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Abstract
In this paper, we consider the relaxed gradient projection algorithm to solve the split
equality problem in Hilbert spaces, and we investigate its linear convergence. In
particular, we use the concept of the bounded linear regularity property for the split
equality problem to prove the linear convergence property for the above algorithm.
Furthermore, we conclude the linear convergence rate of the relaxed gradient
projection algorithm. Finally, some numerical experiments are given to test the
validity of our results.
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1 Introduction
Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2, respec-
tively, and let A : H1 → H3 and B : H2 → H3 be two bounded linear operators, H3 is also a
real Hilbert spaces. The split equality problem (SEP for short), as an important extension
of the split feasibility problem, was first presented by Moudafi [1]. It can be mathematically
characterized by finding points x ∈ C and y ∈ Q that satisfy the property

Ax = By, (1.1)

which allows for asymmetric and partial relations between the variables x and y.
The split equality problem has received plenty attention due to its extraordinary prac-

ticality and wide applicability in many fields of applied mathematics; examples of such
problems include decomposition methods for partial differential equations, applications
in game theory and intensity-modulated radiation therapy (IMRT for short), for which
comprehensive references are available [2, 3]. In fact, various algorithms have been used
in studies extensively to find a solution to the split equality problem. One of the most orig-
inal and important algorithms is the alternating CQ algorithm (ACQA for short), which
was proposed by Moudafi [1], and it has the following iterative form:

(ACQA)

⎧
⎨

⎩

xk+1 = PC(xk – γkA∗(Axk – Byk)),

yk+1 = PQ(yk + γkB∗(Axk+1 – Byk)).
(1.2)
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Then one proved the weak convergence of ACQA (1.2) provided that the solution set of
SEP (1.1) is nonempty.

Since the ACQ algorithm involves two projections PC and PQ, it might be difficult to cal-
culate in the case where one of them does not have a closed-form expression. To solve this
problem, Moudafi [4] proposed the relaxed alternating CQ algorithm (RACQA for short)
by using orthogonal projections onto half-spaces to replace the original closed convex sets,
and it has the following iterative form:

(RACQA)

⎧
⎨

⎩

xk+1 = PCk (xk – γ A∗(Axk – Byk)),

yk+1 = PQk (yk + βB∗(Axk+1 – Byk)).
(1.3)

Meanwhile, one proved that the above algorithm can converge weakly to a solution of SEP
(1.1).

In the RACQA, the step size parameters do not vary. Then, as a quite important gen-
eralization of the RACQA, Moudafi [5] presented the relaxed simultaneous iterative al-
gorithm (RSSEA for short), whose parameters are allowed to vary, and obtained a weak
convergence result:

(RSSEA)

⎧
⎨

⎩

xk+1 = PCk (xk – γkA∗(Axk – Byk)),

yk+1 = PQk (yk + γkB∗(Axk – Byk)).

Moreover, in order to obtain a strong convergence result, Shi et al. [6] improved
Moudafi’s algorithms and proposed the following algorithm:

⎧
⎨

⎩

xk+1 = PC[(1 – αk)(xk – γkA∗(Axk – Byk))],

yk+1 = PQ[(1 – αk)(yk + γkB∗(Axk – Byk))].

The above basic methods for solving the split equality problem are well known. For more
information with regard to methods solving the split equality problem, see [7–9]. However,
the convergence results of the above algorithms are not good enough and the convergence
rate of these algorithms have not been explicitly estimated.

Recently, Shi et al. [10] presented the varying step size gradient projection algorithm
for solving the SEP and obtained a linear convergence result. In particular, they conclude
the linear convergent rate of the varying step size gradient projection algorithm. However,
this algorithm is not easy to implement.

Let S = C × Q ⊆ H1 × H2 =: H , G = [A, –B] : H → H3, and the adjoint operator of G is
denoted by G∗. Then the problem (1.1) can be reformulated as to find w = (x, y) ∈ S which
satisfies Gw = 0. And then the relaxed simultaneous iterative algorithm (RSSEA) reduces
to the following relaxed gradient projection algorithm (in short, RGPA):

(RGPA) wk+1 = PSk

(
wk – γkG∗Gwk

)
.

Recall that the RGPA is an easily implementable algorithm that uses orthogonal projection
onto half-spaces at each step. In this paper, what attracts us is to study RGPA for solving
the split equality problem. In particular, to the best of our knowledge, in order to get the
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linear convergence property for the CQ algorithm which is to solve the split feasibility
problem, Wang et al. [11] presented the linear regularity property for the split feasibility
problem. Motivated and inspired by their work, we devote our work to proving the linear
convergence property for the RGPA with the bounded linear regularity property for SEP
(1.1). For this purpose, we introduce the notion of the bounded linear regularity property
for SEP (1.1), and use some suitable types of step sizes to prove the linear convergence
property for the RGPA. In addition, we conclude the linear convergence rate of RGPA.
Finally, some numerical experiments are given to test the validity of our results.

2 Preliminaries
For convenience, we introducing several notations. Throughout the whole paper, we as-
sume that H is a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and
‖ · ‖, respectively. I denotes the identity operator on H . Let S be a nonempty subset of H ,
the relative interior of S is denoted by ri S. T∗ is the adjoint operators of T . We denote by
B and B the unit open ball and the unit closed ball with center at the origin, respectively,
that is,

B :=
{

v ∈ H : ‖v‖ < 1
}

and B :=
{

v ∈ H : ‖v‖ ≤ 1
}

.

There are several definitions and basic results that will be used in the proofs of our main
results.

Definition 2.1 ([12]) A mapping T : H → H goes by the name of
(i) non-expansive, if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H ;

(ii) firmly non-expansive, if

‖Tx – Ty‖2 ≤ 〈x – y, Tx – Ty〉, ∀x, y ∈ H .

For an element w ∈ H and a set S ⊂ H , the distance of w onto S and the orthogonal
projection from w onto S, denoted by dS(w) and PS(w), respectively, are defined by

dS(w) = inf
v∈S

‖w – v‖ and PS(w) =
{

v ∈ S : d(w, S) = ‖w – v‖}.

Some basic properties of an orthogonal projection were introduced by Bauschke et al.
in [12], and they are listed in the following proposition.

Proposition 2.2 ([12]) Let S be a closed, convex, and nonempty subset of H , then, for any
x, y ∈ H and z ∈ S,

(i) 〈x – PSx, z – PSx〉 ≤ 0;
(ii) ‖PSx – PSy‖2 ≤ 〈PSx – PSy, x – y〉;

(iii) ‖PSx – z‖2 ≤ ‖x – z‖2 – ‖PSx – x‖2.

Remark 2.3 By the Cauchy–Schwarz inequality, we can easily see that a firmly non-
expansive mapping is non-expansive. From Proposition 2.2, it can be deduced that PS is
firmly non-expansive and non-expansive.
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Let G : H → H3 be a bounded linear operator. The kernel of G is denoted ker G =
{y ∈ H : Gy = 0}, and the orthogonal complement of ker G is denoted (ker G)⊥ = {x ∈ H :
〈y, x〉 = 0,∀y ∈ ker G}. As is well known, both ker G and (ker G)⊥ are closed subspaces of H .
Throughout this paper, we use Γ to denote the solution set of SEP (1.1), that is,

Γ := {w ∈ S : Gw = 0} = S ∩ G–1(0) = S ∩ ker G.

We assume that the SEP is consistent, thus, Γ is a closed, convex, and nonempty set.
Recall that a sequence {wk} in H is called linearly convergent to its limit w∗ (with rate

α ∈ [0, 1)), if there exist β > 0 and a positive integer N such that

∥
∥wk – w∗∥∥ ≤ βαk for all k ≥ N .

To investigate the linear convergence property of the projection algorithm for solving
convex feasibility problems, Zhao et al. [13] presented the linear regularity for a family of
closed convex subsets in a real Hilbert space, as defined below.

Definition 2.4 ([13]) Let {Si}i∈I be a family of closed convex subsets of a real Hilbert space
H and S =

⋂
i∈I Si �= ∅. The family {Si}i∈I is called bounded linearly regular if, for each a > 0,

there exists a constant γa > 0 such that

dS(w) ≤ γa sup
{

dSi (w) : i ∈ I
}

for all w ∈ aB.

Bauschke [14] proved the following lemma for the case H is the Euclidean space. It pro-
vides sufficient conditions for the bounded linear regularity property for two closed con-
vex subsets of H .

Lemma 2.5 ([14]) Let E and F be closed convex subsets of H . Then E, F is bounded linearly
regular provided that at least one of the following conditions holds:

(a) ri E ∩ F �= ∅ and F is a polyhedron;
(b) ri E ∩ ri F �= ∅ and E is finite codimensional;
(c) ri E ∩ ri F �= ∅ and E is finite dimensional.

Next, we will introduce the concept of bounded linear regularity for SEP (1.1).

Definition 2.6 ([10]) SEP (1.1) is said to have the bounded linear regularity property if
for each a > 0, there exists a constant γa > 0 such that

γadΓ (w) ≤ ‖Gw‖ for all w ∈ aB ∩ S. (2.1)

Shi et al. [10] construct some moderate sufficient conditions to ensure the bounded lin-
ear regularity property for SEP (1.1). This is shown in the lemma below.

Lemma 2.7 ([10]) SEP (1.1) satisfies the bounded linear regularity property if one of the
following conditions holds:

(a) C and Q are polyhedrons, and G has closed range;
(b) ri S ∩ ker G �= ∅ and ker G is finite codimensional;
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(c) ri S ∩ ker G �= ∅ and ker G is finite dimensional;
(d) ri S ∩ ker G �= ∅, G has closed range and S = C × Q is finite codimensional;
(e) ri S ∩ ker G �= ∅, G has closed range and S = C × Q is finite dimensional.

Now, we will present the definition of sub-differential which is vital for constructing
iterative algorithms later.

Definition 2.8 ([15]) Let f : H → R be a convex function. The sub-differential of f at x is
defined as

∂f (x) :=
{
ξ ∈ H : f (y) ≥ f (x) + 〈ξ , y – x〉 for all y ∈ H

}
.

Lemma 2.9 ([15]) Let f : H → R be a convex function, x0 ∈ H , and f be sub-differentiable
at x0. Suppose that D = {x ∈ H : f (x) ≤ 0} is nonempty for any g(x0) ∈ ∂f (x0), define D̃ by

D̃ :=
{

x ∈ H : f (x0) +
〈
g(x0), x – x0

〉 ≤ 0
}

.

Then:
(i) D ⊆ D̃. If g(x0) �= 0, then D̃ is a half-space; otherwise, D̃ = H ;

(ii) PD̃(x0) = x0 – max{f (x0),0}
‖g(x0)‖2 g(x0);

(iii) dD̃(x0) = max{f (x0),0}
‖g(x0)‖ .

Finally, in order to complete the convergence analysis, the following equality and con-
cept of Fejér monotone sequence are essential.

Lemma 2.10 ([12]) Let {xi}i∈I be a finite family in H , and {λi}i∈I be a finite family in R with
∑

i∈I λi = 1, then the following equality holds:

∥
∥
∥
∥

∑

i∈I

λixi

∥
∥
∥
∥

2

=
∑

i∈I

λi‖xi‖2 –
1
2

∑

i∈I

∑

j∈I

λiλj‖xi – xj‖2, i ≥ 2.

Definition 2.11 ([12]) Let C be a nonempty subset of H , and {xi} be a sequence in H .
{xi} is called Fejér monotone with respect to C, if

‖xi+1 – z‖ ≤ ‖xi – z‖, ∀z ∈ C.

Obviously, limi→∞ ‖xi – z‖ exists.

3 Main result
In this section, we mainly use the bounded linear regularity property for SEP (1.1) to prove
the linear convergence of the relaxed gradient projection algorithm when using different
types of step sizes.

We start by reviewing the relaxed gradient projection algorithm in detail. Note that
Moudafi [5] presented the relaxed simultaneous iterative algorithm (RSSEA) for solving
the approximate SEP and established its weak convergence:

(RSSEA)

⎧
⎨

⎩

xk+1 = PCk (xk – γkA∗(Axk – Byk)),

yk+1 = PQk (yk + γkB∗(Axk – Byk)),
(3.1)
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where Ck and Qk are two sequences of closed convex sets, defined by

Ck =
{

x ∈ H1 : c(xk) + 〈ξk , x – xk〉 ≤ 0
}

, where ξk ∈ ∂c(xk),

and

Qk =
{

y ∈ H2 : q(yk) + 〈ηk , y – yk〉 ≤ 0
}

, where ηk ∈ ∂q(yk),

where c : H1 → R and q : H2 → R are convex, sub-differentiable functions, and where the
sub-differentials are bounded on bounded sets. Applying the definition of sub-differential,
one finds that C ⊆ Ck and Q ⊆ Qk , where C and Q are two nonempty closed convex level
sets:

C =
{

x ∈ H1 : c(x) ≤ 0
}

,

and

Q =
{

y ∈ H2 : q(y) ≤ 0
}

.

For convenience, we define h : H1 × H2 to be

h(w) = h(x, y) = c(x) + q(y),

then

C × Q ⊆ S, where S =
{

w ∈ H1 × H2 : h(w) ≤ 0
}

.

We define

Sk =
{

w ∈ H1 × H2 : h(wk) + 〈θk , w – wk〉 ≤ 0
}

, where θk ∈ ∂h(wk),

then

S ⊆ Sk , Ck × Qk ⊆ Sk .

Moreover, let S = C × Q ⊆ H = H1 × H2. G = [A, –B] : H → H3. The adjoint operator of G
is denoted by G∗. Then G and G∗G have the following matrix form:

G = [A, –B], G∗G =

[
A∗A –A∗B
–B∗B B∗B

]

.

On that basis, the original problem (1.1) can be modified as

to find w = (x, y) ∈ S such that Gw = 0. (3.2)
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And then the algorithm (3.1) reduces to the following relaxed gradient projection algo-
rithm (in short, RGPA):

(RGPA) wk+1 = PSk

(
wk – γkG∗Gwk

)
. (3.3)

The lemma below will be a powerful tool in our proof later.

Lemma 3.1 Assume that a vector xk in Sk minimizes the function f (t) = 1
2‖Gt‖2 over all t

in Sk . Then xk = PSk (xk – γk∇f (xk)) with γk ∈ (0, +∞).

Proof Since a vector xk in Sk minimizes the function f (t) = 1
2‖Gt‖2 over all t in Sk we have

〈∇f (xk), t – xk〉 ≥ 0, where ∇f (xk) = G∗Gxk . This is equivalent to 〈xk – (xk – γk∇f (xk)), t –
xk〉 ≥ 0 from which we infer that xk = PSk (xk – γk∇f (xk)). The proof is complete. �

Now we give the main theorem and proof of this paper.

Theorem 3.2 Assume that SEP (3.2) satisfies the bounded linear regularity property. Then
the sequence {wk} generated by RGPA (3.3) with γk ∈ (0, +∞) converges to a solution w∗ of
SEP (1.1) such that

∥
∥wk – w∗∥∥ ≤ σp

∑k
i=1 γi , (3.4)

for σ ≥ 1 and 0 < p < 1, provided that one of the following conditions is assumed:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a) 0 < limk→∞ infγk ≤ limk→∞ supγk < 2
‖G‖2 ;

(b) γk =

⎧
⎨

⎩

0, wk ∈ Γ ;
ρk‖Gwk‖2

‖G∗Gwk‖2 and 0 ≤ limk→∞ infρk ≤ limk→∞ supρk < 2, otherwise;

(c) limk→∞ γk = 0 and
∑∞

k=1 γk = ∞.

(3.5)

Consequently, {wk} converges to w∗ linearly in the case when (a) or (b) is supposed.

Proof Without loss of generality, we assume that wk is not in Γ for all k ≥ 1. Otherwise,
RGPA (3.3) terminates in finite number of iterates, and then the conclusions follow clearly.

Firstly, we will show that the sequence {wk} is Fejér monotone with respect to Γ and the
sequence ‖Gwk‖2 converges to zero.

Let z ∈ Γ , then Gz = 0, that is, z minimizes f (t) = 1
2‖Gt‖2 over t ∈ Sk , for all k. From

Lemma 3.1,

z = PSk z = PSk

(
z – γkG∗Gz

)
, (3.6)

for all k. Since we have (3.6) and PSk is non-expansive, we obtain

‖z – wk+1‖2

=
∥
∥PSk

(
z – γkG∗Gz

)
– PSk

(
wk – γkG∗Gwk

)∥
∥2



Tian et al. Journal of Inequalities and Applications         (2019) 2019:80 Page 8 of 12

≤ ∥
∥z – γkG∗Gz – wk + γkG∗Gwk

∥
∥2

= ‖z – wk‖2 – 2γk
〈
z – wk , G∗Gz – G∗Gwk

〉
+ γ 2

k
∥
∥G∗Gz – G∗Gwk

∥
∥2,

which is equivalent to

‖z – wk‖2 – ‖z – wk+1‖2 ≥
(

2γk – γ 2
k

‖G∗Gwk‖2

‖Gwk‖2

)

‖Gwk‖2. (3.7)

Further, from the condition in (3.5), we get the following assertions:
(i) If (a) or (c) holds, then there exist η > 0 and M ∈ N such that

γk ≤ η <
2

‖G‖2 for any k ≥ M.

(ii) If (a) or (b) holds, then

lim
k→∞

infγk > 0.

Using the above assertions, we deduce that there exists M ∈ N such that

γ 2
k
∥
∥G∗Gwk

∥
∥ ≤ 2‖Gwk‖, (3.8)

for any k ≥ M, if (a), (b), (c) are assumed. Substituting (3.8) in (3.7), we see that ‖wk – z‖k≥M

is monotone decreasing. From Definition 2.11, we infer that the sequence {wk} is Fejér
monotone with respect to Γ . Hence limk→∞ ‖wk – z‖ exists and the sequence ‖Gwk‖2

converges to zero.
Then we show that the sequence {‖wk – wk+1‖} converges to zero.
In view of the property of the orthogonal projection, we infer

〈
wk+1 –

(
wk – γkG∗Gwk

)
, z – wk+1

〉 ≥ 0,

that is,

〈wk – wk+1, z – wk+1〉 ≤ γk
〈
G∗Gwk , z – wk+1

〉 ≤ γk
∥
∥G∗Gwk

∥
∥‖z – wk+1‖. (3.9)

Combining (3.9) and

‖wk – wk+1‖2 = ‖z – wk‖2 – ‖z – wk+1‖2 + 2〈wk+1 – wk , wk+1 – z〉,

we obtain

‖wk – wk+1‖2 ≤ ‖z – wk‖2 – ‖z – wk+1‖2 + 2γk
∥
∥G∗Gwk

∥
∥‖z – wk+1‖.

Since the sequence {‖wk –z‖} is bounded, the right hand side converges to zero. Therefore,
the sequence {‖wk – wk+1‖} converges to zero.

Next, we show that {wk} converges to a solution w∗ of SEP and (3.4) holds. Because
wk+1 ∈ Sk , we get

h(wk) + 〈θk , wk+1 – wk〉 ≤ 0, where θk ∈ ∂h(wk),
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which implies that

h(wk) ≤ –〈θk , wk+1 – wk〉 ≤ θ‖wk+1 – wk‖, where ‖θk‖ ≤ θ for all k.

Then there exists L ∈ N, when k ≥ L, and by virtue of the sequence {‖wk – wk+1‖} converg-
ing to zero, it follows that h(wk) ≤ 0. Consequently, wk ∈ S for any k ≥ L.

Since the SEP satisfies the bounded linear regularity property and wk ∈ S for all k ≥ L,
there exists β > 0 such that

βdΓ (wk) ≤ ‖Gwk‖, (3.10)

for all k ≥ L. Combining (3.10) with (3.7), we obtain

‖wk+1 – z‖2 ≤ ‖wk – z‖2 – β2γk

(

2 – γk
‖G∗Gwk‖2

‖Gwk‖2

)

d2
Γ (wk),

for each z ∈ Γ , which equals

dΓ (wk+1)2 ≤
(

1 – β2γk

(

2 – γk
‖G∗Gwk‖2

‖Gwk‖2

))

d2
Γ (wk). (3.11)

Note that if (a), (b) and (c) hold, then

lim
k→∞

inf

(

2 – γk
‖G∗Gwk‖2

‖Gwk‖2

)

> 0.

Hence, there exists T such that

α = inf
k≥T

β2
(

2 – γk
‖G∗Gwk‖2

‖Gwk‖2

)

> 0. (3.12)

Using (3.12) and (3.11), we infer that

d2
Γ (wk+1) ≤ (1 – αγk)d2

Γ (wk), for all k ≥ N = max{M, L, T}.

By induction,

d2
Γ (wk+1) ≤ d2

Γ (wN )
k∏

i=N+1

(1 – αγi), (3.13)

for all k ≥ N = max{M, L, T}. Observe that, for each z ∈ Γ , ‖wk+1 – z‖ is monotone de-
creasing for k, hence

‖wm – wk+1‖ ≤ ∥
∥wm – PΓ (wk+1)

∥
∥ +

∥
∥wk+1 – PΓ (wk+1)

∥
∥

≤ 2
∥
∥wk+1 – PΓ (wk+1)

∥
∥ = 2dΓ (wk+1), (3.14)

for all m > k > N . Substituting (3.13) in (3.14), one can easily show that

‖wm – wk+1‖ ≤ 2dΓ (wN )
k∏

i=N+1

√
1 – αγi, (3.15)
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for all m ≥ k + 1. Let p := e– α
2 ∈ (0, 1), then

k∏

i=N+1

√
1 – αγi = exp

{
1
2

k∑

i=N+1

ln(1 – αγi)

}

≤ p
∑k

i=N+1 γi . (3.16)

From (3.15) and (3.16), we get

‖wm – wk+1‖ ≤ 2dΓ (wN )p
∑k

i=N+1 γi , for all m ≥ k + 1.

By virtue of
∑∞

k=1 γk = ∞, {wk} is a Cauchy sequence and converges to a solution w∗ of
SEP (1.1) satisfying

∥
∥wk+1 – w∗∥∥ ≤ 2dΓ (wN )p

∑k
i=N+1 γi , for all k ≥ N .

For convenience, let

σ = max
{

2dΓ (wN )p–
∑N

i=1 γi , max
{∥
∥wi – w∗∥∥p–

∑i
j=1 γj , i = 1, 2, . . . , N

}}
.

Then

∥
∥wk – w∗∥∥ ≤ σp

∑k
i=1 γi .

Moreover, if (a) or (b) is assumed, then limk→∞ infγk > 0. One can derive that {wk} con-
verges to w∗ linearly. This completes the proof. �

As a direct consequence of Lemma 2.7 and Theorem 3.2, we propose the following corol-
lary.

Corollary 3.3 Assume that one of statements (a)–(e) of Lemma 2.7 holds. Then the se-
quence {wk} generated by RGPA (3.3) with γk ∈ (0, +∞) converges to a solution w∗ of SEP
(3.2) satisfying (3.4), provided that one of the conditions in (3.5) is assumed. In particular,
{wk} converges to w∗ linearly in the case when (a) or (b) in (3.5) is assumed.

4 Numerical experiments
In this section, we give an example to verify the validity of our results. All codes were writ-
ten in Wolfram Mathematica (version 10.3). All the numerical procedures were performed
on a personal Asus computer with AMD A9-9420 RADEON R5, 5 COMPUTE. CORES
2C+3G 3.00 GHz and RAM 8.00 GB.

Let H1 = R, H2 = R2 and H3 = R3. We have the SEP with C = Ck = {x ∈ H2 : ‖x‖ ≤ 20},
Q = Qk = {x ∈ H1 : ‖X‖ ≤ 10}, and A : H2 → H3, B : H1 → H3 are defined by

A(x, y) = (x, y, 0) and B(z) = (0, z, 0), for all x, y, z ∈ R,

respectively. Let S = C × Q ⊆ R3. Define an operator G = [A, –B] : S → H3 by

G(x, y, z) = (x, y – z, 0), for all (x, y, z) ∈ S.
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Then ker G ∩ ri S = {(0, z, z), z ∈ Q} �= ∅, S is finite codimensional, G has closed range, and
the solution set of the SEP is Γ = (C × Q) ∩ ker G = {(0, z, z) : z ∈ Q}. By Lemma 2.7 it is
easy to show that the SEP satisfies the bounded linear regularity property.

For w = (x, y, z) ∈ S, we have

d2
Γ (w) = x2 +

(y – z)2

2
.

Let w0 = (x0, y0, z0) ∈ C × Q. In view of RGPA (3.3), we infer

⎧
⎪⎪⎨

⎪⎪⎩

xn+1 = xn – γnxn,

yn+1 = (1 – γn)yn + γnzn,

zn+1 = (1 – γn)zn + γnyn.

In algorithm (3.3), we take γn = 1
2 , n

n+1 , respectively. Moreover, we select the error value to
be 10–10, 10–20, and initial value w0 = (3, 2, 8). Then we get the numerical results displayed
in Figs. 1 and 2.

Figure 1 The x-coordinate indicates the number of iterative steps and the y-coordinate indicates the
logarithm of the error. Initial conditions: x1 = 3, y1 = 2, z1 = 8. w∗ = (0, 5, 5), error = 10–10. : γn = 1

2 , : γn = n
n+1

Figure 2 The x-coordinate indicates the number of iterative steps and the y-coordinate indicates the
logarithm of the error. Initial conditions: x1 = 3, y1 = 2, z1 = 8. w∗ = (0, 5, 5), error = 10–20. : γn = 1

2 , : γn = n
n+1
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