
1
2 cos2 t

]

,

[
γ11(t) γ12(t)
γ21(t) γ22(t)

]

=

[
1
5 cos2 t 1

5 sin2 t
1
8 cos 2t + 1

8
1

10 cos 2t + 1
10

]

.

After a simple calculation, we have

d = d2
1 + d2

2 =
2

25
, c1 =

1
2

, c2 =
1
3

, L1 = L2 =
1
5

,

α–
1 =

1
100

, α–
2 =

1
100

,

β+
1 =

2
25

, β+
2 =

2
25

, B+
1 = B+

2 =
1
2

, b+
11 = b+

12 = b+
21 = b+

22 =
1
5

,

c+
11 = c+

12 = c+
21 = c+

22 =
1
4

, ω = π ,

γ ′
11(t) = –

1
5

sin 2t, γ ′
12(t) = –

1
5

sin 2t,

γ ′
21(t) = –

1
8

sin 2t, γ ′
22(t) = –

1
10

sin 2t.

Thus,

1 –
ω|1 – α–

1 |
|1 – |c1||π –

[

β+
1 +

2∑

j=1

(

b+
1jLj + c+

1jLj max
s∈R

1
|1 – γ ′

1j(s)|
)]

ω2

|1 – |c1||π2

–
B+

1 dL1ω
3

|1 – |c1||π3 ≈ 0.794 > 0

and

1 –
ω|1 – α–

2 |
|1 – |c2||π –

[

β+
2 +

2∑

j=1

(

b+
2jLj + c+

2jLj max
s∈R

1
|1 – γ ′

2j(s)|
)]

ω2

|1 – |c2||π2

–
B+

2 dL2ω
3

|1 – |c2||π3 ≈ 0.667 > 0.

Then

Θ = min{0.794, 0.667} > 0.

By Theorem 3.1, system (4.1) has at least a unique π-anti-periodic solution. For the tra-
jectories of xi(t), yi(t), zi(t) and mij(t) in system (4.1), see Figs. 1–3.
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Figure 1 For i, j = 1, 2, trajectories of xi(t) andmij(t) in system (4.1)

Figure 2 For i, j = 1, 2, trajectories of yi(t) andmij(t) in system (4.1)

5 Conclusions
In this paper, we study a class of he anti-periodic solutions problem for inertial compet-
itive neutral-type neural networks. By employing the Wirtinger inequality, topology de-
gree theory and some analytic techniques, we have presented some new sufficient criteria
for the existence of anti-periodic for the above neural networks. These criteria possess
adjustable parameters which are important in some applied fields. Finally, an example is
given to demonstrate the effectiveness of the obtained theoretical results. However, there
exist many problems for further study such as the problems of the stability and other dy-
namic properties of anti-periodic solutions to neutral-type neural networks.
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Figure 3 For i, j = 1, 2, trajectories of xi(t), yi(t) and zi(t) in system (4.1)
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