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1 Introduction

Assuming that p > 1, —+—_1 Amy by >0,0< Y > <oo,andO<Zn 1bq<oo,we
have the following Hardy Hllbert inequality with the best possible constant
[1], Theorem 315):

sin(r / 'p) (Cf

(i bZ) B (1)
n=1

For p = g = 2, inequality (1) reduces to the well-known Hilbert inequality.
Iff(x),g(y) > 0,0< fooofp(x) dx <ooand 0 < fooogq(y) dy < 0o, then we have the following
Hardy—Hilbert integral inequality:

mf(x)g(y) T 00 P% 00 %
[ [ g [rma) ([eom))

sz (cf. [1], Theorem 316).
In 1998, by introducing an independent parameter A > 0, Yang [2, 3] gave an extension

=

with the best possible constant factor

of (2) (for p = q = 2) with the best possible constant factor B(%, %) as follows:

1
R R COF () <)¥ )\)(/ 1-A 2 / 1-%,2 >
dxdy < B x (x) dx Vdy | . (3)
/0 /o (x+ )" 2’2 / , VI EOd
Inequalities (1), (2), (3) and their extensions are important in analysis and its applications
(cf. [4-15)).
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The following half-discrete Hilbert-type inequality was provided (cf. [1], Theorem 351):
If K(x) (x > 0) is a decreasing function, p > 1, }7 + é =1,0<¢(s) = [ K(x)x* ' dx < oo,
then

~

9] 00 p 9]
/ xP2 (Z[((nx)un> dx < ¢f (é) Z ab. (4
0 n=1 n=1

Some new extensions of (4) with their applications were provided by [16-21].

In 2016, by the use of the technique of real analysis, Hong [22] considered some equiv-
alent statements of the extensions of (1) with the best possible constant factor related to
a few parameters. The other similar works about the extensions of (2) and (3) were given
by [23-27].

In this paper, following the way of [22], by means of the weight functions and the idea of
introducing parameters, a discrete Hilbert-type inequality with the general homogeneous
kernel and the intermediate variables is given, which is an extension of (1). The equivalent
form is obtained. The equivalent statements of the best possible constant factor related to

parameters, the operator expressions, and a few particular cases are considered.

2 Some lemmas

In what follows, we suppose that p > 1, }7 + é =1,0,8>0,A€R, Ay, A—21 < %, AoA=Ag <
é, k. (x,) is a positive homogeneous function of degree —X satisfying, for any u,x,y > 0,

ks (ux, uy) = u™"ky (x, ).

Also, k; (x,y) is strictly decreasing with respect to x,y > 0 such that, for y = A1, A — Ay,
oo
k(y):= / ki (u, 1)u” L du e R, = (0, 00). (5)
0

We still assume that a,,, b, > 0 (m,n € N ={1,2,...}) such that

i Adg A i AAp A
0< Zmp[lfa( P2+71)]71a1:n <oo and 0< an[lfﬁ( T +72)Hb’f, < 0.
m=1 n=1
Definition 1 We define the following weight coefficients:
oo
w3 (hy, m) 1= m*¥72) Z K, (m"‘, nﬂ)nmz_l (m e N), (6)
n=1
oo
@5 (A1, 1) = nPO) Zk,\ (m‘)‘,nﬂ)nft"‘“_1 (n eN). (7)
m=1
Lemma 1 We have the following inequalities:
1
w; (Ao, m) < ka(?» —X) (meN), (8)

D00, < K1) (e N, ©)
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Proof For B, —1 <0, itis evident that k; (m%, y?)y?*>71 is strictly decreasing with respect
to y > 0. By the decreasingness property, setting u = ”‘—;, we find that

o0
), ()"21 }’l’l) < ma(k—kz) f kA (maryﬂ)yﬁ)\271 dy
0

o 1
=3 /0 K (u, )u* 2" gy = E/q(x —Aa).

Hence, we have (8).

For aX; — 1 <0, it is evident that k; (x%, nf)x* 171 is strictly decreasing with respect to
x > 0. By the decreasingness property, setting u = %, we find that

oo
wi(A1,1) < nﬁ()‘_)‘l)‘/ kk(x"‘,nﬂ)x"‘kl_l dx
0

1 [ a1 1
= — kk(u,l)u = du = —kA(kl).
a Jo o

Hence, we have (9).

Lemma 2 We have the following inequality:

I:= Z Zk,\ (m“, nﬁ)ambn

n=1 m=1

1
= Az St p
p q 7)1
< i kD (= ha)k l)i m} .
m=1

q
{Zn AT lbq} ,

(10)

Proof By Holder’s inequality with weight (cf. [28]), we obtain

@i-Dig P n(Bra-1)ip
n=1 m=1

nBr2-1)/p m@r1-1/q
1= szk m®, n? [ ]|: bn]

n=1 m=1

0 00 5 nbra-1 -1 7
= [szk(ma’” )m(ah Dip-1) m} |:Z Zk'\ m,n? n(ﬁkz (- 1)b }
m=1 n=1

1

> A=A A 3 4

={Zwk(kz,m)mp[l—a(112+ } izw’\()‘l’ q[lﬂ Ahy 2)] lbq} )
m=1

Then, by (8) and (9), we have (10).

Remark 1 (i) By (10), for A; + Ap = A, we find

o0 oo
0< Zmp(l‘““)_lafn <oo and O«< an(l‘ﬁ“)‘lbz <00
m=1

n=1
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and the following inequality:

Z Z k. (m®, n’g)ambn

n=1 m=1

1 1
q

(1=atry) (1-Bry)-1
,BI/P Tz 1)[27”” v } [Z"q & bZ] : (1)
n=1

In particular, for « = 8 = 1, we have

ZZkA(m,n)amb <kml)[2mp ~h)- ]p[znqﬂ—wwz}q. (12)
n=1

n=1 m=1

(if) For A = 1, k1 (x, ) = ﬁ, A=
of (12) and (1).

%, Ay = %, (12) reduces to (1). Hence, (11) is an extension

Lemma 3 The constant factor ky (A1) in (11) is the best possible.

,31/p 1/q

Proof For any ¢ > 0, we set

Gy = m 1P by =% (e N).

If there exists a constant M (< 7k1(A1)) such that (11) is valid when replacing

—= ﬂl/pa

51/17 17 k1. (A1) by M, then, in particular, we have

1

00 p[[ o
= Z Z m®, n? amb < M|:Z mP-er)-15p :| |:Z nq(l'%”ll;z:|
n=1

1
q
n=1 m=1

By the decreasingness property, we obtain

m=1 n=1

00 [% (o] %
= M(l + Zm‘”1> (1 + Znﬁgl)
m=2 n=2
1 1
o0 P o0 q
<M<1+ / el dt) (1+ / Pt dt)
1 1
1 1
Tlera) Crg)
=—le+— e+—| .
& o B

By the decreasingness property and Fubini theorem (cf. [29]), we find

% il q
e M{Z mp(lakl)lmpa?»1a€p:| [Z nq(lﬂlz)lnqmzﬁﬂq}

- % oo ma)qfl nﬂszl
I= ZZkA(ma,nﬁ)— T
mcelp neBla

n=1 m=1

o) o0 ar1—1 Bra—1 o
« NV _r
Z/; |:/; k)h(x Y ) xealp ysﬂ/q dx] dy (u B yﬂ)
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1 o] o] .
= —/ y Pl (/ ks (u, D) 27! du) dy
o Jq 1
yB
1 00 1 .
== / yhet (/ ks (0, 1) 77! du) dy
o Jq 1

¥B

1 oo o0 °
+ — / y‘ﬂg‘l dy/ k. (u, 1)1/‘17’1 du
1 1

o

1 1 00 .
= —/ (/ y el dy)kk(u, D du
o -1/8
/ ky (u,1) W du
1 A+t *© A-£-1
= —(/ ks (u, D a du +/ ko(u, Dyt r du).
aBe \Jo 1

Then we have

1 ! % e
— </ (D) du + / ko (w, D) p du)
ap\Jo 1
1 1
1\» 1\«
<M<s+—> <e+—) .
o B
For ¢ — 0%, by Fatou’s lemma (cf. [29]), we find

1 1 1 00 .
ap 1) _ﬂ(/ lim, ke, D™ "0 e + f lim & (1, l)u’\l‘p‘ld”>
« 0 I

()[IB e—0* e—0"

< hm (/ ko (u, D) 1a’u+/ K (u, 1) 71 du>
£—>0+ 1
1 1 1 1
1\~ 1\« 1\?/1\4
SMli_m<e+—> <e+—> =M<_> (_> ,
e—0* (o4 B o B

namely ﬁl/Pal/q ks (A1) < M. Hence, M = mk,\ (A1) is the best possible constant factor
of (11). O
Remark 2 Setting ):1 = A 5\2 = 2M 2w find
p q q r
PN A=Ay A A=A A AA
A+ hy = +—+ +—=—+-=2,
V4 q q p pP 4
~ 1 1 1 ~ 1 1 1
M —+—=—, M —+—=—,
p T a a8 B B

and by Holder’s inequality (cf. [28]), we obtain

2 A A=A A
0< k(A —Ay) :kl()‘l):kk( 2, _1)
p q

A-1

P ) du

o0 iy o0
:/ ky(u,)u 7 "4 du:/ k)\(u,l)(u
0 0
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1o 1
< ( / K (11, )12 du)p ( / ko (1, 1)1 du> !
0 0

1 1
=k (A = X))k (A1) < 0. (13)

We can reduce (10) as follows:

1 o0
I< 2y qu" (o= kS 0 1)[2 pll-ain)- } {anﬂ pla) 1bq] : (14)
m=1
Lemma 4 If the constant factor ,31/p 7z k” (o )\g)k,\ (A1) in (10) is the best possible, then

)\,1+)\2=)\,.

Proof If the constant factor kp (= )»z)kq (A1) in (10) is the best possible, then by

(14) and (11) the unique best possible constant factor must be Wk)\ (A1) (eR,), namely

ﬂl/p Bllp g

1 1
k(A1) = k7 (A = X)) (Aq).

We observe that (13) keeps the form of equality if and only if there exist constants A and
B such that they are not all zero and (cf. [28])

A2 =Byl ae. inR,.

Assuming that A # 0 (otherwise, B = A = 0), it follows that #**2~*1 = 2 a.e.in R,, and then
A—Xy—A; =0, namely A; + Ay = A. O

3 Main results
Theorem 1 Inequality (10) is equivalent to

1
P

00 o0 p
J:= |:Zn”ﬂ(k_;l*22)"1<Zk,\(m°‘,n’3)am) :|
n=1 m=1

,31/1" 1/q

1
_ r
Lk 1){ Ea Ly lam} . (15)

m=1

If the constant factor in (10) is the best possible, then so is the constant factor in (15).

Proof Suppose that (15) is valid. By Holder’s inequality (cf. [28]), we find

> “1p(2= )~1 AZ) 8 1_gtt1, 22
I= Z ne Zk,\m P )ay ([n? 77T 7D,
n=1 m=1

,\A A g
<J{an“ PG 2“194}. (16)

Then by (15) we obtain (10).

Page 6 of 12
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On the other hand, assuming that (10) is valid, we set

oo p-1
Aohy A2y
b, =P %) 1<Zkk(m“,nﬂ)am) , neN.
m=1

IfJ = 0, then (15) is naturally valid; if / = 0o, then it is impossible to make (15) valid, namely
J < co. Suppose that 0 < J < co. By (10), it follows that

oo

LB Ry
S AT e

n=1

P el kPG Ak )

ﬁl/p 1/q
~ 1. 1
Ay A 4 A=A g
< {Z 2+71>]1d1:n} {Z al1-5( 1*72”1193} )
m=1 n=1

1

00 . P
oSt g
n=1

L » 0 a2 i, |7
< W’(}L ()\ - )»2)/()L ()\.1) Zmp a‘fn f
m=1

namely (15) follows, which is equivalent to (10).

If the constant factor in (10) is the best possible, then so is constant factor in (15). Oth-
erwise, by (16), we would reach a contradiction that the constant factor in (10) is not the
best possible. d

Theorem 2 The followmg statements (i), (ii), (iii), and (iv) are equivalent:
(i) k” (A - kz)kq (A1) is independent of p, gq;
(ii) kx (= kz)kq (M) is expresszble as a single integral;

(iii) ﬂl/po,llq kl’ (r - Az)kq (A1) is the best possible constant factor of (10);

(iv) Ay +Ap=A.

If the statement (iv) follows, namely A1 + Ly = X, then we have (11) and the following
equivalent inequality with the best possible constant factor mkx(h)t

1
»

o o ak
|:anm2—1 (ka(m“,nﬂ)am) j| ﬁl/p 7 k.(h1) |:Zmp1 —ah1)- lﬂpj| .17
n=1 m=1

1 1
Proof (i) = (ii). Since k} (. — A2)k;! (A1) is independent of p, g, we find

1 1 1 1
kf ()\, — )\2)/()? ()»1) = lim ]lnil kf ()» — )LQ)k}Lq ()»1) = k)‘()»l),
p—>00g—>1*

1 1
namely k{ (A — A2)k; (A1) is expressible as a single integral

k)»()‘-l):/ Ky (u, 1) du.
0
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(ii) = (iv). In (13), if k’l’(k - )\Z)ké (A1) is expressible as a single integral k)\(% + %‘),
then (13) keeps the form of equallty, from Wthh it follows that A; + A, = A.

(iv) = (i). If A1 + Ay = A, then k” A - Az)kq( 1) = k;. (A1), which is independent of p, g
Hence, we have (i) < (ii) < (iv).

(iii) = (iv). By Lemma 4, we have A; + Ao = A.

(iv) = (iii). By Lemma 3, for A1 + Ay = A,

k (- Kz)kk (1) /Q()»l))

1
- ﬁl/pal/q

ﬂl/p 1/q

is the best possible constant factor of (10). Therefore, we find (iii) < (iv).
Hence, statements (i), (ii), (iii), and (iv) are equivalent. O

Remark 3 (i) For A=a=8=1, A = é, Ay = }7 in (11) and (17), we have the following
equivalent inequalities with the best possible constant factor kl(é):

iikl (m, n)a,,b, < k1( ) <Za”) (ibﬁ) q, (18)
n=1

n=1 m=1
ki(m, n)a,, ’ <ki| - 3 a? P. (19)
E(Smne) [ n()(E)
n=1 m=1

(ii) ForA=a=8=1,A = 1%, Ay = }1 in (11) and (17), we have the following equivalent
inequalities with the best possible constant factor k; ( }9):

Z Z ki(m, n)a,,b, < kl( ) (Z m"_Za{n> ’ (i nq_zbZ) 5, (20)

n=1 m=1 m=1 n=1

o] [ee] p 117 00 1lj
|:Z n’? (Z ky(m, n)am) :| < ky (é) (Z m”za‘fﬂ) . (21)
n=1 m=1 m=1

(iii) For p = g =2, both (18) and (20) reduce to

ZZkl m, 1)aby <1<1( )(Za sz) , (22)

n=1 m=1

and both (19) and (21) reduce to the equivalent form of (22) as follows:

55 ] )

n=1

4 Operator expressions and some particular cases
We set functions

= )\1 xz)] 1

Ady A
d(m) = mp[l—a(72+7l)]—1, W(n) = #A1AC i

Page 8 of 12
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from which
A=A A
PP ) = P CTH T (moneN).

Define the following real normed spaces:

by = {u = @i lallpg = (Z¢(m)|am|1”> < oo},

m=1

. %
lq,lﬂ = {b = {bn}ﬁl; “b”q,w = (Z W(”)Ibnlq) < OO};

n=1

1
00 r
Lyis = :c = ()i el pyiop 1= (Z wl-p(nnw) < oo}.

n=1

Assuming that a € [, 4, setting
c={cu}i2s Cpi= Zk,\ (m"‘,nﬁ)am, neN,

we can rewrite (15) as follows:

1 1
el g1 < K2 (= 2a)k! )|l < 00,

/31/1’0(1/‘1

namely c €/, 1.

Definition 2 Define a Hilbert-type operator T : L, — [, 1-» as follows: For any a €
lpp-there exists a unique representation ¢ € [, j1-». Define the formal inner product of
Ta and b € [, and the norm of T as follows:

(Ta, b) := Z( k,\(m"‘,nﬁ)zzm> b,
1

n=1 \m=

I 7all ,,y1-r
IT]:= sup ———
a)el,y  Nallpg

By Theorem 1 and Theorem 2, we have the following.

Theorem 3 Ifa cl,g, b elyy, llallpg 1bllgy >0, then we have the following equivalent

inequalities:
1 1
(12,D) < Gkl 0= 220K )l ol (24)
1 1
I Tﬂ”p,wl—p < ka (r - )hz)kf ()‘1)”d”p,¢' (25)

Moreover, 11 + Ay = A if and only if the constant factor

1 1 1 1
Wk){’ (A - )\2)/()? (A1) = Wk)\()xl)

Page 9 of 12
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in (24) and (25) is the best possible, namely

1T = 77k (A1) (26)

ﬁl/p 1/q

Example 1 We set k (x,y) := (¢, A >0;x,9>0). Then we find

(cx+y

1

k(m nﬂ) W

For O <A, A — Ay < é, O<Agy, A=A < £ k,\(x, y) is a positive homogeneous function
of degree —A such that k; (x,y) is strictly decreasmg with respect to x,y > 0, and for y =
AL A —Ag,

00 My—l 1 00 Vy—l 1
- == —Bly, .~
falr) /0 (17 CV/O wrip V=P ArIER

In view of Theorem 3, it follows that X; + A5 = A if and only if

1 1
17 = Bilpaila k(A1) = Blpgila ClB(M,)\z)-
Example 2 We set k (x,y) := (lcx() > (¢, 2 > 0; x,y > 0). Then we find
o« gy In(em®/n’)
kx(m IR ) = —c)‘m)‘a _nw.

ForO<A;A-22<5,0<A A =21 < ﬁ, k. (x,y) is a positive homogeneous function of
degree —1 such that /q (x,9) is strictly decreasing with respect to x,y > 0 (cf. [4], Exam-
ple 2.2.1), and for y = A1, A — Ay,

o 4 r-11 1 oo (y/N-1] 1 2
/q(y):/ W Infeu) . _ / ! Y- —| — T | er.
o (cu)* -1 cr A2 J, v-1 cv | Asin(mwy/A)

In view of Theorem 3, it follows that X; + A5 = A if and only if

1 1

2
T

T = —_—_ Y .

Il Bllralia c*l[ksin(nkl/)»)]

rupal/qu(?»l) =

Example 3 For s € N, we set k; (x,y) :=
Then we find

W(0<C1§"'SCS,)\,>O;x,y>O).

1
l_[;(:l(mak/s + Ck}’lﬁ)‘/s) :

k (m"‘, nﬂ) =

ForO<A, A=A < 3,0<XAy, A—A] < ﬁ, k. (x,y) is a positive homogeneous function
of degree —X such that k;.(x,y) is strictly decreasing with respect to x,y > 0, and for y =
A1, A — Ay, by Example 1 of [30], we have

S m e ] e
= C )
A Hi=1(tm+6k) )»sm(’”y) CALE ST
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In view of Theorem 3, it follows that A1 + A, = A if and only if

1 1 s R 1
(s) *
1Tl = k7 (A1) = : Yook 1 :
Ipoyliq’ > 1pyllq LTSk k _
pra Bl dsin(TH) i3 j=14) G Tk
In particular, for ¢; = - - - = ¢; = ¢, we have k; (x,y) = m and
" 00 t}\I*I
KD (3y) = / ———dt
A ( 1) 0 (t)»/s_l_c)s

s o p7 -l s SA SA
= - / dv = - B _1,_2 .
ael=s Jo (v+1) ac=5h)s AA

1

Tt and

If s = 1, then we have k (x, y) =

1 T

Upoyllg SNEIIE
Blratia  1-3L sin(Th1)

1Tl = KY() =

ﬁl/pallq

5 Conclusions

In this paper, by means of the weight coefficients and the idea of introducing parameters,
a discrete Hilbert-type inequality with the general homogeneous kernel and the interme-
diate variables is obtained which is an extension of (1). The equivalent forms are given
in Lemma 2 and Theorem 1. The equivalent statements of the best possible constant fac-
tor related to some parameters are considered in Theorem 2. The operator expressions,
some particular cases, and examples are given in Theorem 3, Remark 1, Remark 3, and
Examples 1-3. The lemmas and theorems provide an extensive account of this type of

inequalities.
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