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1 Introduction
Assume that {Xi, i ≥ 1} is a sequence of random variables (r.v.s) with their respective dis-
tributions Fi, i ≥ 1, supported on D = [0,∞) or (–∞,∞), and that {ψi, i ≥ 1} is a sequence
of real numbers, which represent the weights of {Xi, i ≥ 1}. Denote the weighted infinite
sum by

∑∞
i=1 ψiXi, the asymptotic tail behavior of which is the main objective of our paper.

In this paper, we consider the heavy-tailed distribution classes. Firstly, we introduce
some notions and notations. All limit relationships henceforth hold as x → ∞ un-
less stated otherwise. For two positive functions a(·) and b(·), we write a(x) � b(x) if
lim sup a(x)/b(x) ≤ 1, a(x) � b(x) if lim inf a(x)/b(x) ≥ 1, a(x) ∼ b(x) if lim a(x)/b(x) = 1. For
a proper distribution V on (–∞,∞), we denote its tail by V (x) = 1 – V (x), and its upper
and lower Matuszewska indices, respectively, by

J+
V = inf

{

–
log V ∗(y)

log y
: y > 1

}

and J–
V = sup

{

–
log V ∗(y)

log y
: y > 1

}

,

where V ∗(y) = lim inf V (xy)/V (x) and V ∗(y) = lim sup V (xy)/V (x) for y > 0.
An important class of heavy-tailed distributions is the subexponential class. Say that a

distribution V on [0,∞) belongs to the subexponential class, denoted by V ∈ S , if

V ∗2(x) ∼ V (x),
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where V ∗2 is the 2-fold convolution of V . Note that if V ∈ S then V is long-tailed, denoted
by V ∈ L , in the sense that

V (x + y) ∼ V (x), for any y > 0.

Besides, if V ∈ L then

H (V ) =
{

h : x ∈ [0,∞), h(x) ↑ ∞, h(x) = o(1)x and V (x + y) ∼ V (x) holds uniformly

for all |y| ≤ h(x)
}


= ∅.

Moreover, the class S covers the class C of distributions with consistently varying tails,
characterized by

lim
y↓1

V ∗(y) = 1, or equivalently, lim
y↑1

V ∗(y) = 1;

and also the class C covers the class R–α , 0 < α < ∞, of distributions with regularly varying
tails, characterized by

V (xy) ∼ y–αV (x).

Another important class of heavy-tailed distributions is the dominant variation class, de-
noted by D . Say that a distribution V belongs to the class D , if

V ∗(y) < ∞, for any y > 0.

More generally, when V is supported on (–∞,∞), we say that V belongs to a distribution
class if V (x)1{x≥0} belongs to the class. In conclusion,

R–α ⊂ C ⊂ L ∩ D ⊂ S ⊂ L .

For more details of heavy-tailed distributions and their applications, the reader is referred
to Bingham et al. [2] and Embrechts et al. [5].

By inequality (2.1.9) in Theorem 2.18 and Proposition 2.2.1 of Bingham et al. [2], we
know that V ∈ D if and only if J+

V < ∞; and if V ∈ D , then, for all 0 < p1 < J–
V and p2 > J+

V ,
there exist Ci > 0 and Di > 0, i = 1, 2 such that

V (xy)
V (x)

≤ C1y–p1 , xy ≥ x ≥ D1; (1.1)

and

V (x)
V (xy)

≤ C2yp2 , xy ≥ x ≥ D2. (1.2)

We now give a proposition, which will play a key role in the proofs of the main results.
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Proposition 1.1 If V ∈ C , then J–
V > 0.

Proof For any fixed x > 0, V (xy)/V (x) is a monotonically decreasing function of y, which
leads to V ∗(y) ≤ V ∗(z) for y > z > 0, and then by V ∈ C , V ∗(y) ≤ limz↑1 V ∗(z) = 1. Since
lim supx→∞ limy→∞ V (xy)/V (x) = 0, there exists a sufficiently large number y0 > 1 such that
V ∗(y) < 1 for all y > y0, and further log V ∗(y)/ log y < 0, y > y0 > 1. Hence by the definition
of J–

V , it follows that J–
V ≥ sup{– log V ∗(y)/ log y : y > y0} > 0. �

It is well known that an increasing number of researchers introduce many dependence
structures to extensively study the asymptotic tail behaviors of sums of r.v.s in the literature
of applied probability. See, for example, Ko and Tang [14], Geluk and Tang [12], Chen and
Yuan [4], Foss and Richards [6], Gao and Wang [10], Yi et al. [21], Liu et al. [17], Gao and
Liu [9], Chen et al. [3], Li [15], Wang et al. [20], Jiang et al. [13], Gao and Yang [11], Gao
and Jin [8], Liu et al. [16, 18], Bae and Ko [1], Gao et al. [7], among which Ko and Tang [14]
proposed a conditional dependence structure as follows.

Assumption A For n ≥ 2 and D = [0,∞), there exist some large constants x0 = x0(n) > 0
and C = C(n) > 0 such that, for every 2 ≤ j ≤ n,

lim sup sup
x0≤t≤x–x0

P(X1 + · · · + Xj–1 > x – t | Xj = t)
P(X1 + · · · + Xj–1 > x – t)

≤ C.

In this paper, we extend the support of corresponding distribution in Assumption A
from [0,∞) to (–∞,∞), and we denote by Assumption A∗ the modified dependence struc-
ture.

Besides, Geluk and Tang [12] introduced another conditional dependence structure.

Assumption B For n ≥ 2 and D = (–∞,∞), there exist some large constants x0 = x0(n) > 0
and C = C(n) > 0 such that the inequality

P
(|Xi| > xi | Xj = xj with j ∈ J

) ≤ CFi(xi)

holds for all 1 ≤ i ≤ n, J := {j : 1 ≤ j ≤ n} \ {i}, xi > x0, and xj > x0, j ∈ J .

Obviously, the relation in Assumption B is equivalent to the conjunction of the relations

P(Xi > xi | Xj = xj with j ∈ J) ≤ CFi(xi)

and

P(Xi < –xi | Xj = xj with j ∈ J) ≤ CFi(xi). (1.3)

In this paper, for Assumption B, relation (1.3) is replaced by the following relation:

P(Xi < –xi | Xj = xj with j ∈ J) ≤ CFi(–xi)

to cover all independent r.v.s In fact, when {Xi, 1 ≤ i ≤ n} is a sequence of mutually inde-
pendent r.v.s such that limxi→∞ Fi(xi)/Fi(–xi) = 0 for some 1 ≤ i ≤ n, relation (1.3) is not
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satisfied, and then neither is Assumption B. Hence, the extended conditional dependence
structure from Assumption B is labeled as Assumption B∗. Note that these extended con-
ditional dependence structures denoted by Assumptions A∗ and B∗ were firstly considered
by Jiang et al. [13].

This paper will mainly focus on the asymptotic behavior of the tail probability of a
weighted infinite sum of heavy-tailed r.v.s under the above two extended conditional de-
pendence structures. In the rest of this paper, we will state our main results in Sect. 2, and
prove them in Sect. 3.

2 Main results
In this section we firstly review the related results, and then present the main result of this
paper. For the case when r.v.s Xi, 1 ≤ i ≤ n, satisfy Assumption A, Bae and Ko [1] obtained
the following theorem on a weighted infinite sum.

Theorem 1.A Let {Xi, i ≥ 1} be a sequence of nonnegative r.v.s with common distribution
F ∈ R–α , and for each n, Xi, 1 ≤ i ≤ n, satisfy Assumption A. If

∑∞
i=1 |ψi|p < ∞ for some

0 < p < min{α, 1}, then

P

( ∞∑

i=1

ψiXi > x

)

∼
∑

i∈I+

F
(
ψ–1

i x
) ∼ F(x)

∑

i∈I+

ψα
i ,

where I+ denotes the set {i | ψi > 0}.

For the case when r.v.s Xi, 1 ≤ i ≤ n, satisfy Assumption B, Geluk and Tang [12] pre-
sented a theorem as below.

Theorem 1.B Assume that Xi, 1 ≤ i ≤ n, are real-valued r.v.s with distributions Fi,
1 ≤ i ≤ n. If Fi ∈ S for all 1 ≤ i ≤ n and Fi ∗ Fj ∈ S for all 1 ≤ i < j ≤ n, and Assump-
tion B holds. Then, for all n ≥ 1,

P

( n∑

i=1

Xi > x

)

∼
n∑

i=1

Fi(x). (2.1)

For the case when r.v.s Xi, 1 ≤ i ≤ n, satisfy Assumption A∗ or B∗, Jiang et al. [13] gave
the following two results on sums of these r.v.s.

Theorem 1.C Assume that Xi, 1 ≤ i ≤ n, satisfy Assumption A∗, and Fi ∈ L for all 1 ≤
i ≤ n and Fi ∗ Fj ∈ S for all 1 ≤ i < j ≤ n. Furthermore, when these r.v.s do not satisfy
Assumption B or B∗, there exists a function h ∈ ⋂n

i=1 H (Fi) such that, for all 1 ≤ i ≤ n,

Fi
(
–h(x)

)
= o

( n∑

i=1

Fi(x)

)

.

Then, for all n ≥ 1, Eq. (2.1) holds.

Theorem 1.D Assume that Xi, 1 ≤ i ≤ n, satisfy Assumption B∗, and Fi ∈ L for all 1 ≤
i ≤ n and Fi ∗ Fj ∈ S for all 1 ≤ i < j ≤ n. Then, for all n ≥ 1, Eq. (2.1) holds.
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Inspired by the above results, in this paper we further consider the asymptotic tail be-
havior of weighted infinite sum of consistently varying tailed r.v.s under conditional de-
pendence structure satisfying Assumption A∗ or B∗. The main results of this paper are
given below.

Theorem 2.1 Let {Xi, i ≥ 1} be a sequence of real-valued r.v.s. with distributions Fi ∈ L ,
i ≥ 1, and all weights {ψi, i ≥ 1} be real numbers. Assume that there exists a distribution
F ∈ C such that

lim sup
i≥1

Fi(–x)
F(x)

= 0 (2.2)

and

0 < S := lim inf inf
i≥1

Fi(x)
F(x)

≤ lim sup sup
i≥1

Fi(x)
F(x)

=: M < ∞, (2.3)

and that
∑∞

i=1 |ψi|p < ∞ for some 0 < p < min{J–
F , J–

F /J+
F }, then the relation

S
∑

i∈I+

F
(
ψ–1

i x
)
� P

( ∞∑

i=1

ψiXi > x

)

� M
∑

i∈I+

F
(
ψ–1

i x
)

(2.4)

holds, if {Xi, i ≥ 1} is a sequence of r.v.s satisfy Assumption A∗ or B∗, where I+ is the set given
in Theorem 1.A.

Corollary 2.1 Under the conditions of Theorem 2.1, if Fi ∈ C , i ≥ 1, then

S
∑

i∈I+

F
(
ψ–1

i x
)
� P

( ∞∑

i=1

ψiXi > x

)

∼
∑

i∈I+

Fi
(
ψ–1

i x
)
� M

∑

i∈I+

F
(
ψ–1

i x
)
,

and furthermore if Fi ∼ F , i ≥ 1, then

P

( ∞∑

i=1

ψiXi > x

)

∼
∑

i∈I+

F
(
ψ–1

i x
)
.

If Fi ∼ F ∈ R–α , i ≥ 1, then

P

( ∞∑

i=1

ψiXi > x

)

∼
∑

i∈I+

F
(
ψ–1

i x
) ∼ F(x)

∑

i∈I+

ψα
i .

3 Lemmas
In order to prove Theorem 2.1 and Corollary 2.1, we now give two lemmas which are
concerned with the case that weights {ψi, i ≥ 1} be positive.

Lemma 3.1 Let {Xi, i ≥ 1} be a sequence of real-valued r.v.s with their respective distri-
butions Fi ∈ L , i ≥ 1, and their weights {ψi, i ≥ 1} be positive. Assume that there ex-
ists a distribution F ∈ C such that (2.2) and (2.3) hold, and that

∑∞
i=1 ψ

p
i < ∞ for some
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0 < p < min{J–
F , J–

F /J+
F }, then the relation

S
∞∑

i=1

F
(
ψ–1

i x
)
� P

( ∞∑

i=1

ψiXi > x

)

� M
∞∑

i=1

F
(
ψ–1

i x
)

(3.1)

holds, if {Xi, i ≥ 1} is a sequence of r.v.s satisfy Assumption A∗ or B∗.

Proof Without loss of generality, we assume that 0 < ψi ≤ 1, i ≥ 1. It is because there can
be only a finite number of terms with ψi > 1 by the assumption and, if that is the case, we
can divide each weight with the maximum of such ψis.

Take 0 < p < min{J–
F , J–

F /J+
F } such that

∑∞
i=1 ψ

p
i < ∞. Then, for any 0 < ε < 1, there exists a

large positive integer n0 such that

∞∑

i=n0+1

ψ
p
i < ε. (3.2)

For the above integer n0, by F ∈ C ⊂ D , (1.1) and (3.2), there exist positive constants C3

and D3 such that, for all large x ≥ D3 and the above p,

∞∑

i=n0+1

F
(
ψ–1

i x
) ≤ C3F(x)

∞∑

i=n0+1

ψ
p
i ≤ C3εF(x). (3.3)

Firstly, to prove the upper bound of Eq. (3.1), we follow the approach used in the proof of
Lemma 4.24 in Resnick [19] or Theorem 2 in Bae and Ko [1]. For any 0 < δ < 1 and integer
n0 in (3.2), we have

P

( ∞∑

i=1

ψiXi > x

)

≤ P

( n0∑

i=1

ψiX+
i > (1 – δ)x

)

+ P

( ∞∑

i=n0+1

ψiX+
i > δx

)

=: I1(x) + I2(x), (3.4)

where X+
i = max{Xi, 0}, i ≥ 1. For convenience’s sake, we remark that Fi ∈ L ∩ D , i ≥ 1,

can imply Fi ∈ S , 1 ≤ i ≤ n, and Fi ∗ Fj ∈ S for all 1 ≤ i < j ≤ n; see Jiang et al. [13].
Therefore, the distributions Fi, i ≥ 1, in Theorem 2.1 and Lemma 3.1, can also satisfy the
conditions in Theorem 1.C. For I1(x), by Theorem 1.C or 1.D, and (2.3), it follows that

I1(x) ∼
n0∑

i=1

P
(
ψiX+

i > (1 – δ)x
)

� M
n0∑

i=1

F
(
ψ–1

i (1 – δ)x
)

≤ M sup
0<ψi≤1

F(ψ–1
i (1 – δ)x)

F(ψ–1
i x)

n0∑

i=1

F
(
ψ–1

i x
)
. (3.5)

By F ∈ C , we get

lim
δ↓0

lim sup
x→∞

sup
0<ψi≤1

F(ψ–1
i (1 – δ)x)

F(ψ–1
i x)

= lim
δ↓0

lim sup
x→∞

F((1 – δ)x)
F(x)

= 1. (3.6)
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Hence, we substitute (3.6) into (3.5) to obtain

I1(x) � M
n0∑

i=1

F
(
ψ–1

i x
)
. (3.7)

For I2(x), when 0 < J+
F < 1, we have

I2(x) ≤ P

( ∞⋃

i=n0+1

{
ψiX+

i > δx
}
)

+ P

( ∞∑

i=n0+1

ψiX+
i 1{ψiX+

i ≤δx} > δx

)

=: I21(x) + I22(x). (3.8)

By (1.2), (2.3), (3.3) and F ∈ C ⊂ D , for any p2 > J+
F , there exist some large positive con-

stants C4 and D4 such that, for all x ≥ max{D3, D4},

I21(x) ≤
∞∑

i=n0+1

P
(
ψiX+

i > δx
)

� M
∞∑

i=n0+1

F
(
ψ–1

i δx
)

≤ C3C4Mδ–p2εF(x). (3.9)

By Markov’s inequality and the monotone convergence theorem, we see that

I22(x) ≤ (δx)–1E

( ∞∑

i=n0+1

ψiX+
i 1{ψiX+

i ≤δx}

)

= (δx)–1
∞∑

i=n0+1

ψiE
(
X+

i 1{X+
i ≤ψ–1

i δx}
)
. (3.10)

By F ∈ C ⊂ D , (1.2) and (2.3), for any J+
F < p2 < 1, there exist some large positive constants

C5 and D5 such that, for all x ≥ D5,

E
(
X+

i 1{X+
i ≤ψ–1

i δx}
)

= –
∫ ψ–1

i δx

0
u dFi(u)

= –ψ–1
i δxFi

(
ψ–1

i δx
)

+
∫ ψ–1

i δx

0
Fi(u) du

≤ ψ–1
i δx

∫ 1

0
Fi

(
tψ–1

i δx
)

dt

� Mψ–1
i δxF

(
ψ–1

i δx
)
∫ 1

0

F(tψ–1
i δx)

F(ψ–1
i δx)

dt

≤ C5M
1 – p2

ψ–1
i δxF

(
ψ–1

i δx
)
. (3.11)

Substituting (3.11) into (3.10) and using the last step of (3.9) can lead to

I22(x) � C3C4C5M
1 – p2

δ–p2εF(x). (3.12)
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Therefore by (3.4), (3.7)–(3.9), (3.12) and the arbitrariness of ε, we derive that

P

( ∞∑

i=1

ψiXi > x

)

� M
n0∑

i=1

F
(
ψ–1

i x
) ≤ M

∞∑

i=1

F
(
ψ–1

i x
)
. (3.13)

For the case when J+
F ≥ 1, we choose some constant β ∈ (J+

F , J–
F p–1) such that p < β–1J–

F ≤
β–1J+

F < 1. Set ψ =
∑∞

i=n0+1 ψi, which is assumed to be less than 1 without loss of generality.
Then by Jensen’s inequality, it follows that

I2(x) = P

(

ψβ

( ∞∑

i=n0+1

ψi

ψ
X+

i

)β

> δβxβ

)

≤ P

( ∞∑

i=n0+1

ψiX+β

i > ψ1–βδβxβ

)

≤ P

( ∞⋃

i=n0+1

{
ψiX+β

i > ψ1–βδβxβ
}
)

+ P

( ∞∑

i=n0+1

ψiX+β

i 1{ψiX
+β
i ≤ψ1–βδβ xβ } > ψ1–βδβxβ

)

=: I ′
21(x) + I ′

22(x). (3.14)

For I ′
21(x), by using F ∈ C ⊂ D and (1.1), and arguing as (3.9), for any p1 ∈ (βp, J–

F )
and p2 > J+

F , there exist some large positive constants C6 and D6 such that, for all x ≥
max{D3, D4, D6},

I ′
21(x) ≤

∞∑

i=n0+1

P
(
X+

i > ψ
– 1

β

i ψ
1–β
β δx

)

� M
∞∑

i=n0+1

F
(
ψ

– 1
β

i ψ
1–β
β δx

)

≤ C6Mψ
p1(β–1)

β

∞∑

i=n0+1

F
(
ψ

– 1
β

i δx
)

≤ C3C4C6Mψ
p1(β–1)

β δ–p2εF(x). (3.15)

For I ′
22(x), by going along the same lines of the derivation of I22(x), we conclude that, for

any J+
F < p2 < β , there exist some large positive constants C7 and D7 such that, for all x ≥

max{D3, D4, D6, D7},

I ′
22(x) � C7Mβ

β – p2

∞∑

i=n0+1

F
(
ψ

–β

i ψ
1–β
β δx

)

≤ C3C4C6C7Mβ

β – p2
ψ

p1(β–1)
β δ–p2εF(x), (3.16)

where the last step is obtained similarly to (3.15). Then by (3.4), (3.7), (3.14)–(3.16) and
the arbitrariness of ε, we prove that Eq. (3.13) holds.
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Secondly, we deal with the lower bound of Eq. (3.1). Let n0 and p be fixed as those in
(3.2). For any 0 < δ < 1, we have

P

( ∞∑

i=1

ψiXi > x

)

= P

( ∞∑

i=1

ψiX+
i –

∞∑

i=1

ψiX–
i > x

)

≥ P

( ∞∑

i=1

ψiX+
i > (1 + δ)x,

∞∑

i=1

ψiX–
i ≤ δx

)

≥ P

( ∞∑

i=1

ψiX+
i > (1 + δ)x

)

– P

( ∞∑

i=1

ψiX–
i > δx

)

=: I3(x) – I4(x), (3.17)

where X–
i = – min{Xi, 0}, i ≥ 1. For I3(x), by (2.3), Theorem 1.C or 1.D, we have

I3(x) ≥ P

( n0∑

i=1

ψiX+
i > (1 + δ)x

)

∼
n0∑

i=1

P
(
ψiX+

i > (1 + δ)x
)

� S
n0∑

i=1

F
(
ψ–1

i (1 + δ)x
)

≥ S inf
0<ψi≤1

F(ψ–1
i (1 + δ)x)

F(ψ–1
i x)

n0∑

i=1

F
(
ψ–1

i x
)
. (3.18)

By F ∈ C , it follows that

lim
δ↓0

lim inf
x→∞ inf

0<ψi≤1

F(ψ–1
i (1 + δ)x)

F(ψ–1
i x)

= lim
δ↓0

lim inf
x→∞

F((1 + δ)x)
F(x)

= 1. (3.19)

By (3.3), (3.18) and (3.19), we obtain

I3(x) � S
n0∑

i=1

F
(
ψ–1

i x
)

= S
∞∑

i=1

F
(
ψ–1

i x
)

– S
∞∑

i=n0+1

F
(
ψ–1

i x
)

≥ S
∞∑

i=1

F
(
ψ–1

i x
)

– C3SεF(x),

which, along with the arbitrariness of 0 < ε < 1, implies that

I3(x) � S
∞∑

i=1

F
(
ψ–1

i x
)
. (3.20)
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By (2.2), for any 0 < ε < 1, there exists a large positive constant D′ such that, for all x ≥ D′,

sup
i≥1

Fi(–x)
F(x)

< ε. (3.21)

For I4(x), we only consider the case 0 < J+
F < 1. In fact, the case of J+

F ≥ 1 follows from
similar derivations to (3.14)–(3.16) with slight modifications. Clearly,

I4(x) ≤
∞∑

i=1

P
(
ψiX–

i > δx
)

+ P

( ∞∑

i=1

ψiX–
i 1{ψiX–

i ≤δx} > δx

)

=
∞∑

i=1

P(ψiXi < –δx) + P

( ∞∑

i=1

ψiX–
i 1{ψiX–

i ≤δx} > δx

)

=: I41(x) + I42(x). (3.22)

For I41(x), by (3.21) and the last step of (3.9), for all x ≥ max{D′, D4},

I41(x) < ε

∞∑

i=1

F
(
ψ–1

i δx
) ≤ C4δ

–p2ε

∞∑

i=1

F
(
ψ–1

i x
)
. (3.23)

For I42(x), similarly to (3.10), we have

I42(x) ≤ (δx)–1
∞∑

i=1

ψiE
(
X–

i 1{X–
i ≤ψ–1

i δx}
)
. (3.24)

Similarly to (3.11), by F ∈ C ⊂ D , (1.2), (2.2) and (2.3), for any J+
F < p2 < 1, there exist some

large positive constants C8 and D8 such that, for all x ≥ max{D′, D8},

E
(
X–

i 1{X–
i ≤ψ–1

i δx}
)

= –ψ–1
i δxP

(
X–

i > ψ–1
i δx

)
+ ψ–1

i δx
∫ 1

0
P
(
X–

i > tψ–1
i δx

)
dt

≤ ψ–1
i δxF

(
ψ–1

i δx
)
∫ 1

0

Fi(–tψ–1
i δx)

F(tψ–1
i δx)

F(tψ–1
i δx)

F(ψ–1
i δx)

dt

< εψ–1
i δxF

(
ψ–1

i δx
)
∫ 1

0

F(tψ–1
i δx)

F(ψ–1
i δx)

dt

≤ C8ε

1 – p2
ψ–1

i δxF
(
ψ–1

i δx
)
. (3.25)

Then, by substituting (3.25) into (3.24) and arguing similarly to (3.9), we prove that, for all
x ≥ max{D′, D4, D8},

I42(x) <
C8ε

1 – p2

∞∑

i=1

F
(
ψ–1

i δx
) ≤ C4C8

1 – p2
δ–p2ε

∞∑

i=1

F
(
ψ–1

i x
)
; (3.26)

and further we substitute (3.23) and (3.26) into (3.22) to obtain, for all x ≥ max{D′, D4, D8},

I4(x) <
(

C8

1 – p2
+ 1

)

C4δ
–p2ε

∞∑

i=1

F
(
ψ–1

i x
)
, (3.27)
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which, along with (3.17), (3.20) and the arbitrariness of 0 < ε < 1, can show the lower bound
of Eq. (3.1). �

Lemma 3.2 Under the conditions of Lemma 3.1, if Fi ∈ C , i ≥ 1, then

S
∞∑

i=1

F
(
ψ–1

i x
)
� P

( ∞∑

i=1

ψiXi > x

)

∼
∞∑

i=1

Fi
(
ψ–1

i x
)
� M

∞∑

i=1

F
(
ψ–1

i x
)
,

and further if Fi ∼ F , i ≥ 1, then

P

( ∞∑

i=1

ψiXi > x

)

∼
∞∑

i=1

F
(
ψ–1

i x
)
.

If Fi ∼ F ∈ R–α , i ≥ 1, then

P

( ∞∑

i=1

ψiXi > x

)

∼
∞∑

i=1

F
(
ψ–1

i x
) ∼ F(x)

∞∑

i=1

ψα
i .

Proof By Lemma 3.1, it suffices to prove that

P

( ∞∑

i=1

ψiXi > x

)

∼
∞∑

i=1

Fi
(
ψ–1

i x
)

(3.28)

and, when F ∈ R–α ,

∞∑

i=1

F
(
ψ–1

i x
) ∼ F(x)

∞∑

i=1

ψα
i . (3.29)

Firstly, we prove (3.28). By the proof of Lemma 3.1, we only need to prove

I1(x) �
∞∑

i=1

Fi
(
ψ–1

i x
)

(3.30)

and

I3(x) �
∞∑

i=1

Fi
(
ψ–1

i x
)
. (3.31)

Since Fi ∈ C , i ≥ 1, we know that

lim
δ↓0

lim sup
x→∞

Fi(ψ–1
i (1 – δ)x)

Fi(ψ–1
i x)

= lim
δ↓0

lim sup
x→∞

Fi((1 – δ)x)
Fi(x)

= 1 (3.32)

and

lim
δ↓0

lim inf
x→∞

Fi(ψ–1
i (1 + δ)x)

Fi(ψ–1
i x)

= lim
δ↓0

lim inf
x→∞

Fi((1 + δ)x)
Fi(x)

= 1. (3.33)



Gao et al. Journal of Inequalities and Applications        (2019) 2019:120 Page 12 of 15

By (3.32) and Theorem 1.C or 1.D, it follows that

I1(x) ∼
n0∑

i=1

Fi
(
ψ–1

i (1 – δ)x
) ∼

n0∑

i=1

Fi
(
ψ–1

i x
) ≤

∞∑

i=1

Fi
(
ψ–1

i x
)
,

which leads to (3.30). By Theorem 1.C or 1.D, (2.3), (3.3) and (3.33), we have

I3(x) �
n0∑

i=1

Fi
(
ψ–1

i (1 + δ)x
) ∼

n0∑

i=1

Fi
(
ψ–1

i x
)

�
∞∑

i=1

Fi
(
ψ–1

i x
)

– M
∞∑

i=n0+1

F
(
ψ–1

i x
)

≥
∞∑

i=1

Fi
(
ψ–1

i x
)

– C3MεF(x),

which, along with the arbitrariness of 0 < ε < 1, implies that Eq. (3.31) holds.
Secondly, we prove (3.29). By F ∈ R–α and the control convergence theorem, we

have

∞∑

i=1

F
(
ψ–1

i x
)

= F(x)
∞∑

i=1

F(ψ–1
i x)

F(x)
∼ F(x)

∞∑

i=1

ψα
i . �

4 Proof of main result
In this section, we will prove the main result of this paper.

Proof of Theorem 2.1 Without loss of generality, we may assume that –1 ≤ ψi ≤ 1. Firstly,
we consider the upper bound of E (2.4). For any 0 < δ < 1, we have

P

( ∞∑

i=1

ψiXi > x

)

= P
(∑

i=I+

ψiXi +
∑

i=I–

ψiXi > x
)

≤ P
(∑

i∈I+

ψiXi > (1 – δ)x
)

+ P
(∑

i∈I–

ψiXi > δx
)

=: I5(x) + I6(x), (4.1)

where I– denotes the set {i | ψi < 0}. For I5(x), by Lemma 3.1 and (3.6), we have

I5(x) � M
∑

i∈I+

F
(
ψ–1

i (1 – δ)x
)

≤ M sup
0<ψi≤1

F(ψ–1
i (1 – δ)x)

F(ψ–1
i x)

∑

i∈I+

F
(
ψ–1

i x
)

∼ M
∑

i∈I+

F
(
ψ–1

i x
)
. (4.2)
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For I6(x), it follows from (3.27) that, for all x ≥ max{D′, D4, D8},

I6(x) ≤ P
(∑

i∈I–

|ψi|X–
i > δx

)

<
(

C8

1 – p2
+ 1

)

C4δ
–p2ε

∞∑

i=1

F
(|ψi|–1x

)
. (4.3)

Thus, substituting (4.2) and (4.3) into (4.1) and considering the arbitrariness of 0 < ε < 1,
we show that

P

( ∞∑

i=1

ψiXi > x

)

� M
∑

i∈I+

F
(
ψ–1

i x
)
. (4.4)

Secondly, we consider the lower bound of Eq. (2.4). By Lemma 3.1 and (3.19), we derive
that

P

( ∞∑

i=1

ψiXi > x

)

= P
(∑

i∈I+

ψiXi +
∑

i∈I–

ψiXi > x
)

≥ P
(∑

i∈I+

ψiXi > (1 + δ)x,
∑

i∈I–

ψiXi ≥ –δx
)

∼ P
(∑

i∈I+

ψiXi > (1 + δ)x
)

∼
∑

i∈I+

P
(
ψiXi > (1 + δ)x

)

� S
∑

i∈I+

F
(
ψ–1

i (1 + δ)x
)

≥ S inf
0<ψi<1

F(ψ–1
i (1 + δ)x)

F(ψ–1
i x)

∑

i∈I+

F
(
ψ–1

i x
)

∼ S
∑

i∈I+

F
(
ψ–1

i x
)
, (4.5)

where in the third step we used the fact that the event {ω :
∑

i∈I– ψiXi ≥ –δx} increases
to a certain event as x tends to infinity. Therefore, we combine (4.4) and (4.5) to conclude
that Eq. (2.4) holds. �

Proof of Corollary 2.1 By (3.29) and the proof of Theorem 2.1, we only need to prove

I5(x) �
∑

i∈I+

Fi
(
ψ–1

i x
)

(4.6)

and

P

( ∞∑

i=1

ψiXi > x

)

�
∑

i∈I+

Fi
(
ψ–1

i x
)
. (4.7)
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Firstly, we consider (4.6). By Lemma 3.2, (3.3) and (3.32), we conclude that, for any p2 >
J+
F , there exist some large positive constants C9 and D9 such that, for all x ≥ max{D3, D9},

I5(x) ∼
∑

i∈I+

Fi
(
ψ–1

i (1 – δ)x
)

�
∑

i∈I+,i≤n0

Fi
(
ψ–1

i (1 – δ)x
)

+ M
∑

i∈I+,i≥n0+1

F
(
ψ–1

i (1 – δ)x
)

�
∑

i∈I+,i≤n0

Fi
(
ψ–1

i x
)

+ C3C9M(1 – δ)–p2εF(x),

which, along with the arbitrariness of 0 < ε < 1, proves (4.6).
Secondly, we consider (4.7). Similarly to (4.5), by Theorem 3.1, (3.3) and (3.33), we con-

clude that

P

( ∞∑

i=1

ψiXi > x

)

�
∑

i∈I+

Fi
(
ψ–1

i (1 + δ)x
)

≥
∑

i∈I+,i≤n0

Fi
(
ψ–1

i (1 + δ)x
)

∼
∑

i∈I+,i≤n0

Fi
(
ψ–1

i x
)

�
∑

i∈I+

F
(
ψ–1

i x
)

– M
∑

i∈I+,i≥n0+1

F
(
ψ–1

i x
)

≥
∑

i∈I+

F
(
ψ–1

i x
)

– C3MεF(x),

which, along with the arbitrariness of 0 < ε < 1, proves (4.7). �
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