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Abstract
In this paper, a fixed point theorem in a cone and some inequalities of the associated
Green’s function are applied to obtain the existence of positive solutions of
second-order three-point boundary value problem with dependence on the
first-order derivative

x′′(t) + f (t, x(t), x′(t)) = 0, 0 < t < 1,

x(0) = 0, x(1) =μx(η),

where f : [0, 1]× [0,∞)× R → [0,∞) is a continuous function,μ > 0, η ∈ (0, 1),μη < 1.
The interesting point is that the nonlinear term is dependent on the convection term.
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1 Introduction
In recent years, there has been much attention focused on questions of solutions of two-
point, three-point, multi-point, and integral boundary value problems for nonlinear or-
dinary differential equations and fractional differential equations. For example, two-point
boundary value problems [3, 15, 29, 39], beam equation problems [5, 13, 16, 36], bound-
ary value problems at resonance [2, 6, 42, 43], fractional boundary value problems [8, 24],
impulsive problems [4, 38], multi-point boundary value problems [10, 14, 20, 25, 26, 32,
33, 43], integral boundary value problems [7, 9, 17, 21, 22, 28, 37], p-Laplace problems
[11, 13, 24, 27, 30, 31], delay problems [23, 34, 35], solitons [12], singular problems [3],
Schrödinger problem [40, 41], etc.

Krasnosel’skii’s fixed point theorem in a cone [18], the Leggett–Williams fixed point the-
orem [19], and five functional fixed point theorem [1] played an extremely important role
in the research of the solvability of differential equation with boundary conditions.

However, most of the above works were done under the assumption that the first-order
derivative is not involved explicitly in the nonlinear term [1–13, 16, 17, 20–30]. Kras-
nosel’skii’s fixed point theorem in a cone [18] cannot concretely solve problems whose
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nonlinear terms involve the first-order derivative. In this paper, via a generalization of
Krasnosel’skii’s fixed point theorem in a cone [5] and some inequalities of the associated
Green’s function for the associated problem, the existence of positive solutions for the
second-order three-point boundary value problem is studied

x′′(t) + f
(
t, x(t), x′(t)

)
= 0, 0 < t < 1, (1.1)

x(0) = 0, x(1) = μx(η), (1.2)

where f : [0, 1] × [0,∞) × R → [0,∞) is a continuous function, μ > 0, η ∈ (0, 1), μη < 1.
Readers may find that the concavity is crucial in giving some important estimates and

in defining an appropriate cone, and the new fixed point theorem in a cone can be used
to obtain positive solutions under more flexible conditions. Two examples are given to
illustrate the main results.

2 Preliminaries and lemmas
In order to give the following lemma, let X be a Banach space and P be the cone in X.
Assume that α,β : X → R+ are two continuous nonnegative functionals that satisfy

α(λx) ≤ |λ|α(x), β(λx) ≤ |λ|β(x) for x ∈ X,λ ∈ [0, 1], (2.1)

and

M1 max
{
α(x),β(x)

} ≤ ‖x‖ ≤ M2 max
{
α(x),β(x)

}
for x ∈ X, (2.2)

where M1, M2 are two positive constants.

Lemma 2.1 ([5]) Let r2 > r1 > 0, L2 > L1 > 0 be constants and

Ωi =
{

x ∈ X | α(x) < ri,β(x) < Li
}

, i = 1, 2,

two open subsets in X such that θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2. In addition, let

Ci =
{

x ∈ X | α(x) = ri,β(x) ≤ Li
}

, i = 1, 2;

Di =
{

x ∈ X | α(x) ≤ ri,β(x) = Li
}

, i = 1, 2.

Assume that T : P → P is a completely continuous operator satisfying
(S1) α(Tx) ≤ r1, x ∈ C1 ∩ P; β(Tx) ≤ L1, x ∈ D1 ∩ P; α(Tx) ≥ r2, x ∈ C2 ∩ P; β(Tx) ≥ L2,

x ∈ D2 ∩ P;
or

(S2) α(Tx) ≥ r1, x ∈ C1 ∩ P; β(Tx) ≥ L1, x ∈ D1 ∩ P; α(Tx) ≤ r2, x ∈ C2 ∩ P; β(Tx) ≤ L2,
x ∈ D2 ∩ P;

then T has at least one fixed point in (Ω2 \ Ω1) ∩ P.
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Lemma 2.2 Let 0 < μ < 1
η

, η ∈ (0, 1). The Green’s function of the following boundary value
problem:

–x′′(t) = 0, 0 < t < 1, (2.3)

x(0) = 0, x(1) = μx(η), (2.4)

is given by

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s ∈ [0,η] :

⎧
⎨

⎩

t
1–μη

[(1 – s) – μ(η – s)] : t ≤ s;
s

1–μη
[(1 – t) – μ(η – t)] : s ≤ t;

s ∈ [η, 1] :

⎧
⎨

⎩

1
1–μη

t(1 – s) : t ≤ s;
1

1–μη
[s(1 – t) + μη(t – s)] : s ≤ t.

(2.5)

Moreover, for each 0 < s < 1,

G(t, s) ≥ γ max
0≤t≤1

G(t, s), η ≤ t ≤ 1, (2.6)

where γ = min{μη, μ(1–η)
(1–μη) ,η}.

Proof The detailed formula of Green’s function G(t, s) was given in [14]. In the following
proof, we focus on the existence of γ . It is clear that G(t, s) ≥ 0 for t ∈ [η, 1], s ∈ [0, 1].
Consider the relation of μ and η, we divide the range of μ into two cases.

Case 1: 0 < μ ≤ 1. With the definition of G(t, s), there are

min
t∈[η,1]

G(t, s) =

⎧
⎨

⎩

sμ(1–η)
1–μη

, s ∈ [0,η];
ημ(1–s)

1–μη
, s ∈ [η, 1],

and

max
t∈[0,1]

G(t, s) =

⎧
⎨

⎩

s
1–μη

[(1 – s) – μ(η – s)], s ∈ [0,η];
s(1–s)
1–μη

, s ∈ [η, 1].

Here we set γ = min{μη, μ(1–η)
1–μη

}, and then it satisfies

G(t, s) ≥ γ max
t∈[0,1]

G(t, s) for t ∈ [η, 1], s ∈ [0, 1].

Case 2: 1 < μ < 1/η. With the definition of G(t, s), there are

min
t∈[η,1]

G(t, s) =

⎧
⎨

⎩

s(1–η)
1–μη

, s ∈ [0,η];
η(1–s)
1–μη

, s ∈ [η, 1],

and

max
t∈[0,1]

G(t, s) =

⎧
⎨

⎩

sμ(1–η)
1–μη

, s ∈ [0,η];
s(1–s)
1–μη

max{s,μη}, s ∈ [η, 1].
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Set γ = min{η, 1
μ
} = η, then

G(t, s) ≥ γ max
t∈[0,1]

G(t, s), for t ∈ [η, 1], s ∈ [0, 1].

The proof is complete. �

3 Existence results of positive solutions
In this section, by using Lemma 2.1 and Lemma 2.2, we obtain positive solutions of (1.1),
(1.2).

If x = x(t) satisfies the operator equation

x(t) = (Tx)(t) :=
∫ 1

0
G(t, s)f

(
s, x(s), x′(s)

)
ds, 0 ≤ t ≤ 1,

where G(t, s) ≥ 0 is Green’s function for boundary value problem (2.3), (2.4), then x = x(t)
is the solution of problem (1.1), (1.2).

Let X be a Banach space in C1[0, 1], with

‖x‖ = max
{

max
0≤t≤1

∣
∣x(t)

∣
∣, max

0≤t≤1

∣
∣x′(t)

∣
∣
}

.

Define a cone P by

P =
{

x ∈ X
∣
∣ x(t) ≥ 0, and min

η≤t≤1
x(t) ≥ γ max

0≤t≤1

∣
∣x(t)

∣
∣
}

,

and functionals

α(x) = max
0≤t≤1

∣∣x(t)
∣∣, β(x) = max

0≤t≤1

∣∣x′(t)
∣∣ for x ∈ X.

By (2.1), (2.2), α,β : X → R+ are two continuous nonnegative functionals such that ‖x‖ =
max{α(x),β(x)} and

P =
{

x ∈ X
∣∣ x(t) ≥ 0, and min

η≤t≤1
x(t) ≥ γα(x)

}
.

Denote

M = max
0≤t≤1

∫ 1

0
G(t, s) ds, N = max

0≤t≤1

∫ 1

η

G(t, s) ds,

A =
∫ 1

η

(1 – s) ds +
∫ η

0
(1 – s – μη + μs) ds,

A =
∫ 1–h

η

(1 – s) ds +
∫ η

h
(1 – s – μη + μs) ds,

B =
1

1 – μη
max

{∫ 1

η

(1 – s) ds +
∫ η

0
(1 – s – μη + μs) ds,

∫ 1

η

|μη – s|ds +
∫ η

0
s|μ – 1|ds

}
.
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T : P → P is completely continuous, and the following is a simple proof of that. In fact, if
x ∈ P, there is

(Tx)(t) =
∫ 1

0
G(t, s)f

(
s, x(s), x′(s)

)
ds

≤
∫ 1

0
max
0≤t≤1

G(t, s) · f
(
s, x(s), x′(s)

)
ds,

so that

α(Tx) = max
0≤t≤1

(Tx)(t) ≤
∫ 1

0
max
0≤t≤1

G(t, s) · f
(
s, x(s), x′(s)

)
ds.

Combining this with (2.6), we get

min
η≤t≤1

(Tx)(t) = min
η≤t≤1

∫ 1

0
G(t, s)f

(
s, x(s), x′(s)

)
ds

≥ γ

∫ 1

0
max
0≤t≤1

G(t, s) · f
(
s, x(s), x′(s)

)
ds

≥ γ · α(Tx).

Moreover, from the positivity of G(t, s), there is (Tx)(t) ≥ 0, 0 ≤ t ≤ 1, for x ∈ P. So we
can get T : P → P. Further, standard arguments yield that T is completely continuous.

Theorem 3.1 Suppose that there are four constants r2 > r1 > 0, L2 > L1 > 0 such that
max{ r1

M , L1
A } ≤ min{ r2

M , L2
B } and the following assumptions hold:

(A1) f (t, u, v) ≥ max{ r1
M , L1

A } for (t, u, v) ∈ [0, 1] × [0, r1] × [–L1, L1];
(A2) f (t, u, v) ≤ min{ r2

M , L2
B } for (t, u, v) ∈ [0, 1] × [0, r2] × [–L2, L2].

Then problem (1.1), (1.2) has at least one positive solution x(t) such that

r1 ≤ max
0≤t≤1

x(t) ≤ r2 or L1 ≤ max
0≤t≤1

∣∣x′(t)
∣∣ ≤ L2.

Proof Take two bounded open subsets in X

Ωi =
{

x ∈ X | α(x) < ri,β(x) < Li
}

, i = 1, 2.

In addition, let

Ci =
{

x ∈ X | α(x) = ri,β(x) ≤ Li
}

, i = 1, 2;

Di =
{

x ∈ X | α(x) ≤ ri,β(x) = Li
}

, i = 1, 2.

For x ∈ C1 ∩ P, by (A1), there is

α(Tx) = max
t∈[0,1]

∣
∣∣∣

∫ 1

0
G(t, s)f

(
s, x(s), x′(s)

)
ds

∣
∣∣∣

≥ r1

M
· max

t∈[0,1]

∣∣
∣∣

∫ 1

0
G(t, s) ds

∣∣
∣∣ = r1.
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Taking into account the continuity and properties of T , we have

(Tx)′(t) = –
∫ t

0
f
(
s, x(s), x′(s)

)
ds +

1
1 – μη

∫ 1

0
(1 – s)f

(
s, x(s), x′(s)

)
ds

–
μ

1 – μη

∫ η

0
(η – s)f

(
s, x(s), x′(s)

)
ds,

(Tx)′′(t) = –f
(
t, x(t), x′(t)

) ≤ 0, 0 ≤ t ≤ 1.

Thus, (Tx)(t) is concave on [0, 1] and

max
t∈[0,1]

∣∣(Tx)′(t)
∣∣ = max

{∣∣(Tx)′(0)
∣∣,

∣∣(Tx)′(1)
∣∣}.

For x ∈ D1 ∩ P, combine (A1) and f ≥ 0, there is

β(Tx) = max
t∈[0,1]

∣∣(Tx)′(t)
∣∣

= max
{∣∣(Tx)′(0)

∣∣,
∣∣(Tx)′(1)

∣∣}

≥ ∣
∣(Tx)′(0)

∣
∣

=
1

1 – μη

[∫ 1

η

(1 – s)f
(
s, x(s), x′(s)

)
ds

+
∫ η

0
(1 – s – μη + μs)f

(
s, x(s), x′(s)

)
ds

]

≥ L1

A
·
[∫ 1

η

(1 – s) ds +
∫ η

0
(1 – s – μη + μs) ds

]

=
L1

A
· A = L1.

For x ∈ C2 ∩ P, by (A2), there is

α(Tx) = max
t∈[0,1]

∣
∣∣
∣

∫ 1

0
G(t, s)f

(
s, x(s), x′(s)

)
ds

∣
∣∣
∣

≤ max
t∈[0,1]

∫ 1

0
G(t, s) · r2

M
ds

=
r2

M
· max

t∈[0,1]

∫ 1

0
G(t, s) ds = r2.

For x ∈ D2 ∩ P, by (A2), there is

β(Tx) = max
t∈[0,1]

∣∣(Tx)′(t)
∣∣

= max
{∣∣(Tx)′(0)

∣
∣,

∣
∣(Tx)′(1)

∣
∣}

≤ 1
1 – μη

max

{∫ 1

η

(1 – s)f
(
s, x(s), x′(s)

)
ds

+
∫ η

0
(1 – s – μη + μs)f

(
s, x(s), x′(s)

)
ds,
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∫ 1

η

|μη – s|f (s, x(s), x′(s)
)

ds +
∫ η

0
s|μ – 1|f (s, x(s), x′(s)

)
ds

}

≤ L2

B
· B = L2.

Now, from Lemma 2.1 we can get that there is x ∈ (Ω2 \ Ω1) ∩ P such that x = Tx. The
above proof satisfies the condition of Lemma 2.1, so problem (1.1), (1.2) has at least one
positive solution x(t) such that

r1 ≤ α(x) ≤ r2 or L1 ≤ β(x) ≤ L2,

i.e.,

r1 ≤ max
0≤t≤1

x(t) ≤ r2 or L1 ≤ max
0≤t≤1

∣
∣x′(t)

∣
∣ ≤ L2.

The proof is complete. �

Theorem 3.2 Suppose that there are five constants 0 < r1 < r2, 0 < L1 < L2, 0 ≤ h ≤
min{η, 1 – η} such that max{ r1

N , L1
A

} ≤ min{ r2
M , L2

B } and the following assumptions hold:
(A3) f (t, u, v) ≥ r1

N for (t, u, v) ∈ [η, 1] × [γ r1, r1] × [–L1, L1];
(A4) f (t, u, v) ≥ L1

A
for (t, u, v) ∈ [h, 1 – h] × [0, r1] × [–L1, L1];

(A5) f (t, u, v) ≤ min{ r2
M , L2

B } for (t, u, v) ∈ [0, 1] × [0, r2] × [–L2, L2].
Then problem (1.1), (1.2) has at least one positive solution x(t) such that

r1 ≤ max
0≤t≤1

x(t) ≤ r2 or L1 ≤ max
0≤t≤1

∣∣x′(t)
∣∣ ≤ L2.

Proof We just need to notice the difference between the following proof and the proof of
Theorem 3.1.

For x ∈ C1 ∩ P, by the definition of P, there is

x(t) ≥ γα(x) = γ r1, for t ∈ [η, 1].

By (A3), there is

α(Tx) = max
t∈[0,1]

∣
∣∣
∣

∫ 1

0
G(t, s)f

(
s, x(s), x′(s)

)
ds

∣
∣∣
∣

≥ max
t∈[0,1]

∣
∣∣∣

∫ 1

η

G(t, s)f
(
s, x(s), x′(s)

)
ds

∣
∣∣∣

≥ max
t∈[0,1]

∣
∣∣
∣

∫ 1

η

G(t, s) · r1

N
ds

∣
∣∣
∣

=
r1

N
· max

t∈[0,1]

∣∣
∣∣

∫ 1

η

G(t, s) ds
∣∣
∣∣ = r1.

For x ∈ D1 ∩ P, by (A4), there is

β(Tx) = max
t∈[0,1]

∣∣(Tx)′(t)
∣∣

= max
{∣∣(Tx)′(0)

∣∣,
∣∣(Tx)′(1)

∣∣}
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≥ ∣∣(Tx)′(0)
∣∣

=
1

1 – μη

[∫ 1

η

(1 – s)f
(
s, x(s), x′(s)

)
ds

+
∫ η

0
(1 – s – μη + μs)f

(
s, x(s), x′(s)

)
ds

]

≥ 1
1 – μη

[∫ 1–h

η

(1 – s)f
(
s, x(s), x′(s)

)
ds

+
∫ η

h
(1 – s – μη + μs)f

(
s, x(s), x′(s)

)
ds

]

≥ L1

A
·
[∫ 1–h

η

(1 – s) ds +
∫ η

h
(1 – s – μη + μs) ds

]

=
L1

A
· A = L1.

The rest of the proof is similar to that of Theorem 3.1 and is omitted. �

Remark 3.1 The conditions of our results are weaker than those of [14].

4 Examples
We present some examples to illustrate the main results.

Example 4.1 Consider the boundary value problem

x′′(t) + f
(
t, x(t), x′(t)

)
= 0, 0 < t < 1, (4.1)

x(0) = 0, x(1) = x
(

1
2

)
, (4.2)

where

f (t, u, v) =
u2(sin t)2

16
+

v cos t
32

+
65
64

.

Direct computation shows that

M =
7
8

, N = 2, A =
3
8

, B =
3
4

.

Choose

r1 =
1
2

, r2 = 1, L1 =
1
4

, L2 = 1,

then max{ r1
M , L1

A } = 2
3 ≤ min{ r2

M , L2
B } = 8

7 , and

f (t, u, v) ≥ 169
128

≥ max

{
r1

M
,

L1

A

}
=

2
3

, (t, u, v) ∈ [0, 1] ×
[

0,
1
2

]
×

[
–1
4

,
1
4

]
,

f (t, u, v) ≤ 71
64

≤ min

{
r2

M
,

L2

B

}
=

8
7

, (t, u, v) ∈ [0, 1] × [0, 1] × [–1, 1].
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That is to say, all the assumptions of Theorem 3.1 are satisfied, then problem (4.1), (4.2)
has at least one positive solution x such that

1
2

≤ max
0≤t≤1

x(t) ≤ 1, or
1
4

≤ max
0≤t≤1

∣∣x′(t)
∣∣ ≤ 1.

Example 4.2 Consider the boundary value problem

x′′(t) + f
(
t, x(t), x′(t)

)
= 0, 0 < t < 1, (4.3)

x(0) = 0, x(1) = x
(

1
3

)
, (4.4)

where

f (t, u, v) =
(

t
5

+ 2
)(

1
u + 1

–
v2

6

)
.

Direct computation shows

M =
8
9

, N =
1
2

, Ā =
4
9

, B =
2
3

, γ =
1
3

.

Choose

r1 =
1
2

, r2 = 2, L1 =
1
2

, L2 = 2, h =
1
3

,

then max{ r1
M , L1

A } = 9
8 ≤ min{ r2

M , L2
B } = 9

4 , and

f (t, u, v) ≥ 31
24

≈ 1.29 ≥ r1

N
= 1, (t, u, v) ∈

[
1
3

, 1
]

×
[

1
6

,
1
2

]
×

[
–

1
2

,
1
2

]
,

f (t, u, v) ≥ 1.29 ≥ L1

A
=

9
8

≈ 1.125, (t, u, v) ∈
[

1
3

,
2
3

]
×

[
0,

1
2

]
×

[
–

1
2

,
1
2

]
,

f (t, u, v) ≤ 2.2 ≤ min

{
r2

M
,

L2

B

}
= 2.25, (t, u, v) ∈ [0, 1] × [0, 2] × [–2, 2],

i.e., all the assumptions of Theorem 3.2 are satisfied, then problem (4.3), (4.4) has at least
one positive solution x such that

1
2

≤ max
0≤t≤1

x(t) ≤ 2, or
1
2

≤ max
0≤t≤1

∣∣x′(t)
∣∣ ≤ 2.

5 Conclusion
By the use of a fixed point theorem, some existence results for a class of second-order
differential equations with three-point boundary value conditions are obtained. The in-
teresting point is that the nonlinear term is dependent on the convection term.
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