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Abstract
In the research paper, the authors exploit the definition of a new class of fractional
integral operators, recently proposed by Jarad et al. (Adv. Differ. Equ. 2017:247, 2017),
to define a new class of generalized k-fractional integral operators and develop a
generalization of the reverse Minkowski inequality involving the newly introduced
fractional integral operators. The two new theorems correlating with this inequality,
including statements and verifications of other inequalities via the suggested
k-fractional conformable integral operators, are presented.
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1 Introduction
The calculus of non-integer order, generally referred to as fractional calculus, deals with
the generalization of integrals and derivatives operators, in particular inequalities involv-
ing fractional integrals. Many definitions of fractional integral operators exist in the lit-
erature, for example: Riemann–Liouville fractional integral, Hadamard integral, Liouville
integral, Weyl, Erdélyi–Kober and Katugampola fractional integral [2–5]. Recently, Khalil
et al. [6] and Adeljawad [7] presented a new class of fractional operators, namely the
local fractional conformable integral and derivative operators. Using such fractional in-
tegral operators, one generalizes the fractional operators by involving new parameters
and obtains the related inequalities: Hadamard, Hermite–Hadamard, Opial, Grüss, Os-
trowski, among others [8–14]. For instance, Katugampola [15] suggested a generalized
fractional integral operator unifying other well-known existing ones: Riemann–Liouville,
Hadamard, Weyl, Liouville, and Erdélyi–Kober. Jarad et al. [1] presented the generalized
conformable derivatives and integral operators by the standard fractional calculus iter-
ation procedure on fractional conformable operators. Such generalizations motivate the
upcoming research to present more innovative ideas to unify the fractional operators and
obtain the inequalities involving such generalized fractional operators.

Applications of integral inequalities are important in numerous fields of science: math-
ematics, physics, engineering, among others; particularly we mention initial-value prob-
lems, stability of linear transformation, integral differential equations, and impulse equa-
tions [16, 17]. We refer the readers to [10, 18, 19] for such applications in several branches
of mathematics and the references therein. Inequalities regarding fractional integral oper-
ators accumulate many functional applications in different areas of science. Moreover, the
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theory of fractional calculus plays an important role in solving differential equations, inte-
gral equations, and integral-differential equations, including many other special function
problems.

Thus, the new results involving integral inequalities have been possible; consequently,
some applications have been made [16, 17]. We mention a few of them, i.e., the inequalities
of Minkowski, Holder, Hardy, Hermite–Hadamard, Jensen, among others [20–26]. Such
applications of fractional integral operators motivate us to present the generalization of
the existing fractional conformable operators and generalize the reverse Minkowski in-
equality [27–31] involving generalized k-fractional conformable integrals.

The paper is categorized as follows. In Sect. 2, we exhibit the notations and basic def-
initions of fractional integrals as well as our newly defined generalized k-fractional con-
formable integrals. We prove the theorems regarding the reverse Minkowski inequality
as well as the appropriate spaces for such operators. In Sect. 3, we propose our main re-
sults consisting of the reverse Minkowski inequality via the generalized k-fractional con-
formable integral. In Sect. 4, we present the related inequalities using this fractional inte-
gral. The last section containing concluding remarks closes the article.

2 Notations and preliminaries
This section recalls some notations and useful definitions of classical fractional calcu-
lus as well as the reverse Minkowski inequality theorem using the classical Riemann in-
tegral addressed by Set et al. [21] and its relevant generalization via Riemann–Liouville
and Hadamard fractional integrals which were motivation for the study. Furthermore, the
fractional conformable integrals are discussed and a theorem is presented so as to recover
particular cases.

Definition 1 A function f (z) is said to be in Lp[a, b] if

(∫ b

a

∣∣f (z)
∣∣p dz

) 1
p

< ∞, 1 ≤ p < ∞.

Theorem 1 Let f1, f2 ∈ Lp[a, b] be two positive functions, with 1 ≤ p ≤ ∞, 0 <
∫ b

a f p
1 (t) dt <

∞, and 0 <
∫ b

a f p
2 (t) dt < ∞. If 0 < m ≤ f1(t)

f2(t) ≤ M for m, M ∈R
+ and ∀t ∈ [a, b], then

(∫ b

a
f p
1 (t) dt

) 1
p

+
(∫ b

a
f p
2 (t) dt

) 1
p

≤ c1(
∫ b

a

(
f p
1 + f p

2 (t) dt
) 1

p , (2.1)

with c1 = M(m+1)+(M+1)
(m+1)(M+1) [21].

Theorem 2 Let f1, f2 ∈ Lp[a, b] be two positive functions, with 1 ≤ p ≤ ∞, 0 <
∫ b

a f p
1 (t) dt <

∞, and 0 <
∫ b

a f p
2 (t) dt < ∞. If 0 < m ≤ f1(t)

f2(t) ≤ M for m, M ∈R
+ and ∀t ∈ [a, b], then

(∫ b

a
f p
1 (t) dt

) 2
p

+
(∫ b

a
f p
2 (t) dt

) 2
p

≥ c2

(∫ b

a
f p
1 (t) dt

) 1
p
(∫ b

a
f p
2 (t) dt

) 2
p

, (2.2)

with c2 = (m+1)(M+1)
M – 2 [21].
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Definition 2 A function f (z) is said to be in Lp,s[a, b] if

(∫ b

a

∣∣f (z)
∣∣pzs dz

) 1
p

< ∞, 1 ≤ p < ∞, s ≥ 0.

Definition 3 The space Xc,p(a, b) for c ∈ R, a < b and 1 ≤ p < ∞ contains those complex
valued Lebesgue measurable functions g on (a, b) with ‖g‖Xc,p , where

‖g‖Xc,p =
(∫ b

a

∣∣zcf (z)
∣∣p dz

z

) 1
p

(1 ≤ p < ∞),

and for p = ∞,

‖g‖Xc,∞ = sup ess
z∈(a,b)

[
zc∣∣g(z)

∣∣].

Particularly, for c = 1
p , the function space Xc,p(a, b) concurs with the space Lp(a, b) [2].

Definition 4 For α ∈ C, Re(α) > 0, the left Riemann–Liouville fractional integral [2, 4] of
order α starting from a has the following form:

(
Iα

a+ f
)
(T ) =

1
Γ (α)

∫ T

a
f (x)

dx
(T – x)1–α

, (2.3)

while the right Riemann–Liouville fractional integral of [2, 4] order α > 0 ending at b > a
is defined by

(
Iα

b– f
)
(T ) =

1
Γ (α)

∫ b

T
f (x)

dx
(x – T )1–α

. (2.4)

Definition 5 For α ∈ C and Re(α) > 0, the left Riemann–Liouville fractional derivative [1]
of order α starting from a is defined below:

(
Dα

a+ f
)
(T ) =

(
d
dt

)n(
In–α

a+ f
)
(T ), n = [α] + 1. (2.5)

Meanwhile the right Riemann–Liouville fractional derivative [1] of order α > 0 ending at
b > a takes the form

(
Dα

b– f
)
(T ) =

(
–

d
dt

)n(
In–α

b– f
)
(T ). (2.6)

Definition 6 The left Caputo fractional derivative [1] of order α, Re(α) > 0 starting from
a has the form

(CDα
a+ f

)
(T ) =

(
In–α

a+ f (n))(T ), n = [α] + 1, (2.7)

while the right Caputo fractional derivative [1] of order α > 0 ending at b > a takes the
form

(CDα
b– f

)
(T ) =

(
In–α

b– (–1)nf (n))(T ). (2.8)
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Definition 7 The left Hadamard fractional integral [1] of order α ∈ C, Re(α) > 0 starting
from a is given below:

(
Fα

a+ f
)
(T ) =

1
Γ (α)

∫ T

a
(lnT – ln x)α–1f (x)

dx
x

, (2.9)

and the right Hadamard fractional integral [1] of order α ending at b > a takes the form

(
Fα

b– f
)
(T ) =

1
Γ (α)

∫ b

T
(ln x – lnT )α–1f (x)

dx
x

. (2.10)

Definition 8 The left Hadamard fractional derivative [1] of order α ∈ C, Re(α) > 0 starting
from a can be defined as

(
Gα

a+ f
)
(T ) =

(
t

d
dt

)n(
Fn–α

a+ f
)
(T ), n = [α] + 1, (2.11)

and the right Hadamard fractional derivative [1] of order α ending at b > a takes the form

(
Gα

b– f
)
(T ) =

(
–t

d
dt

)n(
Fn–α

b– f
)
(T ). (2.12)

Definition 9 For a real function f ∈ Xc,p(a, b), the generalized left and right Katugampola
fractional integrals [28] of order α ∈R, ρ > 0, Re(α) > 0 take the form

(
Kα,ρ

a+ f
)
(T ) =

ρ1–α

Γ (α)

∫ T

a
f (x)

xρ–1 dx
(T ρ – xρ)1–α

(2.13)

and

(
Kα,ρ

b– f
)
(T ) =

ρ1–α

Γ (α)

∫ b

T
f (x)

xρ–1 dx
(xρ – T ρ)1–α

, (2.14)

respectively.

Definition 10 The generalized left and right Katugampola fractional derivatives [29] of
order α ∈R, ρ > 0, Re(α) > 0 are defined below:

(
Lα,ρ

a+ f
)
(T ) = γ n(Kn–α,ρ

a+ f
)
(T ) =

γ nρn–α

Γ (n – α)

∫ T

a
f (x)

xρ–1 dx
(T ρ – xρ)1+α–n (2.15)

and

(
Lα,ρ

b– f
)
(T ) = (–γ )n(Kn–α,ρ

b– f
)
(T ) =

(–γ )nρn–α

Γ (n – α)

∫ b

T
f (x)

xρ–1 dx
(xρ – T ρ)1+α–n , (2.16)

respectively, where γ = t1–ρ d
dt .

Dahmani [30] verified the reverse Minkowski inequality together with a relevant result
to the inequality associated with Riemann–Liouville fractional integral corresponding to
the following two theorems.
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Theorem 3 For α > 0 and p ≥ 1. Let f1, f2 ∈ L1,s[a, t] be two positive functions in [0,∞) such
that, for all t > a, Iα,s

a+,kf p
1 (t) < ∞ and Iα,s

a+,kf p
2 (t) < ∞. If 0 < m ≤ f1(x)

f2(x) ≤ M for m, M ∈ R
+ and

for all x ∈ [a, t], then

(
Iα,s

a+,kf p
1 (t)

) 1
p +

(
Iα,s

a+,kf p
2 (t)

) 1
p ≤ c1

(
Iα,s

a+,k(f1 + f2)p(t)
) 1

p , (2.17)

with c1 = M(m+1)+(M+1)
(m+1)(M+1) [30].

Theorem 4 For α > 0 and p ≥ 1. Let f2, f2 ∈ L1,s[a, t] be two positive functions in [0,∞) such
that, for all t > a, Iα,s

a+,kf p
1 (t) < ∞ and Iα,s

a+,kf p
2 (t) < ∞. If 0 < m ≤ f1(x)

f2(x) ≤ M for m, M ∈ R
+ and

for all x ∈ [a, t], then

(
Iα,s

a+,kf p
1 (t)

) 2
p +

(
Iα,s

a+,kf p
2 (t)

) 2
p ≥ c2

(
Iα,s

a+,kf p
1 (t)

) 1
p
(
Iα,s

a+,kf p
2 (t)

) 1
p , (2.18)

with c2 = (m+1)(M+1)
M – 2 [30].

Chinchane et al. [31] and Sabrina et al. [32] established the following two theorems for
the reverse Minkowski inequality involving Hadamard fractional integral operator.

Theorem 5 For α > 0 and p ≥ 1. Let f1, f2 ∈ L1,s[a, t] be two positive functions in [0,∞) such
that, for all t > a, Fα,s

a+,kf p
1 (t) < ∞ and Fα,s

a+,kf p
2 (t) < ∞. If 0 < m ≤ f1(x)

f2(x) ≤ M for m, M ∈ R
+

and for all x ∈ [a, t], then

(
Fα,s

a+,kf p
1 (t)

) 1
p +

(
Fα,s

a+,kf p
2 (t)

) 1
p ≤ c1

(
Fα,s

a+,k(f1 + f2)p(t)
) 1

p , (2.19)

with c1 = M(m+1)+(M+1)
(m+1)(M+1) [31, 32].

Theorem 6 For α > 0 and p ≥ 1. Let f2, f2 ∈ L1,s[a, t] be two positive functions in [0,∞) such
that, for all t > a, Fα,s

a+,kf p
1 (t) < ∞ and Fα,s

a+,kf p
2 (t) < ∞. If 0 < m ≤ f1(x)

f2(x) ≤ M for m, M ∈ R
+

and for all x ∈ [a, t], then

(
Fα,s

a+,kf p
1 (t)

) 2
p +

(
Fα,s

a+,kf p
2 (t)

) 2
p ≥ c2

(
Fα,s

a+,kf p
1 (t)

) 1
p
(
Fα,s

a+,kf p
2 (t)

) 1
p , (2.20)

with c2 = (m+1)(M+1)
M – 2 [31, 32].

Chinchane et al. [33] presented the reverse Minkowski inequality by fractional integral
of Saigo, and recently Chinchane [34] proved the same inequality via the k-fractional in-
tegral. In 2017, Jarad et al. [1] introduced a new fractional integral that generalizes the
above mentioned pre-existing fractional integrals. Conclusively, we define the generaliza-
tion of this integral in the k-analogue form in addition to a theorem for the study of their
particular cases.

Definition 11 If f ∈ L1[a, b], then the left fractional conformable integral of order α ≥ 0
defined by Abdeljawad [7] is given by

Iα
a f (x) =

∫ x

a
(t – a)α–1f (t) dt, 0 ≤ a < x < b ≤ ∞, 0 < α < 1. (2.21)
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Definition 12 If f ∈ L1[a, b], then the right fractional conformable integral of order α ≥ 0
defined by Abdeljawad [7] is given by

Iα
b f (x) =

∫ b

x
(b – t)α–1f (t) dt, 0 ≤ a < x < b ≤ ∞, 0 < α < 1. (2.22)

Definition 13 If f ∈ L1,s[a, b], then the generalized left fractional conformable integral
Tα,s

a of order α ∈C, Re(α) > 0 and s > 0, introduced by Jarad et al. [1], is defined by

T
α,s
a f (t) =

s1–α

Γ (α)

∫ t

a

(
(t – a)s – (x – a)s)α–1(x – a)s–1f (x) dx,

0 ≤ a < t < b ≤ ∞, (2.23)

where Γ is the Euler gamma function.

Definition 14 If f ∈ L1,s[a, b], then the generalized right fractional conformable integral
T

α,s
b of order α ∈C, Re(α) > 0 and s > 0, introduced by Jarad et al. [1], is defined by

T
α,s
b f (t) =

s1–α

Γ (α)

∫ b

t

(
(b – x)s – (b – t)s)α–1(b – x)s–1f (x) dx,

0 ≤ a < t < b ≤ ∞, (2.24)

where Γ is the Euler gamma function.

Definition 15 The (k, s)-fractional conformable integrals (left and right) of order α ∈ C,
Re(α) > 0 of a continuous function f (x) on [0,∞), are given as follows:

F
α,s
a+,kf (t) =

(s)1– α
k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1(x – a)s–1f (x) dx,

0 ≤ a < t < b ≤ ∞, (2.25)

and

F
α,s
b–,kf (t) =

(s)1– α
k

kΓk(α)

∫ b

t

(
(b – x)s – (b – t)s) α

k –1(b – x)s–1f (x) dx,

0 ≤ a < t < b ≤ ∞, (2.26)

respectively, if integrals exist, where k > 0, s ∈R \ {0}.

Theorem 7 For k > 0, s ∈ R \ {0}, α > 0 and p ≥ 1. Then, for f ∈ L1,s[a, t], for all t > a, we
have [15]:

(1) When k = 1 in (2.25), it reduces to generalized left fractional conformable integral
(2.23).

(2) For a = 0, k = 1, and s = 1 in (2.25), it coincides with Riemann–Liouville fractional
integral (2.3).

(3) When a = 0 and α → 0, it becomes left Hadamard fractional integral (2.11).
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(4) It gives generalized Katugampola fractional integral (2.13) for a = 0.

Theorem 8 Let f ∈ L1[a, b], s ∈ R \ {0}, and k > 0. Then F
α,s
a+,kf (x)(Fα,s

b–,kf (x)) exists for any
x ∈ [a, b], Re(α) > 0.

Proof Let 	′ := [a, b] × [a, b] and P′ : 	′ →R such that

P′(x, t) =
(
(x – a)α – (t – a)α

) β
k –1(t – a)α–1.

Clearly, it can be seen that

P′ = P′
+ + P′

–,

where

P′
+(x, t) :=

⎧⎨
⎩

((x – a)α – (t – a)α)
β
k –1(t – a)α–1, a ≤ t ≤ x ≤ b,

0, a ≤ x ≤ t ≤ b,

and

P′
–(x, t) :=

⎧⎨
⎩

((t – a)α – (x – a)α)
β
k –1(x – a)α–1, a ≤ t ≤ x ≤ b,

0, a ≤ x ≤ t ≤ b.

Since P′ is measurable on 	′, then it can be written as

∫ b

a
P′(x, t) dt =

∫ x

a
P′(x, t) dt =

∫ x

a

(
(x – a)α – (t – a)α

) β
k –1(t – a)α–1 dt

=
αk
β

(x – a)
αβ
k .

By using the double integral, we get

∫ b

a

(∫ b

a
P′(x, t)

∣∣f (x)
∣∣dt

)
dx =

∫ b

a

∣∣f (x)
∣∣(∫ b

a
P′(x, t) dt

)
dx

=
αk
β

∫ b

a
(x – a)

αβ
k

∣∣f (x)
∣∣dx

≤ αk
β

(b – a)
αβ
k

∫ b

a

∣∣f (x)
∣∣dx,

i.e.,

∫ b

a

(∫ b

a
P′(x, t)

∣∣f (x)
∣∣dt

)
dx =

∫ b

a

∣∣f (x)
∣∣(∫ b

a
P′(x, t) dt

)
dx

≤ αk
β

(b – a)
αβ
k

∥∥f (x)
∥∥

L1[a,b] < ∞.
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So, the function Q′ : 	′ → R such that Q′(x, t) := P′(x, t)f (x) is integrable over 	′ by
Tonelli’s theorem. Hence, by Fubini’s theorem

∫ b
a P′(x, t)f (x) dx is an integrable function

over [a, b] as a function of t ∈ [a, b], i.e., Fα,s
a+,kf (x) exists.

The existence of the right k-fractional conformable integral Fα,s
b–,kf (x) can be proved in a

similar manner. �

3 Reverse Minkowski inequality involving generalized k-fractional
conformable integrals

This section contains our main contribution of establishing the proof of the reverse
Minkowski inequality via our newly defined generalized k-fractional conformable inte-
gral (2.25) and a related theorem referred to as the reverse Minkowski inequality.

Theorem 9 For k > 0, s ∈ R \ {0}, α > 0 and p ≥ 1. Let f1, f2 ∈ L1,s[a, t] be two positive
functions in [0,∞) such that, for all t > a, Fα,s

a+,kf p
1 (t) < ∞ and F

α,s
a+,kf p

2 (t) < ∞. If 0 < m ≤
f1(x)
f2(x) ≤ M for m, M ∈R

+ and for all x ∈ [a, t], then

(
F

α,s
a+,kf p

1 (t)
) 1

p +
(
F

α,s
a+,kf p

2 (t)
) 1

p ≤ c1
(
F

α,s
a+,k(f1 + f2)p(t)

) 1
p , (3.1)

with c1 = M(m+1)+(M+1)
(m+1)(M+1) .

Proof Under the given conditions f1(x)
f2(x) ≤ M, a ≤ x ≤ t, it can be written

f1(x) ≤ M
(
f1(x) + f2(x)

)
– Mf1(x),

which implies that

(M + 1)pf p
1 (x) ≤ Mp(f1(x) + f2(x)

)p. (3.2)

By multiplying both sides of (3.2) with s1– α
k ((t–a)s–(x–a)s)

α
k –1(x–a)s–1

kΓk (α) and then integrating with
respect to the variable x from a to t, we obtain

(M + 1)ps1– α
k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1f p
1 (x)(x – a)s–1 dx

≤ Mps1– α
k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1(f1 + f2)p(x)(x – a)s–1 dx. (3.3)

Accordingly, it can be written as

(
F

α,s
a+,kf p

1 (t)
) 1

p ≤ M
M + 1

(
F

α,s
a+,k(f1 + f2)p(t)

) 1
p . (3.4)

In contrast, as mf2(x) ≤ f1(x), it follows

(
1 +

1
m

)p

f p
2 (x) ≤

(
1
m

)p(
f1(x) + f2(x)

)p. (3.5)



Mubeen et al. Journal of Inequalities and Applications         (2019) 2019:81 Page 9 of 18

Further, by multiplying both sides of (3.5) with s1– α
k ((t–a)s–(x–a)s)

α
k –1(x–a)s–1

kΓk (α) and then integrat-
ing with respect to the variable x from a to t, we obtain

(
F

α,s
a+,kf p

2 (t)
) 1

p ≤ 1
m + 1

(
F

α,s
a+,k(f1 + f2)p(t)

) 1
p . (3.6)

The required result (3.1) follows from (3.4) and (3.6). �

Inequality (3.1) is known as the reverse Minkowski inequality involving generalized k-
fractional conformable integral.

Theorem 10 For k > 0, s ∈ R \ {0}, α > 0 and p ≥ 1. Let f2, f2 ∈ L1,s[a, t] be two positive
functions in [0,∞) such that, for all t > a, Fα,s

a+,kf p
1 (t) < ∞ and F

α,s
a+,kf p

2 (t) < ∞. If 0 < m ≤
f1(x)
f2(x) ≤ M for m, M ∈R

+ and for all x ∈ [a, t], then

(
F

α,s
a+,kf p

1 (t)
) 2

p +
(
F

α,s
a+,kf p

2 (t)
) 2

p ≥ c2
(
F

α,s
a+,kf p

1 (t)
) 1

p
(
F

α,s
a+,kf p

2 (t)
) 1

p , (3.7)

with c2 = (m+1)(M+1)
M – 2.

Proof Taking the product between (3.4) and (3.6) results in

(m + 1)(M + 1)
M

(
F

α,s
a+,kf p

1 (t)
) 1

p
(
F

α,s
a+,kf p

2 (t)
) 1

p ≤ (
F

α,s
a+,k(f1 + f2)p(t)

) 2
p . (3.8)

Involving the Minkowski inequality, on the right side of (3.8), we get

(m + 1)(M + 1)
M

(
F

α,s
a+,kf p

1 (t)
) 1

p
(
F

α,s
a+,kf p

2 (t)
) 1

p

≤ ((
F

α,s
a+,kf p

1 (t)
) 1

p +
(
F

α,s
a+,kf p

2 (t)
) 1

p
)2. (3.9)

From (3.9), it can be concluded that

(
F

α,s
a+,kf p

1 (t)
) 2

p +
(
F

α,s
a+,kf p

2 (t)
) 2

p

≥
(

(m + 1)(M + 1)
M

– 2
)(

F
α,s
a+,kf p

1 (t)
) 1

p
(
F

α,s
a+,kf p

2 (t)
) 1

p . �

4 Related fractional integral inequalities
This section contains the generalization of the results presented by Chinchane, Sulaiman,
and Sroysang related to the reverse Minkowski inequality via Riemann integral operator,
involving the proposed generalized k-fractional conformable integral (2.25).

Theorem 11 For k > 0, s ∈ R \ {0}, α > 0, p, q ≥ 1 and 1
p + 1

q = 1. Let f1, f2 ∈ L1,s[a, t] be
two positive functions in [0,∞) such that, for all t > a, Fα,s

a+,kf p
1 (t) < ∞ and F

α,s
a+,kf p

2 (t) < ∞.
If 0 < m ≤ f1(x)

f2(x) ≤ M for m, M ∈R
+ and for all x ∈ [a, t], then

(
F

α,s
a+,kf p

1 (t)
) 1

p
(
F

α,s
a+,kf p

2 (t)
) 1

p ≤
(

M
m

) 1
pq (

F
α,s
a+,kf

1
p

1 (t)f
1
q

2 (t)
)
. (4.1)
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Proof Under the given conditions f1(x)
f2(x) ≤ M, a ≤ x ≤ t, it can be written

f1(x) ≤ Mf2(x) ⇒ f
1
q

2 (x) ≥ M– 1
q f

1
q

1 (x). (4.2)

Multiplying both sides of (4.2) by f
1
p (x), we can rewrite it as follows:

f
1
p

1 (x)f
1
q

2 (x) ≥ M– 1
q f1(x). (4.3)

Multiplying both sides of (4.3) with s1– α
k ((t–a)s–(x–a)s)

α
k –1(x–a)s–1

kΓk (α) and then integrating with
respect to the variable x from a to t, we obtain

M– 1
q s1– α

k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1f1(x)(x – a)s–1 dx

≤ s1– α
k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1f
1
p

1 (x)f
1
q

2 (x)(x – a)s–1 dx. (4.4)

Accordingly, it can be written as

M– 1
pq

(
F

α,s
a+,kf1(t)

) 1
p ≤ (

F
α,s
a+,kf

1
p

1 (t)f
1
q

2 (t)
) 1

p . (4.5)

In contrast, as mf2(x) ≤ f1(x), it follows

m
1
p f

1
p

2 (x) ≤ f
1
p

1 (x). (4.6)

Further, by multiplying both sides of (4.6) by f
1
q

2 (x) and invoking the relation 1
p + 1

q = 1, it
yields

m
1
p f2(x) ≤ f

1
p

1 (x)f
1
q

2 (x). (4.7)

Multiplying both sides of (4.7) by s1– α
k ((t–a)s–(x–a)s)

α
k –1(x–a)s–1

kΓk (α) and then integrating with re-
spect to the variable x from a to t, we obtain

m
1

pq
(
F

α,s
a+,kf2(t)

) 1
q ≤ (

F
α,s
a+,kf

1
p

1 (t)f
1
q

2 (t)
) 1

q . (4.8)

Conducting the product between (4.5) and (4.8) and using the relation 1
p + 1

q = 1, the re-
quired inequality (4.1) can be concluded. �

Theorem 12 For k > 0, s ∈ R \ {0}, α > 0, p, q ≥ 1 and 1
p + 1

q = 1. Let f1, f2 ∈ L1,s[a, t] be
two positive functions in [0,∞) such that, for all t > a, Fα,s

a+,kf p
1 (t) < ∞ and F

α,s
a+,kf p

2 (t) < ∞.
If 0 < m ≤ f1(x)

f2(x) ≤ M for m, M ∈R
+ and for all x ∈ [a, t], then

F
α,s
a+,kf1(t)f2(t) ≤ c3

(
F

α,s
a+,k

(
f p
1 + f p

2
)
(t)

)
+ c4

(
F

α,s
a+,k

(
f q
1 + f q

2
)
(t)

)
, (4.9)

with c3 = 2p–1Mp

p(M+1)p and c4 = 2q–1

q(m+1)q .
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Proof Using the hypothesis, we get the following identity:

(M + 1)pf p
1 (x) ≤ Mp(f1 + f2)p(x). (4.10)

Multiplying both sides of (4.10) with s1– α
k ((t–a)s–(x–a)s)

α
k –1(x–a)s–1

kΓk (α) and then integrating with
respect to the variable x from a to t, we obtain

(M + 1)ps1– α
k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1f p
1 (x)(x – a)s–1 dx

≤ Mps1– α
k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1(f1 + f2)p(x)(x – a)s–1 dx. (4.11)

Accordingly, it can be written as

F
α,s
a+,kf p

1 (t) ≤ Mp

(M + 1)p F
α,s
a+,k(f1 + f2)p(t). (4.12)

In contrast, as 0 < m < f1(x)
f2(x) , a < x < t, it follows

(m + 1)qf q
2 (x) ≤ (f1 + f2)q(x). (4.13)

Further, by multiplying both sides of (4.13) by s1– α
k ((t–a)s–(x–a)s)

α
k –1(x–a)s–1

kΓk (α) and then integrat-
ing with respect to the variable x from a to t, we obtain

F
α,s
a+,kf q

2 (t) ≤ 1
(m + 1)q F

α,s
a+,k(f1 + f2)q(t). (4.14)

Taking into account Young’s inequality,

f1(x)f2(x) ≤ f p
1 (x)

p
+

f q
2 (x)

q
. (4.15)

Now multiplying both sides of (4.15) by s1– α
k ((t–a)s–(x–a)s)

α
k –1(x–a)s–1

kΓk (α) and then integrating with
respect to the variable x from a to t, we obtain

F
α,s
a+,k(f1f2)(t) ≤ 1

p
(
F

α,s
a+,kf p

1 (t)
)

+
1
q
(
F

α,s
a+,kf q

2 (t)
)
. (4.16)

Invoking (4.12) and (4.14) into (4.16), we obtain

F
α,s
a+,k(f1f2)(t) ≤ 1

p
(
F

α,s
a+,kf p

1 (t)
)

+
1
q
(
F

α,s
a+,kf q

2 (t)
)

≤ Mp

p(M + 1)p

(
F

α,s
a+,k(f1 + f2)p(t)

)
+

1
q(m + 1)q

(
F

α,s
a+,k(f1 + f2)q(t)

)
. (4.17)

Using the inequality (x + y)s ≤ 2s–1(xs + ys), s > 1, x, y > 0, one obtains

F
α,s
a+,k(f1 + f2)p(t) ≤ 2p–1

F
α,s
a+,k

(
f p
1 + f p

2
)
(t) (4.18)
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and

F
α,s
a+,k(f1 + f2)q(t) ≤ 2q–1

F
α,s
a+,k

(
f q
1 + f q

2
)
(t). (4.19)

The proof of (4.9) can be concluded from (4.17), (4.18), and (4.19) collectively. �

Theorem 13 For k > 0, s ∈R\{0}, α > 0, p ≥ 1. Let f1, f2 ∈ L1,s[a, t] be two positive functions
in [0,∞) such that, for all t > a, Fα,s

a+,kf p
1 (t) < ∞ and F

α,s
a+,kf p

2 (t) < ∞. If 0 < c < m ≤ f1(x)
f2(x) ≤ M

for m, M ∈ R
+ and for all x ∈ [a, t], then

M + 1
M – c

(
F

α,s
a+,k

(
f1(t) – cf2(t)

)) ≤ (
F

α,s
a+,kf p

1 (t)
) 1

p +
(
F

α,s
a+,kf p

2 (t)
) 1

p

≤ m + 1
m – c

(
F

α,s
a+,k

(
f1(t) – cf2(t)

)) 1
p . (4.20)

Proof Using the hypothesis 0 < c < m ≤ M, we get

mc ≤ Mc ⇒ mc + m ≤ mc + M ≤ Mc + M

⇒ (M + 1)(m – c) ≤ (m + 1)(M – c).

It can be concluded that

(M + 1)
(M – c)

≤ (m + 1)
(m – c)

.

Further, we have that

m – c ≤ f1(x) – cf2(x)
f2(x)

≤ M – c

implies

(f1(x) – cf2(x))p

(M – c)p ≤ f p
2 (x) ≤ (f1(x) – cf2(x))p

(m – c)p . (4.21)

Again, we have that

1
M

≤ f2(x)
f1(x)

≤ 1
m

⇒ m – c
cm

≤ f1(x) – cf2(x)
cf1(x)

≤ M – c
cM

implies

(
M

M – c

)p(
f1(x) – cf2(x)

)p ≤ f p
1 (x) ≤

(
m

m – c

)p(
f1(x) – cf2(x)

)p. (4.22)
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Multiplying both sides of (4.21) with s1– α
k ((t–a)s–(x–a)s)

α
k –1(x–a)s–1

kΓk (α) and then integrating with
respect to the variable x from a to t, we obtain

s1– α
k

(M – c)pkΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1(f1(x) – cf2(x)
)p(x – a)s–1 dx

≤ s1– α
k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1f p
2 (x)(x – a)s–1 dx.

≤ s1– α
k

(m – c)pkΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1(f1(x) – cf2(x)
)p(x – a)s–1 dx.

Accordingly, it can be written as

1
M – c

(
F

α,s
a+,k

(
f1(t) – cf2(t)

)p) 1
p ≤ (

F
α,s
a+,kf2(t)p) 1

p

≤ 1
m – c

(
F

α,s
a+,k

(
f1(t) – cf2(t)

)p) 1
p . (4.23)

Repeating the same steps with (4.22), we obtain

M
M – c

(
F

α,s
a+,k

(
f1(t) – cf2(t)

)p) 1
p ≤ (

F
α,s
a+,kf1(t)p) 1

p

≤ m
m – c

(
F

α,s
a+,k

(
f1(t) – cf2(t)

)p) 1
p . (4.24)

The proof of (4.20) can be concluded by adding (4.23) and (4.24). �

Theorem 14 For k > 0, s ∈ R \ {0}, α > 0 and p ≥ 1. Let f1, f2 ∈ L1,s[a, t] be two positive
functions in [0,∞) such that, for all t > a, Fα,s

a+,kf p
1 (t) < ∞ and F

α,s
a+,kf p

2 (t) < ∞. If 0 ≤ a ≤
f1(x) ≤ A and 0 ≤ b ≤ f2(x) ≤ B for m, M ∈R

+ and for all x ∈ [a, t], then

(
F

α,s
a+,kf p

1 (t)
) 1

p +
(
F

α,s
a+,kf p

2 (t)
) 1

p ≤ c5
(
F

α,s
a+,k(f1 + f2)p(t)

) 1
p , (4.25)

with c5 = A(a+B)+B(A+b)
(A+b)(a+B) .

Proof Under the given conditions, it follows that

1
B

≤ 1
f2(t)

≤ 1
b

. (4.26)

Conducting the product between (4.26) and 0 < a ≤ f1(x) ≤ A, we have

a
B

≤ f1(t)
f2(t)

≤ A
b

. (4.27)

From (4.27), we get

f p
2 (x) ≤

(
B

a + B

)p(
f1(x) + f2(x)

)p (4.28)
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and

f p
1 (x) ≤

(
A

b + A

)p(
f1(x) + f2(x)

)p. (4.29)

By multiplying both sides of (4.28) with s1– α
k ((t–a)s–(x–a)s)

α
k –1(x–a)s–1

kΓk (α) and then integrating with
respect to the variable x from a to t, we obtain

s1– α
k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1f p
2 (x)(x – a)s–1 dx

≤ Bps1– α
k

(a + B)pkΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1(f1(x) + f2(x)
)p(x – a)s–1 dx.

Accordingly, it can be written as

(
F

α,s
a+,kf p

2 (t)
) 1

p ≤ B
a + B

(
F

α,s
a+,k(f1 + f2)p(t)

) 1
p . (4.30)

Repeating the same steps with (4.29), we obtain

(
F

α,s
a+,kf p

1 (t)
) 1

p ≤ A
b + A

(
F

α,s
a+,k(f1 + f2)p(t)

) 1
p . (4.31)

The proof of (4.25) can be concluded by adding (4.30) and (4.31). �

Theorem 15 For k > 0, s ∈ R \ {0}, α > 0. Let f1, f2 ∈ L1,s[a, t] be two positive functions in
[0,∞) such that, for all t > a, Fα,s

a+,kf p
1 (t) < ∞ and F

α,s
a+,kf p

2 (t) < ∞. If 0 < m ≤ f1(x)
f2(x) ≤ M for

m, M ∈R
+ and for all x ∈ [a, t], then

1
M

(
F

α,s
a+,kf1(t)f2(t)

) ≤ 1
(m + 1)(M + 1)

(
F

α,s
a+,k(f1 + f2)2(t)

) ≤ 1
m

(
F

α,s
a+,kf1(t)f2(t)

)
. (4.32)

Proof Using 0 < m ≤ f1(x)
f2(x) ≤ M, it follows that

f2(x)(m + 1) ≤ f2(x) + f1(x) ≤ f2(t)(M + 1). (4.33)

Also, it follows that 1
M ≤ f2(x)

f1(x) ≤ 1
m , which yields

f1(x)
(

M + 1
M

)
≤ f2(x) + f1(x) ≤ f1(x)

(
m + 1

m

)
. (4.34)

Conducting the product between (4.33) and (4.34), we have

f1(x)f2(x)
M

≤ (f2(x) + f1(x))2

(m + 1)(M + 1)
≤ f1(x)f2(x)

m
. (4.35)
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By multiplying both sides of (4.35) with s1– α
k ((t–a)s–(x–a)s)

α
k –1(x–a)s–1

kΓk (α) and then integrating with
respect to the variable x from a to t, we obtain

s1– α
k

MkΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1f1(x)f2(x)(x – a)s–1 dx

≤ c6
s1– α

k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1(f2(x) + f1(x)
)2(x – a)s–1 dx

≤ s1– α
k

mkΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1f1(x)f2(x)(x – a)s–1 dx

with c6 = 1
(m+1)(M+1) . Accordingly, the required result (4.32) can be concluded. �

Theorem 16 For k > 0, s ∈ R \ {0}, α > 0 and p ≥ 1. Let f1, f2 ∈ L1,s[a, t] be two positive
functions in [0,∞) such that, for all t > a, Fα,s

a+,kf p
1 (t) < ∞ and F

α,s
a+,kf p

2 (t) < ∞. If 0 < m ≤
f1(x)
f2(x) ≤ M for m, M ∈R

+ and for all x ∈ [a, t], then

(
F

α,s
a+,kf p

1 (t)
) 1

p +
(
F

α,s
a+,kf p

2 (t)
) 1

p ≤ 2
(
F

α,s
a+,khp(f1(t), f2(t)

)) 1
p , (4.36)

where h(f1(x), f2(x)) = max{M[( M
m + 1)f1(t) – Mf2(t)], (m+M)f2(t)–f1(t)

m }.

Proof Under the given conditions 0 < m ≤ f1(x)
f2(x) ≤ M, a ≤ x ≤ t, it can be written

0 < m ≤ M + m –
f1(x)
f2(x)

, (4.37)

and

M + m –
f1(x)
f2(x)

≤ M. (4.38)

From (4.35) and (4.38), we obtain

f2(x) <
(M + m)f2(x) – f1(x)

m
≤ h

(
f1(x), f2(x)

)
, (4.39)

where h(f1(x), f2(x)) = max{M[( M
m + 1)f1(t) – Mf2(t)], (m+M)f2(t)–f1(t)

m }.
From hypothesis, it also follows that 0 < 1

M ≤ f2(x)
f1(x) ≤ 1

m implies that

1
M

≤ 1
M

+
1
m

–
f2(x)
f1(x)

(4.40)

and

1
M

+
1
m

–
f2(x)
f1(x)

≤ 1
m

. (4.41)

From (4.40) and (4.41), we get

1
M

≤ ( 1
M + 1

m )f1(x) – f2(x)
f1(x)

≤ 1
m

, (4.42)
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which can be rewritten as

f1(x) ≤ M
(

1
M

+
1
m

)
f1(x) – Mf2(x)

=
M(M + m)f1(x) – M2mf2(x)

mM

=
(

M
m

+ 1
)

f1(x) – Mf2(x)

≤ M
[(

M
m

+ 1
)

f1(x) – Mf2(x)
]

≤ h
(
f1(x), f2(x)

)
. (4.43)

We can write from (4.39) and (4.43)

f p
1 (x) ≤ hp(f1(x), f2(x)

)
, (4.44)

f p
2 (x) ≤ hp(f1(x), f2(x)

)
. (4.45)

By multiplying both sides of (4.44) with s1– α
k ((t–a)s–(x–a)s)

α
k –1(x–a)s–1

kΓk (α) and then integrating with
respect to the variable x from a to t, we obtain

s1– α
k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1f p
1 (x)(x – a)s–1 dx

≤ s1– α
k

kΓk(α)

∫ t

a

(
(t – a)s – (x – a)s) α

k –1hp(f1(x), f2(x)
)
(x – a)s–1 dx.

Accordingly, it can be written as

(
F

α,s
a+,kf p

1 (t)
) 1

p ≤ (
F

α,s
a+,khp(f1(t), f2(t)

)) 1
p . (4.46)

Repeating the same procedure as above, for (4.45), we have

(
F

α,s
a+,kf p

2 (t)
) 1

p ≤ (
F

α,s
a+,khp(f1(t), f2(t)

)) 1
p . (4.47)

The required result (4.36) follows from (4.46) and (4.47). �

By (2.25) and Theorem (7), under the appropriate values of parameters for each indi-
vidual fractional integral, the preceding introduced and proved theorems (Theorem 9 to
Theorem 16) can be deduced as particular cases, each result involving the following frac-
tional integrals: Riemann–Liouville, Hadamard, Liouville, Katugampola, and generalized
fractional conformable integrals.

5 Conclusion
This manuscript starts with a concise overview of fractional integrals in the sense of
Riemann–Liouville, Hadamard, and Katugampola as well as a new fractional integral op-
erator according to Jarad et al. [1]. We define the formulation of k-fractional conformable
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integral operators and their existence. We generalize the reverse Minkowski inequality us-
ing k-fractional conformable integrals; as a particular case, the inequality involving frac-
tional integrals in the Riemann–Liouville, Hadamard, and Katugampola sense is given
[15]. The related important inequalities involving k-fractional conformable integral are
also illustrated. Several inequalities can be generalized for the application of these newly
introduced fractional integral operators. Amongst them, we cite the Chebyshev inequal-
ity, Grüss-type inequality, and Chebyshev–Grüss type inequality recently introduced and
proved in [35–37].
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