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Abstract
In this paper, we provide a new version for the Gronwall inequality in the frame of the
generalized proportional fractional derivative. Prior to the main results, we introduce
the generalized proportional fractional derivative and expose some of its features. As
an application, we accommodate the newly defined derivative to prove the
uniqueness and obtain a bound in terms of Mittag-Leffler function for the solutions of
a nonlinear delay proportional fractional system. An example is presented to
demonstrate the applicability of the theory.
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1 Introduction
Integral inequalities are a fabulous instrument for developing the qualitative and quanti-
tative properties of differential equations. There has been a continuous growth of interest
in such an area of research in order to meet the needs of various applications of these
inequalities. Such inequalities have been studied by many researches who in turn used di-
verse techniques for the sake of exploring and proposing these inequalities [1–3]. One of
the most important inequalities is the distinguished Gronwall inequality [4–8].

On the other hand, the fractional calculus, which is considered to be the generalization
of the traditional calculus dealing with nonnegative integer order integration and differ-
entiation, has been one of the most rapidly growing fields of research because of the inter-
esting results ascertained when the fractional operators are applied to model real world
problems [9–14]. An attracting particularization of this field is that there are many frac-
tional operators, and this allows the researchers to select the most suitable operator for
the sake of modeling the problem under investigation. Besides, because of its simplicity in
applications, researchers have paid more attention to recently discovered fractional oper-
ators without singular kernels [15, 16], and then many articles considering these types of
fractional operators have recently come into view.

In parallel to the increasing interests in the theory of fractional differential equations,
many researchers have extended these mathematical inequalities to differential equations
containing fractional derivatives involving singular and nonsingular kernels. We refer here
to some of these results [17–28]. Following this tendency, we provide a new version for
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Gronwall inequality in the frame of the generalized proportional fractional (GPF) deriva-
tives. More precisely, we prove the following result: If we have

u(t) ≤ v(t) + ραΓ (α)w(t)
(

0Iα,ρu
)
(t), (1)

then

u(t) ≤ v(t) +
∫ t

0

{ ∞∑

m=1

(w(t)Γ (α))m

Γ (mα)
e

ρ–1
ρ (t–s)(t – s)mα–1v(s)

}

ds, t ∈ [0, T), (2)

where 0Iα,ρ is the proportional fractional integral of order α,ρ > 0, u, v are nonnegative
locally integrable functions on [0, T), and w(t) is a nonnegative, nondecreasing, and con-
tinuous function defined on t ∈ [0, T) such that w(t) ≤ M, where M is a constant. The
peculiarity of the proportional fractional operators is that their kernels contain an expo-
nential term that comes out naturally in addition to the kernel that appears in the tradi-
tional fractional operators.

The structure of the paper is organized as follows: Sect. 2 is devoted to providing essen-
tial preliminaries on the GPF derivatives and integrals as well as stating some fundamental
lemmas that will be used in the subsequent sections. Section 3 provides the Gronwall in-
equality within the GPF derivatives. Section 4 discusses some applications on the unique-
ness of solutions for a delay system. Moreover, a bound for the solutions is also provided.
An example that examines the theoretical results is provided at the end of the paper. Sec-
tion 5 concludes our results.

2 Preliminaries on GPF derivative and integral
In this section, we set forth some terminologies, definitions, and essential lemmas that will
be used throughout the remaining part of the paper. For their justifications and proofs, the
reader can consult the paper [29].

A limit-based definition of the so-called conformable derivative was given in [30, 31] as
follows:

Dαf (t) = lim
ε→0

f (t + εt1–α) – f (t)
ε

. (3)

It is obvious that when the function f is differentiable, the conformable derivative of f
reads

Dαf (t) = t1–αf ′(t). (4)

The main drawback of this derivative is that when the order of the derivative is 0 or α → 0,
the function f is not obtained. That is, D0f �= f . In order to overcome this problem and
benefit from the proportional derivative for controller output with two tuning parameters
[32], Anderson et al. defined the modified conformable derivative as follows.

Definition 1 For ρ ∈ [0, 1], let the functions κ0,κ1 : [0, 1] × R → [0,∞) be continuous
such that, for all t ∈R, we have

lim
ρ→0+

κ1(ρ, t) = 1, lim
ρ→0+

κ0(ρ, t) = 0, lim
ρ→1–

κ1(ρ, t) = 0, lim
ρ→1–

κ0(ρ, t) = 1,
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and κ1(ρ, t) �= 0, ρ ∈ [0, 1), κ0(ρ, t) �= 0, ρ ∈ (0, 1]. Then, the proportional derivative of order
ρ is defined by

Dρ f (t) = κ1(ρ, t)f (t) + κ0(ρ, t)f ′(t). (5)

For more details about the control theory of the proportional derivative and its compo-
nent functions κ0 and κ1, we refer the reader to [32, 33]. We shall restrict ourselves to the
case when κ1(ρ, t) = 1 – ρ and κ0(ρ, t) = ρ . Therefore, (5) becomes

Dρ f (t) = (1 – ρ)f (t) + ρf ′(t). (6)

It is easy to figure out that limρ→0+ Dρ f (t) = f (t) and limρ→1– Dρ f (t) = f ′(t). Thus, the
derivative (6) is somehow considered to be more general than the conformable deriva-
tive which evidently does not tend to the original functions as ρ tends to 0.

The GPF integral and derivative are defined as follows.

Definition 2 ([29]) For 0 < ρ ≤ 1, α ∈C, and Re(α) > 0, the GPF integral of f of order α is

(
aIα,ρ f

)
(t) =

1
ραΓ (α)

∫ t

a
e

ρ–1
ρ (t–τ )(t – τ )α–1f (τ ) dτ = ρ–αe

ρ–1
ρ t(

aIα
(
e

1–ρ
ρ t f (t)

))
. (7)

Definition 3 ([29]) For 0 < ρ ≤ 1, α ∈ C, Re(α) ≥ 0, and n = [Re(α)] + 1, then the GPF
derivative of f of order α is

(
aDα,ρ f

)
(t) =

(
Dn,ρ

aIn–α,ρ f
)
(t) =

Dn,ρ
t

ρn–αΓ (n – α)

∫ t

a
e

ρ–1
ρ (t–τ )(t – τ )n–α–1f (τ ) dτ . (8)

If we let ρ = 1 in Definition 3, then one can obtain the left Riemann–Liouville fractional
derivative [11, 13, 14]. Moreover, it is obvious that

lim
α→0

(
Dα,ρ f

)
(t) = f (t) and lim

α→1

(
Dα,ρ f

)
(t) =

(
Dρ f

)
(t).

Proposition 1 ([29]) Let α,β ∈ C be such that Re(α) ≥ 0 and Re(β) > 0. Then, for any
ρ > 0, we have

(1) (aIα,ρe
ρ–1
ρ t(t – a)β–1)(x) = Γ (β)

Γ (β+α)ρα e
ρ–1
ρ x(x – a)α+β–1, Re(α) > 0.

(2) (aDα,ρe
ρ–1
ρ t(t – a)β–1)(x) = ραΓ (β)

Γ (β–α) e
ρ–1
ρ x(x – a)β–1–α , Re(α) ≥ 0.

In the following lemmas, we expose some features of the GPF operator.

Lemma 1 ([29]) If ρ > 0, Re(α) > 0, and Re(β) > 0, then, for f is continuous and defined for
t ≥ a, we have

(
aIα,ρ

aIβ ,ρ f
)
(t) =

(
aIβ ,ρ

aIα,ρ f
)
(t) =

(
aIα+β ,ρ f

)
(t). (9)

Lemma 2 ([29]) Let 0 ≤ m < [Re(α)] + 1 and f be integrable in each interval [a, t], t > a.
Then

(
aDm,ρ

aIα,ρ f
)
(t) =

(
aIα–m,ρ f

)
(t). (10)
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Corollary 1 ([29]) Let 0 < Re(β) < Re(α) and m – 1 < Re(β) ≤ m. Then we have

(
aDβ ,ρ

aIα,ρ f
)
(t) =

(
aIα–β ,ρ f

)
(t).

Lemma 3 ([29]) Let f be integrable on t ≥ a and Re(α) > 0, ρ > 0, n = [Re(α)] + 1. Then we
have

(
aDα,ρ

aIα,ρ f
)
(t) = f (t).

Lemma 4 ([29]) Let Re(α) > 0, n = [Re(α)], f ∈ L1(a, b), and (aIα,ρ f )(t) ∈ ACn[a, b]. Then

(
aIα,ρ

aDα,ρ f
)
(t) = f (t) – e

ρ–1
ρ (t–a)

n∑

j=1

(
aIj–α,ρ f

)(
a+) (t – a)α–j

ρα–jΓ (α + 1 – j)
. (11)

Definition 4 ([29]) For 0 < ρ ≤ 1 and α ∈C with Re(α) ≥ 0, we define the GPF derivative
of Caputo type starting at a by

(C
a Dα,ρ f

)
(t) =

(
aIn–α,ρDn,ρ f

)
(t)

=
1

ρn–αΓ (n – α)

∫ t

a
e

ρ–1
ρ (t–τ )(t – τ )n–α–1(Dn,ρ f

)
(τ ) dτ , (12)

where n = [Re(α)] + 1.

Proposition 2 ([29]) Let α,β ∈ C be such that Re(α) > 0 and Re(β) > 0. Then, for any
ρ ∈ (0, 1] and n = [Re(α)] + 1, we have

(C
a Dα,ρe

ρ–1
ρ t(t – a)β–1)(x) =

ραΓ (β)
Γ (β – α)

e
ρ–1
ρ x(x – a)β–1–α , Re(α) ≥ n. (13)

For k = 0, 1, . . . , n – 1, we have (C
a Dα,ρe

ρ–1
ρ t(t – a)k)(x) = 0.

Lemma 5 ([29]) For ρ ∈ (0, 1] and n = [Re(α)] + 1, we have

(
aIα,ρC

a Dα,ρ f
)
(t) = f (t) –

n–1∑

k=0

(Dk,ρ f )(a)
ρkΓ (k + 1)

(t – a)ke
ρ–1
ρ (t–a). (14)

We state the following relation that links the Caputo and Riemann–Liouville GPF
derivatives.

Proposition 3 ([29]) For any α ∈ C with Re(α) > 0 and ρ ∈ (0, 1], n = [Re(α)] + 1, we have

(C
a Dα,ρ f

)
(t) =

(
aDα,ρ f

)
(t) –

n–1∑

k=0

ρα–k

Γ (k + 1 – α)
(t – a)k–αe

ρ–1
ρ (t–a)(Dk,ρ f

)
(a). (15)

3 Gronwall inequality via GPF derivative
In this section, we prove a Gronwall inequality within GPF derivative. Besides, a particular
version expressed by means of Mittag-Leffler functions is provided.



Alzabut et al. Journal of Inequalities and Applications        (2019) 2019:101 Page 5 of 12

Lemma 6 (Generalized proportional fractional Gronwall inequality) Let α,ρ > 0, u(t), v(t)
be nonnegative functions locally integrable on [0, T) and w(t) be a nonnegative, nonde-
creasing, and continuous function defined on t ∈ [0, T) such that w(t) ≤ M, where M is a
constant. If

u(t) ≤ v(t) + ραΓ (α)w(t)
(

0Iα,ρu
)
(t), (16)

then

u(t) ≤ v(t) +
∫ t

0

{ ∞∑

m=1

(w(t)Γ (α))m

Γ (mα)
e

ρ–1
ρ (t–s)(t – s)mα–1v(s)

}

ds, t ∈ [0, T). (17)

Proof Define

Bφ(t) = w(t)
∫ t

0
e

ρ–1
ρ (t–s)(t – s)α–1φ(s), t ∈ [0, T).

It follows that u(t) ≤ v(t)+Bu(t), which implies that u(t) ≤ ∑m–1
k=0 Bkv(t)+Bmu(t). We claim

that

Bmu(t) ≤
∫ t

0

(w(t)Γ (α))m

Γ (mα)
e

ρ–1
ρ (t–s)(t – s)mα–1u(s) ds (18)

and Bmu(t) → 0 as m → ∞ for t ∈ [0, T). It is easy to see that (18) is valid for m = 1.
Assume that it is true for m = k, that is,

Bku(t) ≤
∫ t

0

(w(t)Γ (α))k

Γ (kα)
e

ρ–1
ρ (t–s)(t – s)kα–1u(s) ds.

If m = k + 1, then

Bk+1u(t) = B
(
Bku(t)

)

≤ w(t)
∫ t

0
e

ρ–1
ρ (t–s)(t – s)α–1

[∫ s

0

(w(s)Γ (α))k

Γ (kα)
e

ρ–1
ρ (s–ν)(s – ν)kα–1u(ν) dν

]
ds

=
wk+1(t)Γ k(α)

Γ (kα)

∫ t

0

[∫ t

ν

e
ρ–1
ρ (t–s)e

ρ–1
ρ (s–ν)(t – s)α–1(s – ν)kα–1 ds

]
u(ν) dν. (19)

Upon changing variables s = ν + z(t – ν), however, we obtain

∫ t

ν

e
ρ–1
ρ (t–ν)(t – s)α–1(s – ν)kα–1 ds = (t – ν)kα+α–1e

ρ–1
ρ (t–ν)

∫ 1

0
(1 – z)α–1zkα–1 dz

=
Γ (α)Γ (kα)
Γ ((k + 1)α)

e
ρ–1
ρ (t–ν)(t – ν)(k+1)α–1.

Therefore, (19) becomes

Bk+1u(t) ≤ wk+1(t)Γ k+1(α)
Γ ((k + 1)α)

∫ t

0
e

ρ–1
ρ (t–ν)(t – ν)(k+1)α–1u(ν) dν. (20)
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Furthermore, one can figure out that

Bmu(t) ≤
∫ t

0

(MΓ (α))m

Γ (mα)
e

ρ–1
ρ (t–s)(t – s)mα–1u(s) ds → 0 as m → ∞, t ∈ [0, T).

To complete the proof, we let m → ∞ in

u(t) ≤
m–1∑

k=0

Bkv(t) + Bmu(t) ≤ v(t) +
m–1∑

k=1

Bkv(t) + Bmu(t)

to reach at u(t) ≤ v(t) +
∑∞

k=1 Bkv(t). By the help of the semigroup property and the defi-
nition of B, we get (17). This completes the proof. �

For w(t) ≡ b in Lemma 6, we have the following corollary.

Corollary 2 Let α,ρ > 0, b > 0, u(t), v(t) be nonnegative functions locally integrable on
[0, T) and w(t) ≡ b ≥ 0. If

u(t) ≤ v(t) + ραΓ (α)b
(

0Iα,ρu
)
(t), (21)

then

u(t) ≤ v(t) +
∫ t

0

{ ∞∑

m=1

(bΓ (α))m

Γ (mα)
e

ρ–1
ρ (t–s)(t – s)mα–1v(s)

}

ds, t ∈ [0, T). (22)

Let Eα(λ, z) =
∑∞

k=0
λk zkα

Γ (αk+1) be the Mittag-Leffler function in one parameter which was
introduced in [11]. The following immediate consequence of Lemma 6 plays a key role in
our later analysis.

Corollary 3 Under the hypothesis of Lemma 6, assume further that v(t) is a nondecreasing
function for t ∈ [0, T), then

u(t) ≤ v(t)Eα

(
w(t)Γ (α), t

)
, t ∈ [0, T). (23)

Proof From (17) and the assumption that v(t) is a nondecreasing function for t ∈ [0, T),
we may write

u(t) ≤ v(t)

[

1 +
∫ t

0

{ ∞∑

m=1

(w(t)Γ (α))m

Γ (mα)
e

ρ–1
ρ (t–s)(t – s)mα–1

}

ds

]

or

u(t) ≤ v(t)

[

1 +
∞∑

m=1

(
ραw(t)Γ (α)

)m 1
ρmαΓ (mα)

∫ t

0
e

ρ–1
ρ (t–s)(t – s)mα–1 ds

]

.
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Using Proposition 1 and e
ρ–1
ρ (t–s) ≤ 1, it follows that

u(t) ≤ v(t)

[

1 +
∞∑

m=1

(
ραw(t)Γ (α)

)m tmα

ρmαΓ (mα + 1)

]

= v(t)

[

1 +
∞∑

m=1

(w(t)Γ (α))mtmα

Γ (mα + 1)

]

= v(t)
∞∑

m=0

(w(t)Γ (α))mtmα

Γ (mα + 1)

= v(t)Eα

(
w(t)Γ (α), t

)
.

The proof is complete. �

4 Applications of Gronwall inequality via GPF derivative
Let Rm be an m-dimensional Euclidean space. We prove our main results for the system

⎧
⎨

⎩
(C
0 Dα,ρx)(t) = e

ρ–1
ρ t[A0x(t) + A1x(t – τ ) + f (t, x(t), x(t – τ ))], t ∈ [0, T],

x(t) = ϕ(t), t ∈ [–τ , 0],
(24)

where C
0 Dα,ρ denotes the GPF derivative of Caputo type of order α ∈ (0, 1), the state vector

x : [–τ , T] → R
m, the constant matrices A0 and A1 are of appropriate dimensions, the

nonlinearity f : [0, T] × R
m × R

m → R
m, and the initial function ϕ : [–τ , 0] → R

m. By
virtue of the results obtained in the previous sections, we prove the uniqueness and obtain
an estimate for the solutions of system (24). Moreover, a numerical example is presented
to demonstrate the applicability of the main results.

Let | · | be any Euclidean norm and ‖ · ‖ be the matrix norm induced by this vector.
Denote by C := C([–τ , 0],Rm) the set of all continuous functions. Clearly, the space C is a
Banach space induced by the norm ‖z‖C := supt∈[–τ ,0] |z(t)|.

Throughout the remaining part of the paper, we make use of the following assumptions:
(H.1) The nonlinearity f ∈ C([0, T] ×R

m ×R
m,Rm) satisfies the Lipschitz condition.

That is, there exists a positive constant L1 > 0 such that

∥
∥f

(
t, x(t), x(t – τ )

)
– f

(
t, y(t), y(t – τ )

)∥∥

≤ L1
(∥∥x(t) – y(t)

∥
∥ +

∥
∥x(t – τ ) – y(t – τ )

∥
∥)

for t ∈ [0, T].
(H.2) There exists a positive constant L2 such that ‖f (t, x(t), x(t – τ ))‖ ≤ L2.
In what follows, we provide a representation for the solutions of system (24) that will be

useful in the subsequent analysis.

Lemma 7 The function x : [–τ , 0] →R
m is a solution of system (24) if and only if

⎧
⎪⎪⎨

⎪⎪⎩

x(t) = ϕ(0)e
ρ–1
ρ t

+ (0Iα,ρe
ρ–1
ρ s[A0x(s) + A1x(s – τ ) + f (s, x(s), x(s – τ ))])(t), t ∈ [0, T],

x(t) = ϕ(t), t ∈ [–τ , 0].

(25)
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Proof For t ∈ [–τ , 0], it is clear that x(t) = ϕ(t) is the solution of (24). We apply the operator
0Dα,ρ on both sides of equation (25) with Proposition 1 and Lemma 3 to obtain, for t ∈
[0, T],

(
0Dα,ρx

)
(t) = ϕ(0)

ραe
ρ–1
ρ tt–α

Γ (1 – α)
+ e

ρ–1
ρ t[A0x(t) + A1x(t – τ ) + f

(
t, x(t), x(t – τ )

)]
.

By using the relation of the Caputo and Riemann–Liouville GPF derivatives in Proposi-
tion 3, it follows that

(C
0 Dα,ρx

)
(t) = e

ρ–1
ρ t[A0x(t) + A1x(t – τ ) + f

(
t, x(t), x(t – τ )

)]
.

For system (24), we can see that x(t) = ϕ(t), t ∈ [–τ , 0]. For t ∈ [0, T], we apply the operator
0Iα,ρ on both sides of equation (24) to get

(
0Iα,ρC

0 Dα,ρx
)
(t) =

(
0Iα,ρe

ρ–1
ρ s[A0x(s) + A1x(s – τ ) + f

(
s, x(s), x(s – τ )

)])
(t).

In view of Lemma 5, one can easily see that

x(t) = ϕ(0)e
ρ–1
ρ t +

(
0Iα,ρe

ρ–1
ρ s[A0x(s) + A1x(s – τ ) + f

(
s, x(s), x(s – τ )

)])
(t). �

4.1 Uniqueness of solutions
The first main application in this paper is provided in the following theorem.

Theorem 1 Let condition (H.1) hold. If x and y are two solutions for system (24), then
x = y.

Proof Let x and y be two solutions of system (24). Denote z = x – y. Then, one can easily
figure out that z(t) = 0 for t ∈ [–τ , 0]. This implies that system (24) has a unique solution
for t ∈ [–τ , 0].

For t ∈ [0, T], however, we have

z(t) =
(

0Iα,ρe
ρ–1
ρ s[A0z(s) + A1z(s – τ ) + f

(
s, x(s), x(s – τ )

)
– f

(
s, y(s), y(s – τ )

)])
(t).

If t ∈ [0, τ ], then z(t – τ ) = 0. Therefore,

z(t) =
(

0Iα,ρe
ρ–1
ρ s[A0z(s) + f

(
s, x(s), x(s – τ )

)
– f

(
s, y(s), y(s – τ )

)])
(t). (26)

This implies

∥∥z(t)
∥∥ ≤ (

0Iα,ρe
ρ–1
ρ s[‖A0‖

∥∥z(s)
∥∥ +

∥∥f
(
s, x(s), x(s – τ )

)
– f

(
s, y(s), y(s – τ )

)∥∥])
(t)

≤ (0Iα,ρe
ρ–1
ρ s[‖A0‖

∥∥z(s)
∥∥ + L1

(∥∥x(s) – y(s)
∥∥ +

∥∥x(s – τ ) – y(s – τ )
∥∥])

(t)

=
(

0Iα,ρe
ρ–1
ρ s[(‖A0‖ + L1

)∥∥z(s)
∥∥ + L1

∥∥z(s – τ )
∥∥])

(t)

=
(‖A0‖ + L1

)(
0Iα,ρe

ρ–1
ρ s∥∥z(s)

∥∥)
(t). (27)
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By applying the result of Corollary 3, we have

∥
∥z(t)

∥
∥ ≤ (0) · Eα

(‖A0‖ + L1, t
)
, (28)

which implies that x(t) = y(t) for t ∈ Iτ .
For t ∈ [τ , T], we get

z(t) =
(

0Iα,ρe
ρ–1
ρ s[A0z(s) + f

(
s, x(s), x(s – τ )

)
– f

(
s, y(s), y(s – τ )

)])
(t)

+
(

0Iα,ρe
ρ–1
ρ s[A1z(s – τ )

])
(t). (29)

It follows that

∥∥z(t)
∥∥ ≤ (

0Iα,ρe
ρ–1
ρ s[‖A0‖

∥∥z(s)
∥∥ +

∥∥f
(
s, x(s), x(s – τ )

)
– f

(
s, y(s), y(s – τ )

)∥∥])
(t)

+
(

0Iα,ρe
ρ–1
ρ s[‖A1‖

∥∥z(s – τ )
∥∥])

(t)

≤ (‖A0‖ + L1
)(

0Iα,ρe
ρ–1
ρ s∥∥z(s)

∥∥)
(t) +

(‖A1‖ + L1
)(

0Iα,ρe
ρ–1
ρ s∥∥z(s – τ )

∥∥)
(t).

Let z̄(t) = supθ∈[–τ ,0] ‖z(t + θ )‖, then we get

z̄(t) ≤ (‖A0‖ + L1
)(

0Iα,ρe
ρ–1
ρ sz̄(s)

)
(t) +

(‖A1‖ + L1
)(

0Iα,ρe
ρ–1
ρ sz̄(s)

)
(t)

≤ (‖A0‖ + ‖A1‖ + 2L1
)(

0Iα,ρe
ρ–1
ρ sz̄(s)

)
(t). (30)

By applying the result of Corollary 3, we obtain

∥
∥z(t)

∥
∥ ≤ z̄(t) ≤ (0) · Eα

(‖A0‖ + ‖A1‖ + 2L1, t
)
. (31)

Hence, we end up with x(t) = y(t) for t ∈ [–τ , T]. �

4.2 Bound for solutions
In this subsection, we provide a bound for the solution of system (24).

Theorem 2 Let condition (H.2) hold. Then the following estimate for the solution x(t) of
system (24) is valid:

∥∥x(t)
∥∥ ≤

[
‖ϕ‖+

(
L2 +

(‖A0‖+‖A1‖
)‖ϕ‖) tα

ραΓ (α + 1)

]
Eα

((‖A0‖+‖A1‖
)
Γ (α), t

)
. (32)

Proof For t ∈ [0, T], the solution of system (24) has the form

x(t) = ϕ(0)e
ρ–1
ρ t +

(
0Iα,ρe

ρ–1
ρ s[A0x(s) + A1x(s – τ ) + f

(
s, x(s), x(s – τ )

)])
(t). (33)

Using the fact e
ρ–1
ρ t ≤ 1 for all t ∈ [0, T], it follows that

∥∥x(t)
∥∥ ≤ ∥∥ϕ(0)

∥∥ +
(

0Iα,ρe
ρ–1
ρ s∥∥A0x(s) + A1x(s – τ ) + f

(
s, x(s), x(s – τ )

)∥∥)
(t)

≤ ‖ϕ‖ + ‖A0‖
(

0Iα,ρe
ρ–1
ρ s∥∥x(s)

∥∥)
(t) + ‖A1‖

(
0Iα,ρe

ρ–1
ρ s∥∥x(s – τ )

∥∥)
(t)

+
(

0Iα,ρe
ρ–1
ρ s∥∥f

(
s, x(s), x(s – τ )

)∥∥)
(t).
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By assumption (H.2) and Proposition 1, the above inequality can be rewritten as follows:

∥∥x(t)
∥∥ ≤ ‖ϕ‖ +

(‖A0‖ + ‖A1‖
)(

0Iα,ρe
ρ–1
ρ s

[
sup

θ∈[–τ ,0]

∥∥x(s + θ )
∥∥ + ‖ϕ‖

])
(t)

+ L2
(

0Iα,ρe
ρ–1
ρ s(1)

)
(t)

= ‖ϕ‖ +
(
L2 +

(‖A0‖ + ‖A1‖
)‖ϕ‖) tα

ραΓ (α + 1)

+
(‖A0‖ + ‖A1‖

)(
0Iα,ρe

ρ–1
ρ s

[
sup

θ∈[–τ ,0]

∥
∥x(s + θ )

∥
∥
])

(t).

Let v(t) = ‖ϕ‖+(L2 +(‖A0‖+‖A1‖)‖ϕ‖) Tα

ραΓ (α+1) , then v is a nondecreasing function. There-
fore, Corollary 3 with w(t) = ‖A0‖ + ‖A1‖ implies that

∥
∥x(t)

∥
∥ ≤ sup

θ∈[–τ ,0]

∥
∥x(t + θ )

∥
∥ ≤ v(t)Eα

((‖A0‖ + ‖A1‖
)
Γ (α), t

)
. (34)

Hence, the solution x of (24) satisfies the estimate

∥∥x(t)
∥∥ ≤

[
‖ϕ‖+

(
L2 +

(‖A0‖+‖A1‖
)‖ϕ‖) tα

ραΓ (α + 1)

]
Eα

((‖A0‖+‖A1‖
)
Γ (α), t

)
. (35)

The proof is complete. �

Example 1 Consider the nonlinear delay proportional fractional system of the form

⎧
⎨

⎩
(C
0 D

1
2 , 1

3 x)(t) = e–2t[3x(t) + x(t – 2) + 2 cos x(t) – cos x(t – 2)], t ∈ [0, 1],

x(t) = sin 2t, t ∈ [–2, 0].
(36)

This corresponds to equation (24) with α = 1/2, ρ = 1/3, A0 = 3, A1 = 1, T = 1, and τ = 2.
The nonlinearity has the form f (t, x(t), x(t – τ )) = 2 cos x(t) – cos x(t – 2). Therefore, we
have

∥∥f
(
t, x(t), x(t – τ )

)
– f

(
t, y(t), y(t – τ )

)∥∥

=
∥
∥2 cos x(t) – cos x(t – 2) – 2 cos y(t) + cos y(t – 2)

∥
∥

≤ 2
(∥∥cos x(t) – cos y(t)

∥
∥ +

∥
∥cos x(t – 2) – cos y(t – 2)

∥
∥)

.

Then assumption (H.1) holds with L1 = 2. By the consequence of Lemma 7, system (36)
has a unique solution. Moreover,

∥∥f
(
t, x(t), x(t – τ )

)∥∥ =
∥∥2 cos x(t) – cos x(t – 2)

∥∥ ≤ 3,

which implies that assumption (H.2) is satisfied with L2 = 3. By Theorem 2, the solution x
of system (36) has the estimate

∥∥x(t)
∥∥ ≤

[
1 +

24
√

3√
π

t
1
2

] ∞∑

k=0

(4
√

π )kt k
2

Γ ( k
2 + 1)

.



Alzabut et al. Journal of Inequalities and Applications        (2019) 2019:101 Page 11 of 12

5 Conclusion
One of the most important issues in the theory of differential equations is finding quali-
tative properties of these equations. Integral equations are significant tools that facilitate
exploring such properties. In this paper, we established the Gronwall inequality within the
scope of fractional proportional operators. This inequality helped in proving the unique-
ness of solutions to delay differential equations involving fractional proportional deriva-
tives and in finding bounds of these solutions. In addition to what has been done in this
paper, one can use the established Gronwall inequality to discuss some other qualitative
properties of these solutions such as the stability in the sense of Ulam or Ulam–Hyers.
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