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Abstract
The convergence of the alternating direction method of multipliers (ADMMs)
algorithm to convex/nonconvex combinational optimization has been well
established in the literature. Due to the extensive applications of a weakly convex
function in signal processing and machine learning, in this paper, we investigate the
convergence of an ADMM algorithm to the strongly and weakly convex
combinational optimization (SWCCO) problem. Specifically, we firstly show the
convergence of the iterative sequences of the SWCCO-ADMM under a mild regularity
condition; then we establish the o(1/k) sublinear convergence rate of the
SWCCO-ADMM algorithm using the same conditions and the linear convergence rate
by imposing the gradient Lipschitz continuity condition on the objective function.
The techniques used for the convergence analysis in this paper are fundamental, and
we accomplish the global convergence without using the Kurdyka–Łojasiewicz (KL)
inequality, which is common but complex in the proof of nonconvex ADMM.

Keywords: Convex optimization; Weakly convex function; Ublinear and linear
convergence; ADMM

1 Introduction
1.1 Motivation and problem
The alternating direction method of multiplier (ADMM) algorithm, as one of the split-
ting/decoupling techniques, has been successfully exploited in a wide range of structured
sparsity regularization optimization problems in machine learning and inverse problems,
such as signal restoration, matrix/tensor competition (or factorization), phase retrieval,
compressive sensing, regression analysis or statistical inference. In these applications, one
of the most important issues is how to induce a reasonable sparse solution and how to
eliminate the disturbance (e.g. noise) while preserving the important features of the data.
Nonconvex penalty or regularization imposed on a certain prior being incorporated into
the optimization model can efficiently improve these problems. However, in practice, it
is hard to obtain a closed-form solution for a generic nonconvex penalty optimization
model except the weakly convex (a.k.a. semiconvex) penalty of which including a large
class of functions, such as difference-of-convex (DC) functions. In addition, the conver-
gence analysis of ADMM based on the weakly convex also has not been addressed in the
literature.
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Motivated by these observations, in this paper, we consider the following widely used
strongly and weakly convex combinational optimization (SWCCO) problem:

min
x

F(x) = f (x) + g(Mx), (1)

where f (·) is proper closed strongly convex and g(·) is proper closed weakly convex; M
is a linear transformation, such as a wavelet/framelet. This problem is equivalent to the
following constrained optimization problem:

min
x,y

f (x) + g(y) s.t. Mx = y. (2)

The corresponding SWCCO-ADMM algorithm, firstly proposed in [1, 2], for (2) is
⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = arg minx Lρ(x, yk , pk),

yk+1 = arg miny Lρ(xk+1, y, pk),

pk+1 = pk + ρ(Mxk+1 – yk+1),

(3)

where Lρ(x, y, p) = f (x) + g(y) + 〈p, Mx – y〉+ ρ

2 ‖Mx – y‖2 is the augmented Lagrangian func-
tion (ALF) with ρ being the penalty parameter and p ∈ Rn being the Lagrangian multiplier.
The first-order optimality conditions for (3) are

⎧
⎪⎪⎨

⎪⎪⎩

–ρMT (yk+1 – yk) ∈ ∂f (xk+1) + MT pk+1,

0 ∈ ∂g(yk+1) – pk+1,

ρ(Mxk+1 – yk+1) = pk+1 – pk ,

(4)

where MT (yk+1 – yk) and Mxk+1 – yk+1 (or pk+1 – pk) are dual and primal residual, respec-
tively.

The main tasks of this manuscript are to study the convergence and sublinear (or linear)
convergence rate for the SWCCO-ADMM algorithm (3) under quite general assumptions.

1.2 Related work
In order to avoid solving a nonconvex optimization problem directly, intuitively, we can
separate a part from the strongly convex term of the weakly convex term to make the
optimization problem (1) a convex–convex combination as follows:

min
x

(

f (x) –
ρ2

2
‖Mx‖2

)

︸ ︷︷ ︸
f1(x)

+
(

g(Mx) +
ρ2

2
‖Mx‖2

)

︸ ︷︷ ︸
g1(Mx)

;

min
x

(

f (x) –
ρ1

2
‖x‖2

)

︸ ︷︷ ︸
f2(x)

+
(

g(Mx) +
ρ1

2
‖x‖2

)

︸ ︷︷ ︸

g2(M̂x)

;

min
x

(

f (x) –
ρ2

2
‖x‖2

)

︸ ︷︷ ︸
f3(x)

+
(

g(Mx) +
ρ2

2
‖x‖2

)

︸ ︷︷ ︸

g3(M̂x)

;

min
x

(

f (x) –
ρ1

2
‖Mx‖2

)

︸ ︷︷ ︸
f4(x)

+
(

g(Mx) +
ρ1

2
‖Mx‖2

)

︸ ︷︷ ︸
g4(Mx)

.
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Here ρ1 and ρ2 are the strongly convex and weakly convex modulus, respectively; see de-
tails in Definition 2.1. However, such a partition and combination is infeasible in most
cases, since these two terms in (1) usually play different roles in signal processing, thus
such a simple separation will completely change the sense of the original model; more-
over, the linear operator involved in these terms will make such a separation a hard situa-
tion; and even if it can be separated, the recombined model will become harder to solve as
shown in [3, 4]. Also, we cannot ensure the new proximal operators to be easily computed.

The convergence of the forward–backward splitting (FBS) and the Douglas–Rachford
splitting (DRS) method corresponding to a SWCCO problem with M being an identity
map has been established in [3, 5, 6] very recently. Even though using DRS for the dual
problem is equivalent to using ADMM for the primal problem as shown in [7, 8] in the
context of convex cases, this is not the case for a nonconvex optimization problem, since
the conjugate function of a nonconvex function has not been well defined yet in the lit-
erature. Therefore, it is necessary to establish the convergence of the SWCCO-ADMM
algorithm.

In the convex case, convergence for ADMM has been well studied in [9–12]. In the
nonconvex case, however, it has been merely investigated limited to certain specific as-
sumptions. This is because the iterative sequences (xk , yk , pk) generated by ADMM for a
nonconvex optimization problem does not satisfy Féjer monotonicity; moreover, the suf-
ficient decrease condition [13] used to measure the quality of descent methods to non-
convex objective function F(x) is also no longer valid. In order to prove convergence to a
nonconvex ADMM algorithm, some unverifiable or unreasonable assumptions have to be
imposed for the objective functions or for iterative sequences (xk , yk , pk). In addition, the
global convergence and convergence rates of a nonconvex optimization problem usually
require F(x) to satisfy the Kurdyka–Łojasiewicz (KL) property at each point, where the KL
exponent (i.e. the geometrical properties of the objective function around its stationary
point) is not easily to determine [13].

In fact, the key steps to establish convergence of the nonconvex ADMM algorithm is to
prove the dual residual MT (yk+1 – yk) and the primal residual (Mxk+1 – yk+1) (or (pk+1 – pk))
going to zero as k → ∞. In the end, one common method developed in very recently pa-
pers [13–17] is to exploit the monotonically nonincreasing of certain type of Lyapunov
function (e.g. the ALF [14–16] or its variant [17]) to measure the iterative error. Further-
more, the global convergence of a nonconvex optimization problem can be obtained by
using the KL inequality. However, we have to emphasize that using the ALF or its variant as
the Lyapunov function leaves trouble handling the nonsmooth objective functions, since
the Lyapunov function may no longer be monotonically decreasing in this case. Thus, in
[14–17], at least one or more of the objective functions are required to be gradient Lip-
schitz continuous to guarantee the algorithm convergence, which will greatly limit the
applications of the model (1).

On the other hand, the surjective (i.e. full row rank) assumption for the linear mapping
M, which is a necessary condition to prove the monotonically nonincreasing property of
ALF in [14–17], however, will exclude many interesting applications. In fact, many well-
known developed sparse representation operators M do not satisfy the full row rank con-
dition, for example, the framelet or the learned sparse representation redundant dictio-
nary from the given data. Moreover, if we assume f (x) to be gradient Lipschitz continuous
and M to be full row rank, then problem (2) actually can be solved by using block co-
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Table 1 Regularity conditions to convergence analysis of ADMM for nonconvex optimization
problem

M f , g KL property Lyapunov function

Hong [14] M = I f and g gradient Lipschitz continuous no ALF

Li [15] full row rank bounded Hessian of f yes ALF

Wang [16] full row rank f gradient Lipschitz continuous
g strongly convex

yes variants of ALF

Wang [17] weak full column
rank condition

f gradient Lipschitz continuous
g has special structure

yes ALF

Ours full column rank f strongly convex
g weakly convex

no Hk (shown in Sect. 3)

ordinate descent methods (BCDs) [18] and does not need an ADMM algorithm. Specif-
ically, suppose M to be of full row rank, then there exists a nonsingular matrix M1 that
can split the constraint Mx = y into the following formulation: M1x1 + M2x2 = y. That is,
x1 = M–1

1 (y – M2x2). In this case, the constrained optimization problem (2) can be refor-
matted as the following unconstrained optimization problem:

min
x1,x2,y

f (x1, x2) + g(y) = f
(
M–1

1 (y – M2x2), x2
)

︸ ︷︷ ︸
h(x2,y)

+g(y). (5)

Then we have

min
x2,y

h(x2, y) + 〈0, x2〉 + g(y), (6)

which can be solved by BCD. The regularity conditions used in a convergence analysis for
nonconvex ADMM are summarized in Table 1.

Recently, a similar work [4, 19] to this manuscript has investigated the use of the primal–
dual hybrid gradient (PDHG) method to solve (1), and also has established convergence.
Although the PDHG (a.k.a, the relaxed alternating minimization algorithm (AMA) [20])
is apparently similar to the ADMM, they are quite different. Actually, the PDHG has a
deep relationship with the inexact Uzawa method [19, 20].

1.3 Contributions
In this paper, without requiring gradient Lipschitz continuity of any of the objective func-
tions, we establish the convergence of the SWCCO-ADMM algorithm (3); we merely re-
quire M to be full column rank. We also establish the sublinear convergence rate with the
same assumptions as in convergence analysis, and we establish the linear convergence rate
of the SWCCO-ADMM algorithm, which needs some additional regularity assumptions.
In addition, we use the nonnegative Lyapunov function defined in [9] to measure the itera-
tive error instead of using ALF, and the global convergence result can be obtained without
using the KL inequality. Thus, our proof is more fundamental than the work in [14–17].

We summarize the contributions of this manuscript as follows.
• We prove that the iterative sequences {(xk , yk , pk)} of SWCCO-ADMM (3) globally

converge to the critical point of (2) under the conditions that the strongly convex
terms dominate the weakly convex terms and the penalty parameter ρ is at least larger
than at least twice the weakly convex modulus. We also give an example that the



Zhang and Shen Journal of Inequalities and Applications        (2019) 2019:128 Page 5 of 21

SWCCO-ADMM (3) will diverge if the latter condition is not satisfied. Meanwhile, we
prove that the iterative sequence {xk} generated by ADMM (3) converges to an
optimal solution of (1).

• We show a sublinear convergence rate o(1/k) of the SWCCO-ADMM algorithm using
the same regularity conditions as the convergence analysis. To the best of our
knowledge, this is the first sublinear convergence rate result for a nonconvex ADMM
algorithm.

• Furthermore, we establish the linear convergence rate for the SWCCO-ADMM
algorithm by imposing the gradient Lipschitz continuity on one of the objective
functions.

The rest of this paper is organized as follows. In Sect. 2, we list some fundamental defini-
tions which are useful for the following analysis. Then the convergence of ADMM for the
case SWCCO is established in Sect. 3. Next, we address the sublinear and linear conver-
gence rate in Sect. 4. We also give a numerical example in Sect. 5. At last, some conclusions
are given in Sect. 6.

2 Preliminaries
To start, we list some fundamental definitions and notations for the following analysis.

We denote by 〈·, ·〉 and ‖ · ‖ =
√〈·, ·〉 the inner product and a norm on finite-dimensional

real vectors spaces X and Y , respectively. For a given function f : Rn → R∪{∞}, we denote
dom f = {x : f (x) < +∞} it being nonempty. The largest and smallest eigenvalue of the linear
operator M are defined by λmax(M) and λmin(M), respectively.

Definition 2.1 The function f : Rn → R ∪{∞} is said to be strongly convex with modulus
ρ1 > 0 if f (x) – ρ1

2 ‖x‖2 is convex; the function g : Rn → R ∪ {∞} is said to be weakly convex
with modulus ρ2 > 0, if g(y) + ρ2

2 ‖y‖2 is convex.

The strongly and weakly convex functions have the following properties [21]. Let f :
Rn → R ∪ {∞} be a strongly convex function with modulus ρ1. Then, for u1 ∈ ∂f (x1), u2 ∈
∂f (x2), we have

〈u1 – u2, x1 – x2〉 ≥ ρ1‖x1 – x2‖2. (7)

For a weakly convex function g : Rn → R ∪ {∞} with modulus ρ2 and v1 ∈ ∂g(y1), v2 ∈
∂g(y2), we have

〈v1 – v2, y1 – y2〉 ≥ –ρ2‖y1 – y2‖2. (8)

Definition 2.2 ([22]) Let f : Rn → R ∪ {∞} be a proper lower semi-continuous function
being finite at x̄ ∈ Rn.

(i) The Fréchet subdifferential of f at x̄, written ∂̂f (x̄), is the set

{

u ∈ Rn : lim
x �=x̄

inf
x→x̄

f (x) – f (x̄) – 〈u, x – x̄〉
‖x – x̄‖ ≥ 0

}

.

(ii) The limiting subdifferential of f at x̄, written ∂f (x̄), is the set

{
u ∈ Rn : ∃xk → x̄, f

(
xk) → f (x̄), uk ∈ ∂̂f

(
xk), uk → u

}
.
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From this definition, let f : Rn → R ∪ {∞} be a proper lower semi-continuous function;
we can get the following assertions.

(i) The subdifferential of f at x̄ is the set

{
u ∈ Rn : ∀x ∈ Rn, 〈x – x̄, u〉 + f (x̄) ≤ f (x)

}
.

(ii) The limiting subdifferential of f is closed, i.e. if yk → ȳ, vk → v̄, g(yk) → g(ȳ) and
vk ∈ ∂g(yk), then v̄ ∈ ∂g(ȳ).

(iii) Suppose dom(f ) ∩ dom(g ◦ M) is not empty, then

∂
(
f (x) + g(Mx)

)
= ∂f (x) + MT (∂g)(Mx).

Definition 2.3 Let a nonempty set S be the set of critical point of augmented Lagrangian
function Lρ . (x∗, y∗, z∗) ∈ S is a critical point if

–MT p∗ ∈ ∂f
(
x∗), p∗ ∈ ∂g

(
y∗) and MT x∗ – y∗ = 0.

In order to find linear convergence, we need the following gradient Lipschitz continuous
definition.

Definition 2.4 Let f be a differentiable function, then the gradient ∇f is called Lipschitz
continuous with modulus L > 0 if

∥
∥∇f (x1) – ∇f (x2)

∥
∥ ≤ L‖x1 – x2‖, ∀x1, x2 ∈ dom f .

We will often use the following relations, for all vectors u, v, w ∈ Rn:

2〈u – v, w – u〉 = ‖v – w‖2 – ‖u – v‖2 – ‖u – w‖2; (9)

‖u + v‖2 ≤
(

1 +
1
γ

)

‖u‖2 + (1 + γ )‖v‖2, ∀γ > 0. (10)

3 Convergence analysis
In this section we will study the convergence of the SWCCO-ADMM algorithm (3) under
the following mild assumptions.

Assumption 3.1
(i) Let f (x) be strongly convex with modulus ρ1 > 0 and g(y) be weakly convex with

modulus ρ2 > 0, respectively; and the set of augmented Lagrangian function critical
point S is nonempty. For ∀μ > 0, we need

ρ1 – ρ2‖M‖2 – μ ≥ 0. (11)

(ii) We also suppose that the penalty parameter ρ in the augmented Lagrangian
function satisfies

ρ > 2ρ2 +
8ρ2

2‖MMT‖
μ

. (12)
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Assumption 3.2 dom(f ) ∩ dom(g ◦ M) is not empty.

Remark 1 From (ii) of Assumption 3.1, we will see that ρ is larger than 2ρ2. This assump-
tion not only ensures the unique solution of the second subproblem in ADMM algorithm
(3) as shown later, but also is used to ensure that the Lyapunou function Hk defined in
Lemma 3.1 has a sufficient descent property. We also give an example that the iterative se-
quences of SWCCO-ADMM algorithm (3) will diverge if this assumption is not satisfied
in the end of this section.

For the sake of convenience, let (x∗, y∗, p∗) be one of the critical points of the augmented
function; zk+1 = –MT pk –ρMT (Mxk+1 –yk); xk+1

e = xk+1 –x∗; yk+1
e = yk+1 –y∗; pk+1

e = pk+1 –p∗

and zk+1
e = zk+1 – (–MT p∗) in the following proof. Then by the strong convexity property

(7) of f (x) and the weak convexity property (8) of g(y) we have

〈
zk+1

e , xk+1
e

〉 ≥ ρ1
∥
∥xk+1

e
∥
∥2 (13)

and

〈
pk+1

e , yk+1
e

〉 ≥ –ρ2
∥
∥yk+1

e
∥
∥2. (14)

By Assumption 3.1, we will obtain the following monotonically nonincreasing property
of the nonnegative Lyapunou function Hk = ρ

2 ‖yk
e‖2 + 1

2ρ
‖pk

e‖2, which will play an impor-
tant role in our convergence analysis. Note that xk

e is not considered in Hk , since the pri-
mal variable x can be regarded as an intermediate variable in the iterations of SWCCO-
ADMM, while y and p are the essential variables [9].

Lemma 3.1 Let Hk = ρ

2 ‖yk
e‖2 + 1

2ρ
‖pk

e‖2. Then the iterative sequences {(xk , yk , pk)} gener-
ated by SWCCO-ADMM algorithm (3) satisfy

Hk – Hk+1 ≥ σ1
∥
∥xk+1

e
∥
∥2 + σ2

∥
∥yk+1 – yk∥∥2 + σ3

∥
∥pk+1 – pk∥∥2, (15)

where σ1 = ρ1 – ρ2‖M‖2 – μ ≥ 0, σ2 = ρ

2 – ρ2 > 0 and σ3 = 1
2ρ

– ρ2
ρ2 – 4ρ2

2‖MMT ‖
ρ2μ

> 0.

Proof By the optimality condition of (4), we have

⎧
⎨

⎩

–ρMT (yk+1
e – yk

e ) – MT pk+1
e ∈ ∂f (xk+1) – ∂f (x∗);

pk+1
e ∈ ∂g(yk+1) – ∂g(x∗).

(16)

Then, by (13) and (14), it follows that

〈
–MT pk+1

e – ρMT(
yk+1

e – yk
e
)
, xk+1

e
〉 ≥ ρ1

∥
∥xk+1

e
∥
∥2;

〈
pk+1

e , yk+1
e

〉 ≥ –ρ2
∥
∥yk+1

e
∥
∥2.

Adding these two inequalities, then

〈
–MT pk+1

e – ρMT(
yk+1

e – yk
e
)
, xk+1

e
〉
+

〈
pk+1

e , yk+1
e

〉 ≥ ρ1
∥
∥xk+1

e
∥
∥2 – ρ2

∥
∥yk+1

e
∥
∥2. (17)
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By rearranging the left side of inequality (17), we have

〈
–MT pk+1

e – ρMT(
yk+1

e – yk
e
)
, xk+1

e
〉
+

〈
pk+1

e , yk+1
e

〉

= –
〈
pk+1

e , Mxk+1
e

〉
– ρ

〈
yk+1

e – yk
e , Mxk+1

e
〉
+

〈
pk+1

e , yk+1
e

〉

= –
1
ρ

〈
pk+1

e , pk+1
e – pk

e
〉
– ρ

〈
yk+1

e , Mxk+1
e

〉
+ ρ

〈
yk

e , Mxk+1
e

〉

= –
1

2ρ

(∥
∥pk+1

e
∥
∥2 +

∥
∥p̄k+1

e – pk
e
∥
∥2 –

∥
∥pk

e
∥
∥2)

–
ρ

2
(∥
∥yk+1

e
∥
∥2 +

∥
∥Mxk+1

e
∥
∥2 –

∥
∥Mxk+1

e – yk+1
e

∥
∥2)

+
ρ

2
(∥
∥yk

e
∥
∥2 +

∥
∥Mxk+1

e
∥
∥2 –

∥
∥Mxk+1

e – yk
e
∥
∥2)

=
1

2ρ

(∥
∥pk

e
∥
∥2 –

∥
∥pk+1

e
∥
∥2) +

ρ

2
(∥
∥yk

e
∥
∥2 –

∥
∥yk+1

e
∥
∥2) –

ρ

2
∥
∥Mxk+1

e – yk
e
∥
∥2, (18)

where the third equation follows from the cosine rule (9). Then, combining (17) and (18),
we have

Hk – Hk+1 ≥ ρ1
∥
∥xk+1

e
∥
∥2 – ρ2

∥
∥yk+1

e
∥
∥2 +

ρ

2
∥
∥Mxk+1

e – yk
e
∥
∥2. (19)

Notice that (19) does not imply the nonincreasing property of Hk since we have the second
negative term –ρ2‖yk+1

e ‖2 on the right side. Next, we will deal with this term using strong
and weak convexity of the functions f (x) and g(y), respectively.

Firstly, the third term ρ

2 ‖Mxk+1
e –yk

e‖2 on the right side of (19) can be rewritten as follows:

ρ

2
∥
∥Mxk+1

e – yk
e
∥
∥2 =

ρ

2
∥
∥Mxk+1

e – yk+1
e + yk+1

e – yk
e
∥
∥2

=
ρ

2
∥
∥Mxk+1

e – yk+1
e

∥
∥2 +

ρ

2
∥
∥yk+1

e – yk
e
∥
∥2 + ρ

〈
Mxk+1

e – yk+1
e , yk+1

e – yk
e
〉

=
1

2ρ

∥
∥pk+1 – pk∥∥2 +

ρ

2
∥
∥yk+1 – yk∥∥2 +

〈
pk+1 – pk , yk+1 – pk 〉

≥ 1
2ρ

∥
∥pk+1 – pk∥∥2 +

(
ρ

2
– ρ2

)
∥
∥yk+1 – yk∥∥2, (20)

where the inequality follows from the weakly convex property (8). Secondly, from the last
equation of (3), it follows that

ρ2
∥
∥yk+1

e
∥
∥2 =

ρ2

ρ2

∥
∥pk+1 – pk – ρMxk+1

e
∥
∥2

=
ρ2

ρ2

∥
∥pk+1 – pk∥∥2 + ρ2

∥
∥Mxk+1

e
∥
∥2 –

2ρ2

ρ

〈
pk+1 – pk , Mxk+1

e
〉
. (21)

Substituting (20), (21) into (19) and rearranging the terms, we have

Hk – Hk+1 ≥ ρ1
∥
∥xk+1

e
∥
∥2 – ρ2

∥
∥Mxk+1

e
∥
∥2

+
(

1
2ρ

–
ρ2

ρ2

)
∥
∥pk+1 – pk∥∥2 +

(
ρ

2
– ρ2

)
∥
∥yk+1 – yk∥∥2
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+
2ρ2

ρ

〈
pk+1 – pk , Mxk+1

e
〉

≥ ρ1
∥
∥xk+1

e
∥
∥2 – ρ2

∥
∥Mxk+1

e
∥
∥2 – 2ρ2ζ

∥
∥xk+1

e
∥
∥2

+
(

1
2ρ

–
ρ2

ρ2 –
2ρ2‖MMT‖

ρ2ζ

)
∥
∥pk+1 – pk∥∥2

+
(

ρ

2
– ρ2

)
∥
∥yk+1 – yk∥∥2

≥ (
ρ1 – ρ2‖M‖2 – 2ρ2ζ

)∥
∥xk+1

e
∥
∥2 +

(
1

2ρ
–

ρ2

ρ2 –
2ρ2‖MMT‖

ρ2ζ

)
∥
∥pk+1 – pk∥∥2

+
(

ρ

2
– ρ2

)
∥
∥yk+1 – yk∥∥2, (22)

where the second inequality follows from the Cauchy–Schwarz inequality, i.e. 2ρ2
ρ

〈pk+1 –

pk , Mxk+1
e 〉 ≥ –2ρ2ζ‖xk+1

e ‖2 – 2ρ2‖MMT ‖
ρ2ζ

‖pk+1 – pk‖2, ∀ζ > 0. By the arbitrariness of ζ , let
μ = 2ρ2ζ . It follows from (22) that

Hk – Hk+1 ≥ (
ρ1 – ρ2‖M‖2 – μ

)∥
∥xk+1

e
∥
∥2 +

(
1

2ρ
–

ρ2

ρ2 –
4ρ2

2‖MMT‖
ρ2μ

)
∥
∥pk+1 – pk∥∥2

+
(

ρ

2
– ρ2

)
∥
∥yk+1 – yk∥∥2.

By Assumption 3.1, we have σ1 = ρ1 – ρ2‖M‖2 – μ ≥ 0, σ2 = ρ

2 – ρ2 > 0 and σ3 = 1
2ρ

– ρ2
ρ2 –

4ρ2
2‖MMT ‖
ρ2μ

> 0. Therefore we complete the proof. �

Now, we are ready to prove the main convergence result of the SWCCO-ADMM algo-
rithm (3) under Assumption 3.1.

Theorem 3.2 Under Assumption 3.1 suppose the iterative sequence {xk} of SWCCO-
ADMM (3) is bounded. Let {(x∗, y∗, p∗)} be a critical point in S. Then:

(i) The iterative sequences {(yk , pk)} generated by SWCCO-ADMM (3) converge to
{(y∗, p∗)} and Mxk → Mx∗, as k → ∞.

(ii) Under Assumption 3.2 if one of the following conditions holds, i.e. M is full column
rank or σ1 = ρ1 – ρ2‖M‖2 – μ > 0, then {xk} converges to a optimal solution of
SWCCO problem (1).

Proof (i) Adding both sides of (15) in Lemma (3.1), from k = 0 to k = ∞, it follows that

σ2

∞∑

k=0

∥
∥yk+1 – yk∥∥2 + σ3

∞∑

k=0

∥
∥pk+1 – pk∥∥2 ≤ H0 – H∞ < ∞.

Thus,

∥
∥pk+1 – pk∥∥ → 0 and

∥
∥yk+1 – yk∥∥ → 0 as k → ∞. (23)

Since {(x∗, y∗, p∗)} is a critical point and Hk ≤ H0 follows from Lemma (3.1), it follows that
yk and pk are bounded. Next, from the boundedness of {(xk , yk , pk)} and supposing that
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{(x̄, ȳ, p̄)} is an accumulation point of {(xk , yk , pk)}; there exists a subsequence {(xkj , ykj , pkj )}
that converges to the {(x̄, ȳ, p̄)}, i.e.,

lim
j→∞

(
xkj , ykj , pkj

)
= (x̄, ȳ, p̄).

Also, from (23), we have pkj+1 – pkj = Mxkj+1 – ykj+1 → 0; after passing to limits, we obtain

Mx̄ – ȳ = 0. (24)

Now, we will show that {(x̄, ȳ, p̄)} is a critical point in the following. By taking the limit
on the first equation of the optimality conditions (4) along with {(xkj , ykj , pkj )}, and from
the closeness of ∂f , we obtain

–MT p̄ ∈ ∂f (x̄). (25)

Since ykj+1 is a minimizer of Lρ(xkj , y, pkj ), we have

Lρ

(
xkj , ykj+1, pkj

) ≤ Lρ

(
xkj , ȳ, pkj

)
.

Taking the limit of the above inequality, we get

lim sup
j→∞

Lρ

(
xkj , ykj+1, pkj

) ≤ Lρ(x̄, ȳ, p̄).

Next, from the lower semicontinuity of Lρ , we also have

lim inf
j→∞ Lρ

(
xkj , ykj+1, pkj

) ≥ Lρ(x̄, ȳ, p̄).

Combining the above two inequalities, we conclude g(ykj+1) = g(ȳ), and from assertion
(ii) of definition (2.2)

p̄ ∈ ∂g(x̄). (26)

This together with (24) and (25), shows {(x̄, ȳ, p̄)} is a critical point follows from the opti-
mality conditions (4).

Without loss of generality, let {(x∗, y∗, p∗)} = {(x̄, ȳ, p̄)}. Again from the nonincreasing
monotonicity and boundedness of Hk , we know Hk is convergent. Since limj→∞(xkj , ykj ,
pkj ) = (x∗, y∗, p∗), we say Hk → 0, i.e., yk → y∗ and pk → p∗. Again due to pk+1 = pk +
ρ(Mxk+1 – yk+1), we get Mxk → Mx∗. Finally, we complete the proof that {(yk , pk)} con-
verges to {(y∗, p∗)} and Mxk → Mx∗.

(ii) When σ1 = ρ1 – ρ2‖M‖2 – μ > 0, adding both sides of (15) from k = 0 to k = ∞, we
get

σ1

∞∑

k=0

∥
∥xk+1

e
∥
∥2 ≤ H0 – H∞ < ∞,

hence xk → x∗.
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When M has full column rank, i.e. MT M � γ I for some γ > 0, then

γ
∥
∥xk+1 – x∗∥∥ ≤ ∥

∥Mxk+1
e

∥
∥ =

∥
∥
∥
∥

1
ρ

(
pk+1 – pk) + yk+1

e

∥
∥
∥
∥ ≤ 1

ρ

∥
∥pk+1 – pk∥∥ +

∥
∥yk+1

e
∥
∥.

Hence, we can also get xk → x∗ as follows from pk+1 – pk → 0 and yk+1 – y∗ → 0.
Last, due to Assumption 3.2 and the assertion (iii) of Definition 2.2, we have

0 = – MT p∗ + MT p∗

∈ ∂f
(
x∗) + MT∂g

(
y∗)

= ∂f
(
x∗) + MT∂(g)

(
Mx∗)

= ∂(f
(
x∗) + g

(
Mx∗),

i.e., x∗ is a critical point of f (x) + g(Mx), then x∗ is the solution of (1) because of the con-
vexity of f (x) + g(Mx) and xk converges to an optimal solution of f (x) + g(Mx). �

Remark 2 The boundedness assumption of the iterative sequence xk can be verified if one
of the following three conditions is satisfied: (a) σ1 = ρ1 – ρ2‖M‖2 – μ > 0; (b) M has full
column rank; (c) f is coercive.

How to tune the penalty parameter ρ in ADMM is a big issue and we expect the domain
range of parameter ρ to be tuned to be as wide as possible; however, in most cases (even for
convex ADMM algorithm), we have to accept the fact that only a relatively smaller range
of ρ can be available. In general, we have the largest range (i.e. (0, +∞)) of ρ to two-blocks
convex optimization problems. For multi-block convex optimization problems, ρ has to
be chosen to be larger than zero but less than a given constant, even under the assumption
that one function is strongly convex as shown in [23]. In the context of nonconvexity, to
ensure the sufficient descent of the selected Lyapunov function, ρ has to be larger than a
constant that depends on the given regularity conditions [14–17]. Turning to the SWCCO
problem (2) addressed in this paper, we will set ρ to be larger than at least twice the weakly
convex modulus, i.e. ρ > 2ρ2 in order to guarantee the nonincreasing of the Lyapunov
function. We say this condition is necessary and the following example shows that the
iterative sequence will diverge if ρ ≤ 2ρ2.

Example 3.3 Consider the optimization problem

min
x

a
2

x2 –
b
2

x2,

where ρ1 = a > b = ρ2 > 0. We use ADMM (3) to solve this question, which is equivalent to
⎧
⎨

⎩

minx,y
a
2 x2 + (– b

2 )y2,

s.t. x = y.

Note that a
2 x2 is strongly convex with modulus a and (– b

2 )y2 is weakly convex with mod-
ulus 1, respectively. Therefore, from ADMM (3), we can get

0 = axk+1 + pk + ρ
(
xk+1 – yk);
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0 = –byk+1 – pk+1;

pk+1 = pk + ρ
(
xk+1 – yk+1).

Rearranging the above equations, we get

yk+1 =
1

ρ – b

(

ρ
b + ρ

a + ρ
– b

)

yk .

It is obvious that yk will diverge if | 1
ρ–b (ρ b+ρ

a+ρ
– b)| > 1. Next, we let a → ∞ and ρ ∈ (b, 2b),

we can get | 1
ρ–b (ρ b+ρ

a+ρ
– b)| > 1, so yk diverges.

Why should the penalty parameter ρ be larger than a given parameter in the nonconvex
case in order to ensure convergence of the ADMM algorithm? This is an interesting and
open problem for further research. In comparison with the case that both of the two ob-
jective functions are convex, the penalty parameter of which is merely greater than zero,
the SWCCO optimization problem essentially is a convex question, but the setting of the
penalty parameter ρ also follows the rules of the nonconvex case, i.e. it is greater than
a given positive constant. The main reason for this setting is that the SWCCO problem
involves a nonconvex term.

4 Sublinear and linear convergence rate analysis
Compared with the large amount of convergence analysis results for convex/nonconvex
ADMM algorithms, there are merely a limited number of references in the literature [24–
30] that have investigated the convergence rate as regards the convex optimization prob-
lems, not to speak of the nonconvex optimization problems. Specifically, the worst-case
O(1/k) convergence rate is established in [25] for the classic ADMM. The authors in [24]
have investigated the dual objective function of the classic ADMM admitting O(1/k) and
O(1/k2) convergence rate for the accelerated version. Very recently, the authors in [26]
have established the o(1/k) convergence rate to multi-blocks ADMM and the linear con-
vergence rate to multi-block ADMM is established in [28, 29] but requiring a strongly
convex, gradient Lipschitz continuous function or some additional assumptions for the
objective function. Without smoothness assumptions for the objective function, the au-
thors in [27] have established Q-linear convergence for the more general convex piecewise
linear-quadratic programming problems solved by the ADMM and the linearized ADMM,
respectively. Subsequently, this global Q-linear convergence rate has been extended to
a general semi-proximal ADMM in [30] for solving convex composite piecewise linear-
quadratic programming and quadratic semidefinite programming. In this section, for the
SWCCO-ADMM algorithm (3) applied to problem (1), we will show the sublinear con-
vergence rate o(1/k) only under Assumption 3.1 and linear convergence rate result under
further assumptions.

4.1 Sublinear convergence rate analysis
In this section, we extend the sublinear convergence rate results of the multi-block convex
ADMM in [26] to the SWCCO-ADMM (3) motivated by the preceding observation that
the primal residual Mxk+1 – yk+1 (or pk+1 – pk) and dual residual yk+1 – yk can be used
to measure the optimality of the iterations of the SWCCO-ADMM. For simplicity, we
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denote x̄k+1
e = xk+1 – xk , ȳk+1

e = yk+1 – yk and p̄k+1
e = pk+1 – pk . Let us start the proof with a

basic lemma.

Lemma 4.1 If a nonnegative sequence {ak}k=∞
k=0 ⊂ R is monotonically nonincreasing and

obeys
∑∞

k=0 ak < ∞, then {ak}k=∞
k=0 enjoys o(1/k) sublinear convergence rate.

Proof Adding ak from k = t to k = 2t,

ta2t ≤
2t∑

k=t

ak =
2t∑

k=0

ak –
t∑

k=0

ak .

Then taking t → ∞, we have
∑2t

k=0 ak –
∑t

k=0 ak → 0; therefore, ak = o(1/k). �

Thus, the key step to proving the sublinear convergence of SWCCO-ADMM is to verify
that hk = ρ

2 ‖yk+1 – yk‖2 + 1
2ρ

‖pk+1 – pk‖2 is monotonically nonincreasing and
∑∞

k=0 hk is
bounded.

Theorem 4.2 Suppose Assumption 3.1 holds, then the iterative sequences {(xk , yk , pk)} gen-
erated by SWCCO-ADMM (3) admits

ρ

2
∥
∥yk+1 – yk∥∥2 +

1
2ρ

∥
∥pk+1 – pk∥∥2 = o(1/k). (27)

Proof Firstly, we will prove ρ

2 ‖yk+1 – yk‖2 + 1
2ρ

‖pk+1 – pk‖2 is monotonically nonincreasing.
By the optimality condition (4), we get –MT pk+1 – ρMT (yk+1 – yk) ∈ ∂f (xk+1) and pk+1 ∈
∂g(yk+1). From the strong convexity property (7) of f and the weakly convex property (8)
of g , we obtain

〈
–MT p̄k+1

e – ρMT(
ȳk+1

e – ȳk
e
)
, x̄k+1

e
〉

=
〈
–p̄k+1

e – ρ
(
ȳk+1

e – ȳk
e
)
, Mx̄k+1

e
〉 ≥ ρ1

∥
∥x̄k+1

e
∥
∥2;

〈
p̄k+1

e , ȳk+1
e

〉 ≥ –ρ2
∥
∥ȳk+1

e
∥
∥2.

Adding the above two relations and rearranging them, we get

–
〈
p̄k+1

e , Mx̄k+1
e – ȳk+1

e
〉
– ρ

〈
ȳk+1

e – ȳk
e , Mx̄k+1

e
〉

= –
1
ρ

〈
p̄k+1

e , p̄k+1
e – p̄k

e
〉
– ρ

〈
ȳk+1

e , Mx̄k+1
e

〉
+ ρ

〈
ȳk

e , Mx̄k+1
e

〉

= –
1

2ρ

(∥
∥p̄k+1

e
∥
∥2 +

∥
∥p̄k+1

e – p̄k
e
∥
∥2 –

∥
∥p̄k

e
∥
∥2)

–
ρ

2
(∥
∥ȳk+1

e
∥
∥2 +

∥
∥Mx̄k+1

e
∥
∥2 –

∥
∥Mx̄k+1

e – ȳk+1
e

∥
∥2)

+
ρ

2
(∥
∥ȳk

e
∥
∥2 +

∥
∥Mx̄k+1

e
∥
∥2 –

∥
∥Mx̄k+1

e – ȳk
e
∥
∥2)

=
1

2ρ

(∥
∥p̄k

e
∥
∥2 –

∥
∥p̄k+1

e
∥
∥2) +

ρ

2
(∥
∥ȳk

e
∥
∥2 –

∥
∥ȳk+1

e
∥
∥2) –

ρ

2
∥
∥Mx̄k+1

e – ȳk
e
∥
∥2

≥ ρ1
∥
∥x̄k+1

e
∥
∥2 – ρ2

∥
∥ȳk+1

e
∥
∥2,
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where the first and third equations follow from the relation pk+1 = pk + ρ(Mxk+1 – yk+1);
the second equation follows from the relation 2〈a, b〉 = a2 + b2 – (a – b)2.

Let hk = 1
2ρ

‖p̄k
e‖2 + ρ

2 ‖ȳk
e‖2. From the above inequality, we get

hk – hk+1 ≥ ρ1
∥
∥x̄k+1

e
∥
∥2 – ρ2

∥
∥ȳk+1

e
∥
∥2 +

ρ

2
∥
∥Mx̄k+1

e – ȳk
e
∥
∥2.

Using similar proof methods as shown in Theorem 3.2, if follows that

hk – hk+1 ≥ σ1
∥
∥x̄k+1

e
∥
∥2 + σ2

∥
∥ȳk+1

e – ȳk
e
∥
∥2 + σ3

∥
∥p̄k+1

e – p̄k
e
∥
∥2.

Since the right side of the above inequality is nonnegative, hk is monotonically nonincreas-
ing.

Next, we verify the boundedness of
∑∞

k=0 hk . From Lemma 3.1, we know

σ2

∞∑

k=0

∥
∥yk+1 – yk∥∥2 + σ3

∞∑

k=0

∥
∥pk+1 – pk∥∥2 < ∞.

Therefore,

∞∑

k=0

ρ

2
∥
∥yk+1 – yk∥∥2 < ∞ and

∞∑

k=0

1
2ρ

∥
∥pk+1 – pk∥∥2 < ∞.

Adding the above two relations, we have

∞∑

k=0

ρ

2
∥
∥yk+1 – yk∥∥2 +

1
2ρ

∥
∥pk+1 – pk∥∥2 < ∞.

Hence we get the boundedness of
∑∞

k=0 hk and the o(1/k) sublinear convergence rate fol-
lowing from Lemma 4.1. �

4.2 Linear convergence rate
For the convex generalized ADMM algorithm, the linear convergence rate has been estab-
lished in [27, 29, 30] if appropriate regularity conditions are satisfied. In this section, we
will investigate that the SWCCO-ADMM algorithm also admits a linear convergence rate
based on some mild regularity conditions. The main idea to prove the linear convergence
rate of an SWCCO-ADMM algorithm is to set up the relation

Hk ≥ (1 + τ )Hk+1, (28)

where the parameter τ > 0 and Hk is the Lyapunov function defined in Lemma 3.1. We
first list the assumptions used to establish the linear convergence rate as follows.

Assumption 4.1 M is full column rank and g(·) is gradient Lipschitz continuous with
modulus Lg ; Assumption 3.1 holds, but with σ1 = ρ1 – ρ2‖M‖2 – μ > 0 (not ≥ 0).

Assumption 4.2 M is invertible, f (x) is gradient Lipschitz continuous with modulus Lf ;
Assumption 3.1 holds, but with σ1 = ρ1 – ρ2‖M‖2 – μ > 0 (not ≥ 0).
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Remark 3 When M is a wavelet transform and g(x) = log2(1+ x2), Assumption 4.1 will eas-
ily be satisfied. When M is the identity matrix and f (x) = 1

2‖v – Hx‖2, Assumption 4.2 will
easily be satisfied. In fact, we can obtain a linear convergence rate if one of Assumption 4.1
and Assumption 4.2 is satisfied in Theorem 4.5. Assumption 3.1 ensures the convergence
of the SWCCO-ADMM algorithm. Because ‖xk

e‖2 is an important measure of ‖yk
e‖2 and

‖pk – pk–1‖2, we assume the condition σ1 > 0 to ensure σ1‖xk
e‖2 > 0. From Theorem 4.5, it

can be seen that if σ1 = 0, then Hk ≥ (1 + τ )Hk+1 will become Hk ≥ Hk+1, in this case, we
will not obtain a linear convergence rate. Meanwhile, as shown in [29], the full rank of M
and the gradient Lipschitz property of f and g are used to show a linear convergence rate
for a convex generalized ADMM algorithm.

From Lemma 3.1, we first note that the monotonically nonincreasing inequality (15)
as regards Hk holds under Assumptions 4.1 or 4.2. In order to establish Eq. (28), we just
prove Hk – Hk+1 ≥ τHk+1. By using inequality (10) with γ = 1, we first have the following
relation:

∥
∥yk+1

e
∥
∥2 =

∥
∥
∥
∥Mxk+1

e +
1
ρ

(
pk – pk+1)

∥
∥
∥
∥

2

≤ 2
∥
∥Mxk+1

e
∥
∥2 +

2
ρ2

∥
∥pk+1 – pk∥∥2

≤ 2‖M‖2∥∥xk+1
e

∥
∥2 +

2
ρ2

∥
∥pk+1 – pk∥∥2. (29)

To show the linear convergence rate, we need the following lemma.

Lemma 4.3 Suppose g(y) is gradient Lipschitz continuous with modulus Lg , then the iter-
ative sequences generated by SWCCO-ADMM (3) satisfy

∥
∥pk+1 – p∗∥∥2 ≤ L2

g
∥
∥yk+1 – y∗∥∥2 (

i.e.,
∥
∥pk+1

e
∥
∥2 ≤ L2

g
∥
∥yk+1

e
∥
∥2).

Proof According to the optimality condition (4), we have pk+1 = ∇g(yk+1). Hence, noticing
that p∗ = ∇g(y∗), we obtain

∥
∥pk+1 – p∗∥∥2 =

∥
∥∇g

(
yk+1) – ∇g

(
y∗)∥∥2 ≤ L2

g
∥
∥yk+1 – y∗∥∥2. �

Lemma 4.4 Suppose M is full row rank and f (x) is gradient Lipschitz continuous with
modulus Lf , then the iterative sequences generated by SWCCO-ADMM (3) satisfy

∥
∥pk+1 – p∗∥∥2 ≤ 2L2

f

λmin(MMT )
∥
∥xk+1 – x∗∥∥2 +

2ρ2λmax(MMT )
λmin(MMT )

∥
∥yk+1 – yk∥∥2.

Proof According to the optimality condition (4), we have 0 = ∇f (xk+1) + MT pk+1 +
ρMT (yk+1 – yk) and 0 = ∇f (x∗) + MT p∗. Hence, we have

λmin
(
MMT)∥

∥pk+1 – p∗∥∥2 ≤ ∥
∥MT pk+1 – MT p∗∥∥2

=
∥
∥∇f

(
xk+1) – ∇f

(
x∗) + ρMT(

yk+1 – yk)∥∥2
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≤ 2
∥
∥∇f

(
xk+1) – ∇f

(
x∗)∥∥2 + 2ρ2∥∥MT(

yk+1 – yk)∥∥2

≤ 2L2
f
∥
∥xk+1 – x∗∥∥2 + 2ρ2λmax

(
MMT)∥

∥yk+1 – yk∥∥2,

where the second inequality follows from Eq. (10) with τ = 1 and the last inequality follows
from the fact that ∇f (x) is Lipschitz continuous with constant Lf . Since M is full row
rank, so λmax(MMT ) ≥ λmin(MMT ) > 0. Then, dividing both sides of the above inequality
by λmin(MMT ), we complete the proof. �

Next, we state the linear convergence rate result of the SWCCO-ADMM algorithm in
the following theorem.

Theorem 4.5 Suppose Assumption 4.1 or Assumption 4.2 holds, the iterative sequences
generated by SWCCO-ADMM (3) converge linearly to a critical point.

Proof On the one hand, if Assumption 4.1 is set up, we have ‖M‖2 > 0 due to M being full
column rank. Then

1
2
{
σ1

∥
∥xk+1

e
∥
∥2 + σ2

∥
∥yk+1 – yk∥∥2 + σ3

∥
∥pk+1 – pk∥∥2}

≥ 1
2
{
σ1

∥
∥xk+1

e
∥
∥2 + σ3

∥
∥pk+1 – pk∥∥2}

=
1
2

{(
σ1

2‖M‖2
2
ρ

)(

2‖M‖2 ρ

2

)
∥
∥xk+1

e
∥
∥2 +

(

σ3
ρ2

2
2
ρ

)(
2
ρ2

ρ

2

)
∥
∥pk+1 – pk∥∥2

}

≥
min{ σ1

2‖M‖2
2
ρ

,σ3
ρ2

2
2
ρ
}

2

{(

2‖M‖2 ρ

2

)
∥
∥xk+1

e
∥
∥2 +

(
2
ρ2

ρ

2

)
∥
∥pk+1 – pk∥∥2

}

≥ τ1
ρ

2
∥
∥yk+1

e
∥
∥2, (30)

where τ1 =
min{ σ1

2‖M‖2
2
ρ ,σ3

ρ2
2

2
ρ }

2 and the last inequality follows from Eq. (29). Since ∇g(y) is
Lipschitz continuous with constant Lg , and by Lemma 4.3, we have

1
2
{
σ1

∥
∥xk+1

e
∥
∥2 + σ2

∥
∥yk+1 – yk∥∥2 + σ3

∥
∥pk+1 – pk∥∥2} ≥ τ1

ρ

2
∥
∥yk+1

e
∥
∥2

≥ τ1
ρ

2
1
L2

g
2ρ

1
2ρ

∥
∥pk+1

e
∥
∥2

= τ2
1

2ρ

∥
∥pk+1

e
∥
∥2, (31)

where τ2 = τ1
ρ

2
1

L2
g

2ρ . Adding (30) and (31), we have

σ1
∥
∥xk+1

e
∥
∥2 + σ2

∥
∥yk+1 – yk∥∥2 + σ3

∥
∥pk+1 – pk∥∥2

= 2
1
2
{
σ1

∥
∥xk+1

e
∥
∥2 + σ2

∥
∥yk+1 – yk∥∥2 + σ3

∥
∥pk+1 – pk∥∥2}

≥ τ1
ρ

2
∥
∥yk+1

e
∥
∥2 + τ2

1
2ρ

∥
∥pk+1

e
∥
∥2

≥ τ ′
(

ρ

2
∥
∥yk

e
∥
∥2 +

1
2ρ

∥
∥pk

e
∥
∥2

)

= τ ′Hk+1,
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where τ ′ = min{τ1, τ2}. So according to Lemma 3.1, we have

Hk – Hk+1 ≥ σ1
∥
∥xk+1

e
∥
∥2 + σ2

∥
∥yk+1 – yk∥∥2 + σ3

∥
∥pk+1 – pk∥∥2 ≥ τ ′Hk+1.

Therefore,

Hk ≥ (
1 + τ ′)Hk+1,

which implies that the iterative sequences of SWCCO-ADMM (3) converge linearly to a
critical point under Assumption 4.1.

One the other hand, if Assumption 4.2 is set up, then

1
2
{
σ1

∥
∥xk+1

e
∥
∥2 + σ2

∥
∥yk+1 – yk∥∥2 + σ3

∥
∥pk+1 – pk∥∥2}

≥ 1
2
{
σ1

∥
∥xk+1

e
∥
∥2 + σ2

∥
∥yk+1 – yk∥∥2}

=
1
2

{(

σ1
λmin(MMT )

2L2
2

2ρ

)(
2L2

2
λmin(MMT )

1
2ρ

)
∥
∥xk+1 – x∗∥∥2

+
(

σ2
λmin(MMT )

2ρ2λmax(MMT )
2ρ

)(
2ρ2λmax(MMT )

λmin(MMT )
1

2ρ

)
∥
∥yk+1 – yk∥∥2

}

≥
min{σ1

λmin(MMT )
2L2

2
2ρ,σ2

λmin(MMT )
2ρ2λmax(MMT ) 2ρ}

2

{
2L2

2
λmin(MMT )

1
2ρ

∥
∥xk+1 – x∗∥∥2

+
2ρ2λmax(MMT )

λmin(MMT )
1

2ρ

∥
∥yk+1 – yk∥∥2

}

≥ τ3
1

2ρ

∥
∥pk+1 – p∗∥∥2 = τ3

1
2ρ

∥
∥pk+1

e
∥
∥2, (32)

where τ3 =
min{σ1

λmin(MMT )
2L2

2
2ρ,σ2

λmin(MMT )
2ρ2λmax(MMT )

2ρ}
2 and the last inequality follows from Lem-

ma 4.4. Then, since M is full column rank, (30) holds. Next, adding (30) and (32), we have

σ1
∥
∥xk+1

e
∥
∥2 + σ2

∥
∥yk+1 – yk∥∥2 + σ3

∥
∥pk+1 – pk∥∥2

= 2
1
2
{
σ1

∥
∥xk+1

e
∥
∥2 + σ2

∥
∥yk+1 – yk∥∥2 + σ3

∥
∥pk+1 – pk∥∥2}

≥ τ1
ρ

2
∥
∥yk+1

e
∥
∥2 + τ3

1
2ρ

∥
∥pk+1

e
∥
∥2

≥ τ ′′
(

ρ

2
∥
∥yk+1

e
∥
∥2 +

1
2ρ

∥
∥pk+1

e
∥
∥2

)

= τ ′′Hk+1,

where τ ′′ = min{τ1, τ3}. Using Lemma 3.1 again, we have

Hk ≥ (
1 + τ ′′)Hk+1.

Hence, the iterative sequences of SWCCO-ADMM (3) converge linearly to a critical
point. �

Remark 4 If σ1 = 0, τ ′ = 0 and τ ′′ = 0.
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5 Numerical example
In this section, in order to confirm the convergence and the efficiency of the suggested
SWCCO-ADMM algorithm we carry out a numerical experiment on a realistic optimiza-
tion problem of image deblurring, by comparing with the classical ADMM with l1 penalty
function. Mathematically, the problem of image deblurring can be formulated as

f = Hu + η, (33)

where H is certain type of blur kernel, such as Gaussian or motion blur; η is a certain kind
of additional disturbance, such as Gaussian noise with zero-mean and variance σ 2. The
aim of image deblurring is to recover the latent high-quality image u from the degraded
(i.e. noisy or blurred) image f .

The common sparse regularized based model to (33) is

min
u

1
2
‖Hu – f ‖2

2 + λΦ(Wu), λ > 0, (34)

where W is wavelet frame transform satisfying W T W = I ; Φ(·) is the regularizer aiming to
induce sparse solutions, such as the classical convex regularizer and �1-norm ‖ · ‖1. In this
paper, we exploit the following nonconvex sparsity-inducing regularizer, i.e. the following
a-weakly convex function g(x) (a.k.a. the generalized minimax-concave penalty function):

g(x) =

⎧
⎨

⎩

τ |x| – x2

2a if |x| < τ
a ,

τ2

2a if |x| ≥ τ
a ,

(35)

considered in [5] to induce a more unbiased sparse solution. The corresponding proximal
mapping (a.k.a. firm shrinkage) to this weakly convex function can be written as

proxg(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, |x| < λτ ,

(1 – λa)–1(x – λτ ), λτ ≤ |x| < τ
a ,

x, τ
a ≤ |x|,

(36)

where λ is the shrinkage parameter as set in the formulation of Eq. (34).
From Fig. 1 for the regularizers and the associated proximal mappings, we can see the

firm shrinkage does not underestimate large magnitudes, i.e. the features (edges) of the
solution u.

In the experiments, we set the standard deviation of Gaussian blurring kernel H to be
2, the variance σ 2

n of Gaussian white noise η to be 2. In addition, we also compare our
numerical results implemented using the proposed SWCCO-ADMM (3) with the classi-
cal �1-norm ADMM algorithms. Both algorithms are implemented on Matlab2014a with
the same parameters setting as occur in the ADMM framework; and we set the iteration
numbers to be 20. The performance evaluation criteria of the proposed algorithms are
quantitatively measured by means of the peak signal-to-noise ratio (PSNR).

From Fig. 2, it can be seen that the proposed SCWWO-ADMM can achieve a better
PNSR than the classical ADMM in the same parameters setting.
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Figure 1 Left the absolute and a-weakly-convex (τ = 0.04 and a = 4) functions, the right the corresponding
proximal mapping

Figure 2 Deblurring performance comparison on the Babara image. (a) Original image, (b) noisy and blurred
image (PNSR = 23.31), (c) the deblurred image using classical ADMM with soft shrinkage (PSNR = 23.95),
(d) the deblurred image by SCWWO-ADMM (PSNR = 24.13)

Figure 3 Objective function energy decaying rapidly
as the iterative number increases

The dependence of the energy of the objective function on the iterative number for a
Barbara image shown in Fig. 3, which indicates that our proposed SWCCO-ADMM al-
gorithm has convergence in practice and has a faster convergence rate than the classical
ADMM.

6 Conclusions
In this paper, we have investigated the convergence for the alternating direction method
of multipliers algorithm for the minimization of a combinational optimization problem,
which consists of a strongly convex function and a weakly convex function. Meanwhile,
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we also established the sublinear (o(1/k)) and linear convergence rate for this SWCCO-
ADMM algorithm for the first time. In order to guarantee the algorithm convergence, the
proof shows that the penalty parameter ρ has to be chosen larger than at least twice the
weakly convex modulus. We state that this is because the existence of the weakly convex
term in the objective function. To extend the SWCCO-ADMM to the multi-block compo-
sition of a strongly convex and a weakly convex function will be an interesting topic for the
future research. The convergence analysis in this manuscript is based on the fact that the
strong convexity dominates the weak convexity in the objective function, i.e. the objective
function is strongly convex. A convergence analysis of the SWCCO-ADMM algorithm
with a weak assumption is our future work.
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