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Abstract
In this paper, we investigate some properties and identities for degenerate Euler
polynomials in connection with degenerate Bernstein polynomials by means of
fermionic p-adic integrals on Zp and generating functions. In addition, we study two
variable degenerate Bernstein polynomials and the degenerate Bernstein operators.
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1 Introduction
Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp, will denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of
algebraic closure of Qp, respectively. Let νp be the normalized exponential valuation of Cp

with |p|p = p–νp(p) = 1
p . For λ ∈ Cp with |λ|p < p– 1

p–1 , the degenerate Euler polynomials are
defined by the generating function

2
(1 + λt)

1
λ + 1

(1 + λt)
x
λ =

∞∑

n=0

En,λ(x)
tn

n!
(see [1, 2]). (1)

When x = 0, En,λ = En,λ(0) are called the degenerate Euler numbers. The degenerate expo-
nential function is defined by

ex
λ(t) = (1 + λt)

x
λ =

∞∑

n=0

(x)n,λ
tn

n!
(see [6]), (2)

where

(x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ
)
, for n ≥ 1. (3)

From (1), we note that

En,λ(x) =
n∑

l=0

(
n
l

)
El,λ(x)n–l,λ (n ≥ 0). (4)
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Recently, Kim–Kim introduced the degenerate Bernstein polynomials given by

(x)k,λ

k!
tk(1 + λt)

1–x
λ =

∞∑

n=k

Bk,n(x|λ)
tn

n!
(see [8–10]). (5)

Thus, by (5), we get

Bk,n(x|λ) =

⎧
⎨

⎩

(n
k
)
(x)k,λ(1 – x)n–k,λ, if n ≥ k,

0, if n < k,
(6)

where n, k are nonnegative integers.
Let f be a continuous function on Zp. Then the degenerate Bernstein operator of order

n is given by

Bn,λ(f |λ) =
n∑

k=0

f
(

k
n

)(
n
k

)
(x)k,λ(1 – x)n–k,λ

=
n∑

k=0

f
(

k
n

)
Bk,n(x|λ) (see [8, 9, 12–15, 17–19]). (7)

The fermionic p-adic integral on Zp is defined by Kim as

∫

Zp

f (x) dμ–1(x) = lim
N→∞

pN –1∑

x=0

f (x)(–1)x (see [3, 9]). (8)

By (8), we get

∫

Zp

f (x + 1) dμ–1(x) +
∫

Zp

f (x) dμ–1(x) = 2f (0) (see [3, 7, 10, 11, 16]). (9)

From (8), we note that

∫

Zp

(1 + λt)
x+y
λ dμ–1(y) =

2
(1 + λt)

1
λ + 1

(1 + λt)
x
λ =

∞∑

n=0

En,λ(x)
tn

n!
. (10)

On the other hand,

∫

Zp

(1 + λt)
x+y
λ dμ–1(y) =

∞∑

n=0

∫

Zp

(x + y)n,λ dμ–1(y)
tn

n!
. (11)

By (10) and (11), we get

∫

Zp

(x + y)n,λ dμ–1(y) = En,λ(x) (n ≥ 0) (see [8, 9]). (12)

The study of degenerate versions of some special polynomials and numbers began with
the work of Carlitz on the degenerate Bernoulli and Euler polynomials and numbers in
[1, 2]. As a continuation of this initiative of Carlitz, Kim and his colleagues have been
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introducing various degenerate special polynomials and numbers and investigating their
properties, some identities related to them and their applications. This research has been
carried out by means of generating functions, combinatorial methods, umbral calculus, p-
adic analysis and differential equations (see [8, 9] and the references therein). Here, along
the same line and by virtue of fermionic p-adic integrals on Zp and generating functions,
we investigate some properties and identities for degenerate Euler polynomials related to
degenerate Bernstein polynomials. In addition, we study two variable degenerate Bern-
stein polynomials and the degenerate Bernstein operators.

2 Degenerate Euler and Bernstein polynomials
From (1), we note that

2 =
∞∑

n=0

( n∑

m=0

(
n
m

)
Em,λ(1)n–m,λ + En,λ

)
tn

n!

=
∞∑

n=0

(
En,λ(1) + En,λ

) tn

n!
. (13)

Comparing the coefficients on both sides of (13), we have

En,λ(1) + En,λ = 2δ0,n (n, k ≥ 0), (14)

where δn,k is the Kronecker symbol.
By (1), we easily get

En,λ(1 – x) = (–1)nEn,–λ(x) (n ≥ 0). (15)

From (1), (4) and (14), we note that

En,λ(2) =
n∑

l=0

(
n
l

)
El,λ(1)(1)n–l,λ

= (1)n,λ +
n∑

l=1

(
n
l

)
El,λ(1)(1)n–l,λ

= 2(1)n,λ –
n∑

l=0

(
n
l

)
(1)n–l,λEl,λ

= 2(1)n,λ + En,λ, (16)

where n is a positive integer.
Therefore, by (16), we obtain the following theorem.

Theorem 2.1 For n ∈ N, we have

En,λ(2) = 2(1)n,λ + En,λ.
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Note that

(1 – x)n,λ = (–1)n(x – 1)n,–λ (n ≥ 0). (17)

Therefore, by (12), (15) and (17), we easily get

∫

Zp

(1 – x)n,λ dμ–1(x) = (–1)n
∫

Zp

(x – 1)n,–λ dμ–1(x)

=
∫

Zp

(x + 2)n,λ dμ–1(x). (18)

Therefore, by (18) and Theorem 2.1, we obtain the following theorem.

Theorem 2.2 For n ∈ N, we have

∫

Zp

(1 – x)n,λ dμ–1(x) =
∫

Zp

(x + 2)n,λ dμ–1(x) = 2(1)n,λ +
∫

Zp

(x)n,λ dμ–1(x).

Corollary 2.3 For n ∈N, we have

(–1)nEn,–λ(–1) = 2(1)n,λ + En,λ = En,λ(2).

By (4), we get

En,λ(1 – x) =
n∑

l=0

(
n
l

)
(1 – x)n–l,λEl,λ

=
n∑

l=0

(
n
l

)
(x)l,λ(1 – x)n–l,λ

El,λ

(x)l,λ

=
n∑

l=0

Bl,n(x|λ)El,λ
1

(x)l,λ
.

(19)

Let

1
(x)l,λ

=
1

x(x – λ)(x – 2λ) · · · (x – (l – 1)λ)
=

l–1∑

k=0

Ak

x – kλ
(l ∈ N). (20)

Then we have

Ak = λ1–l
l–1∏

i=0,
i�=k

(
1

k – i

)
= λ1–l (–1)k–l–1

k!(l – 1 – k)!
=

λ1–l

(l – 1)!

(
l – 1

k

)
(–1)k–l–1. (21)

By (20) and (21), we get

Ak =
(–λ)1–l

(l – 1)!

(
l – 1

k

)
(–1)k . (22)
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From (20) and (22), we have

1
(x)l,λ

=
l–1∑

k=0

(–1)k

(l – 1)!

(
l – 1

k

)
(–λ)1–l

x – kλ
(l ∈ N). (23)

By (19) and (20), we get

En,λ(1 – x) =
n∑

l=0

Bl,n(x|λ)El,λ
1

(x)l,λ

= (1 – x)n,λ +
n∑

l=1

Bl,n(x|λ)El,λ
1

(x)l,λ

= (1 – x)n,λ +
n∑

l=1

Bl,n(x|λ)El,λ
(–λ)1–l

(l – 1)!

l–1∑

k=0

(–1)k
(

l – 1
k

)
1

x – kλ
. (24)

Therefore, by (24), we obtain the following theorem.

Theorem 2.4 For n ≥ 0, we have

En,λ(1 – x) = (1 – x)n,λ +
n∑

l=1

Bl,n(x|λ)El,λ
(–λ)1–l

(l – 1)!

l–1∑

k=0

(–1)k
(

l – 1
k

)
1

x – kλ
.

Corollary 2.5 For n ≥ 0, we have

En,λ(2) = (2)n,λ –
n∑

l=1

Bl,n(–1|λ)El,λ
(–λ)1–l

(l – 1)!

l–1∑

k=0

(–1)k
(

l – 1
k

)
1

1 + kλ
.

For k ∈ N, the higher order degenerate Euler polynomials are given by the generating
function

(
2

(1 + λt)
1
λ + 1

)k

(1 + λt)
x
λ =

∞∑

n=0

E (k)
n,λ(x)

tn

n!
(see [4, 5]). (25)

From (5) and (25), we note that

∞∑

n=0

1
(n+k

n
)Bk,n+k(x|λ)

tn

n!
= (x)k,λ(1 + λt)

1–x
λ

=
(x)k,λ

2k

k∑

l=0

(
k
l

)(
2

(1 + λt)
1
λ + 1

)k

(1 + λt)
1–x+l

λ

=
(x)k,λ

2k

∞∑

n=0

( k∑

l=0

(
k
l

)
E (k)

n,λ(1 – x + l)

)
tn

n!
. (26)

Therefore, by comparing the coefficients on both sides of (26), we obtain the following
theorem.
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Theorem 2.6 For n, k ∈N, we have

2k
(n+k

n
)Bk,n+k(x|λ) = (x)k,λ

k∑

l=0

(
k
l

)
E (k)

n,λ(1 – x + l).

Let f be a continuous function on Zp. For x1, x2 ∈ Zp, we consider the degenerate Bern-
stein operator of order n given by

Bn,λ(f |x1, x2) =
n∑

k=0

f
(

k
n

)(
n
k

)
(x1)k,λ(1 – x2)n–k,λ

=
n∑

k=0

f
(

k
n

)
Bk,n(x1, x2|λ), (27)

where

Bk,n(x1, x2|λ) =
(

n
k

)
(x1)k,λ(1 – x2)n–k,λ, (28)

where n, k are nonnegative integers.
Here, Bk,n(x1, x2|λ) are called two variable degenerate Bernstein polynomials of degree n.
From (28), we note that

∞∑

n=k

Bk,n(x1, x2|λ)
tn

n!
=

∞∑

n=k

(
n
k

)
(x1)k,λ(1 – x2)n–k,λ

tn

n!

=
∞∑

n=k

(x1)k,λ(1 – x2)n–k,λ

k!(n – k)!
tn

=
(x1)k,λ

k!
tk

∞∑

n=0

(1 – x2)n,λ

n!
tn

=
(x1)k,λ

k!
tk(1 + λt)

1–x2
λ

=
(x1)k,λ

k!
tke1–x2

λ (t). (29)

Thus, by (29), we get

(x1)k,λ

k!
tk(1 + λt)

1–x2
λ =

∞∑

n=k

Bk,n(x1, x2|λ)
tn

n!
, (30)

where k is a nonnegative integer. By (28), we easily get

Bk,n(x1, x2|λ) =
(

n
k

)(
1 – (1 – x1)

)
n–(n–k),λ(1 – x2)n–k,λ

= Bn–k,n(1 – x2, 1 – x1|λ). (31)
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Now, we observe that

(
1 – x2 – (n – k – 1)λ

)
Bk,n–1(x1, x2|λ) +

(
x1 – (k – 1)λ

)
Bk–1,n–1(x1, x2|λ)

=
(
1 – x2 – (n – k – 1)λ

)(n – 1
k

)
(x1)k,λ(1 – x2)n–1–k,λ

+
(
x1 – (k – 1)λ

)(n – 1
k – 1

)
(x1)k–1,λ(1 – x2)n–k,λ

=
(

n
k

)
(x1)k,λ(1 – x2)n–k,λ = Bk,n(x1, x2|λ) (n, k ∈N). (32)

Therefore, by (32), we obtain the following theorem.

Theorem 2.7 For n, k ∈N, we have

(
1 – x2 – (n – k – 1)λ

)
Bk,n–1(x1, x2|λ) +

(
x1 – (k – 1)λ

)
Bk–1,n–1(x1, x2|λ)

= Bk,n(x1, x2|λ).

If f = 1, then we have, from (27),

Bn,λ(1|x1, x2) =
n∑

k=0

Bk,n(x1, x2|λ) =
n∑

k=0

(
n
k

)
(x1)k,λ(1 – x2)n–k,λ

= (1 + x1 – x2)n,λ. (33)

If f (t) = t, then we also get from (27) that, for n ∈N and x1, x2 ∈ Zp,

Bn,λ(t|x1, x2) =
n∑

k=0

k
n

(
n
k

)
(x1)k,λ(1 – x2)n–k,λ

= (x1)1,λ(x1 + 1 – λ – x2)n–1,λ. (34)

Hence,

(x1)1,λ =
1

(x1 + 1 – λ – x2)n–1,λ
Bn,λ(t|x1, x2). (35)

By the same method, we get

Bn,λ
(
t2|x1, x2

)

=
1
n

(x1)1,λ(1 + x1 – λ – x2)n–1,λ +
n – 1

n
(x1)2,λ(1 + x1 – 2λ – x2)n–2,λ. (36)

Note that

lim
n→∞

(
lim
λ→0

Bn,λ
(
t2|x, x

))
= lim

n→∞

(
x
n

+
n – 1

n
x2

)
= x2.
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Now, we observe that

n∑

k=1

(k
1
)

(n
1
)Bk,n(x1, x2|λ) =

n∑

k=1

(
n – 1
k – 1

)
(x1)k,λ(1 – x2)n–k,λ

=
n–1∑

k=0

(
n – 1

k

)
(x1)k+1,λ(1 – x2)n–1–k,λ

= (x1)1,λ(x1 + 1 – λ – x2)n–1,λ. (37)

Thus, by (37), we get

(x1)1,λ =
1

(1 + x1 – x2 – λ) n–1,λ

n∑

k=1

(k
1
)

(n
1
)Bk,n(x1, x2|λ).

By the same method, we get

(x1)2,λ =
1

(1 + x1 – x2 – 2λ) n–2,λ

n∑

k=2

(k
2
)

(n
2
)Bk,n(x1, x2|λ).

Continuing this process, we have

(x1)i,λ =
1

(1 + x1 – x2 – iλ) n–i,λ

n∑

k=i

(k
i
)

(n
i
)Bk,n(x1, x2|λ) (i ∈N). (38)

Theorem 2.8 For i ∈N, we have

(x)i,λ =
1

(1 + x1 – x2 – iλ) n–i,λ

n∑

k=i

(k
i
)

(n
i
)Bk,n(x1, x2|λ) (i ∈N).

Taking the double fermionic p-adic integral on Zp, we get the following equation:

∫

Zp

∫

Zp

Bk,n(x1, x2|λ) dμ–1(x1) dμ–1(x2)

=
(

n
k

)∫

Zp

(x1)k,λ dμ–1(x1)
∫

Zp

(1 – x2)n–k,λ dμ–1(x2).
(39)

Therefore, by (39) and Theorem 2.2, we obtain the following theorem.

Theorem 2.9 For n, k ≥ 0, we have

∫

Zp

∫

Zp

Bk,n(x1, x2|λ) dμ–1(x1) dμ–1(x2)

=

⎧
⎨

⎩

(n
k
)
Ek,λ(2(1)n–k,λ + En–k,λ), if n > k,

En,λ, if n = k.
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We see from the symmetric properties of two variable degenerate Bernstein polynomials
that, for n, k ∈N with n > k,

∫

Zp

∫

Zp

Bk,n(x1, x2|λ) dμ–1(x1) dμ–1(x2)

=
k∑

l=0

(
n
k

)(
k
l

)
(–1)k+l(1)l,λ

×
∫

Zp

∫

Zp

(1 – x1)k–l,–λ(1 – x2)n–k,λ dμ–1(x1) dμ–1(x2)

=
(

n
k

)∫

Zp

(1 – x2)n–k,λ dμ–1(x2)

{
(1)k,λ +

k–1∑

l=0

(
k
l

)
(–1)k+l(1)l,λEk–l,–λ(2)

}

=
(

n
k

)
En–k,λ(2)

{
(1)k,λ +

k–1∑

l=0

(
k
l

)
(–1)k+l(1)l,λEk–l,–λ(2)

}
. (40)

Therefore, by Theorem 2.9 and (40), we obtain the following theorem.

Theorem 2.10 For k ∈ N, we have

Ek,λ = (1)k,λ +
k–1∑

l=0

(
k
l

)
(–1)k+l(1)l,λ

(
Ek–l,–λ + 2(1)k–l,–λ

)
.

Note that

k–1∑

l=0

(
k
l

)
(–1)k+l(1)l,λ(1)k–l,–λ

= (–1)k

( k∑

l=0

(
k
l

)
(–1)l,–λ(1)k–l,–λ – (–1)k,–λ

)

= (–1)k((0)k,–λ – (–1)k,–λ

)

= –(1)k,λ.

Corollary 2.11 For k ∈N, we have

Ek,λ = –(1)k,λ +
k–1∑

l=0

(
k
l

)
(–1)k+l(1)l,λEk–l,–λ.

3 Conclusions
In [1, 2], Carlitz initiated the study of degenerate versions of some special polynomials
and numbers, namely the degenerate Bernoulli and Euler polynomials and numbers. Here
we would like to draw the attention of the reader to the fact that Kim et al. have intro-
duced various degenerate polynomials and numbers and investigating their properties,
some identities related to them and their applications by means of generating functions,
combinatorial methods, umbral calculus, p-adic analysis and differential equations (see
[8, 9] and the references therein). It is amusing that this line of study led them even to
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the introduction of degenerate gamma functions and degenerate Laplace transforms (see
[7]). These already demonstrate that studying various degenerate versions of known spe-
cial numbers and polynomials can be very promising and rewarding. Furthermore, we can
hope that many applications will be found not only in mathematics but also in sciences and
engineering.

In this paper, we investigated some properties and identities for degenerate Euler poly-
nomials in connection with degenerate Bernstein polynomials and operators which were
recently introduced as degenerate versions of the classical Bernstein polynomials and op-
erators. This has been done by means of fermionic p-adic integrals on Zp and generating
functions. In addition, we studied two variable degenerate Bernstein polynomials and the
degenerate Bernstein operators.
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