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Abstract
In this paper we consider a singular integral operator and a parametric Marcinkiewicz
integral operator with rough kernel. These operators have singularity along sets of the
form curves {x = P(ϕ(|y|))y′}, where P is a real polynomial satisfying P(0) = 0 and ϕ
satisfies certain smooth conditions. Under the conditions that Ω ∈ H1(Sn–1) and
h ∈ �γ (R+) for some γ > 1, we prove that the above operators are bounded on the
Lebesgue space L2(Rn). Moreover, the L2-bounds of the maximal functions related to
the above integrals are also established. Particularly, the bounds are independent of
the coefficients of the polynomial P. In addition, we also present certain Hardy type
inequalities related to these operators.
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1 Introduction
Let Rn (n ≥ 2) be the n-dimensional Euclidean space and Sn–1 denote the unit sphere in
Rn equipped with the induced Lebesgue measure dσ . Let K(·) be a kernel of Calderón–
Zygmund type on Rn given by

K(y) =
Ω(y)h(|y|)

|y|n ,

where h is a suitable function defined on R+ := (0,∞) and Ω is homogeneous of degree
zero, with Ω ∈ L1(Sn–1) and

∫
Sn–1

Ω(u) dσ (u) = 0. (1.1)

Suppose that P is a real polynomial on R of degree N and satisfies P(0) = 0. For a suitable
function ϕ defined on R+, we consider that the singular integral operator Th,Ω ,P,ϕ along
the “polynomial compound curve” P(ϕ(|y|))y′ on Rn is defined by

Th,Ω ,P,ϕ f (x) := p.v.
∫

Rn
f
(
x – P

(
ϕ
(|y|))y′)K(y) dy, (1.2)

where y′ = y
|y| for any nonzero point y ∈ Rn.
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For the sake of simplicity, we denote Th,Ω ,P,ϕ = Th,Ω if P(t) ≡ t and ϕ(t) ≡ t and Th,Ω = TΩ

if h(t) ≡ 1. In their fundamental work on singular integrals, Calderón and Zygmund [1]
proved that TΩ is bounded on Lp(Rn) for 1 < p < ∞, provided that Ω ∈ L log L(Sn–1). The
same conclusion under the less restrictive condition that Ω ∈ H1(Sn–1) was later obtained
independently by Coifman and Weiss [2] and Connett [3]. It should be pointed out that
the condition that Ω ∈ H1(Sn–1) turns out to be the most desirable size condition for the
Lp boundedness of TΩ . For the singular integral operator with radial kernel, Fefferman [4]
in 1978 first introduced the singular integral operator Th,Ω and established the Lp (1 < p <
∞) boundedness of Th,Ω , provided that Ω ∈ Lipα(Sn–1) for some α > 0 and h ∈ L∞(R+).
Later on, Namazi [5] improved Fefferman’s result by assuming Ω ∈ Lq(Sn–1) for some q > 1
instead of Ω ∈ Lipα(Sn–1). In 1986, Duoandikoetxea and Rubio de Francia [6] used the
Littlewood–Paley theory to improve the above results to the case Ω ∈ Lq(Sn–1) for any
q > 1 and h ∈ �2(R+). Here �γ (R+) (γ > 0) is the set of all measurable functions h : R+ → R
satisfying

‖h‖�γ (R+) := sup
R>0

(
R–1

∫ R

0

∣∣h(t)
∣∣γ dt

)1/γ

< ∞.

It is clear that

L∞(R+) = �∞(R+) � �γ2 (R+) � �γ1 (R+), ∀1 ≤ γ1 < γ2 < ∞ (1.3)

and

Lipα

(
Sn–1) � Lq(Sn–1) � L log L

(
Sn–1) � H1(Sn–1) � L1(Sn–1), ∀α > 0 and q > 1.

In both TΩ and Th,Ω , the singularity is along the diagonal {x = y}. However, many prob-
lems in analysis have led one to consider singular integral operators with singularity along
more general sets. One of the principal motivations for the study of such operators is the
requirements of several complex variables and large classes of “subelliptic” equations. We
refer the readers to Stein’s survey articles [7, 8] for more background information. During
the last several years the Lp mapping properties for singular integral operators with singu-
larity along various sets and with rough kernel in H1(Sn–1) have been actively studied by
many authors. For example, see [9] for polynomial mappings, [10] for real-analytic sub-
manifolds, [11, 12] for homogeneous mappings, [13] for polynomial curves. For further re-
sults on the singular integral operators with singularity along the above curves or surfaces,
we refer the readers to consult [14–17], among others. Particularly, Fan and Pan [9] estab-
lished the Lp boundedness of the singular integral operator along polynomial mappings for
p with |1/p–1/2| < max{1/2, 1/γ ′} under the conditions that Ω ∈ H1(Sn–1) and h ∈ �γ (R+)
for some γ > 1. In this paper we focus on the Lp-boundedness of the singular integral
operator along the polynomial compound curves with rough kernels Ω ∈ H1(Sn–1) and
h ∈ �γ (R+) for some γ > 1. Recently, Fan and Pan [13] proved the following result.

Theorem A ([13]) Let ϕ(t) ≡ t. If Ω ∈ H1(Sn–1) satisfies (1.1) and h ∈ L∞(R+), then the
operator Th,Ω ,P,ϕ is bounded on L2(Rn). More precisely, we have

‖Th,Ω ,P,ϕ f ‖L2(Rn) ≤ C‖h‖L∞(R+)‖Ω‖H1(Sn–1)‖f ‖L2(Rn).

Here C > 0 is independent of h, Ω , f and the coefficients of P.
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Before stating our main results, let us introduce two classes of functions.

Definition 1.1 (G class) Let G be the set of all nonnegative (or non-positive) and mono-
tonic C1(R+) functions ϕ such that Υϕ(t) := ϕ(t)

tϕ′(t) with |Υϕ(t)| ≤ Cϕ , where Cϕ is a positive
constant that depends only on ϕ.

Definition 1.2 (F class) We denote by F the set of all functions φ satisfying one of the
following conditions:

(i) ϕ is a positive increasing C1(R+) function such that tϕ′(t) ≥ Cϕϕ(t) and
ϕ(2t) ≤ cϕϕ(t) for all t > 0, where Cϕ and cϕ are independent of t.

(ii) ϕ is a positive decreasing C1(R+) function such that tϕ′(t) ≤ –Cϕϕ(t) and
ϕ(t) ≤ cϕϕ(2t) for all t > 0, where Cϕ and cϕ are independent of t.

Remark 1.1 It is clear that F � G . There are some model examples for the class F, such as
tα (α �= 0), tα(ln(1 + t))β (α,β > 0), t ln ln(e + t), t–1 ln(1 + t–1), real-valued polynomials P on
R with positive coefficients and P(0) = 0, and so on. Note that the following facts are valid
(see [18]): if ϕ ∈ G , then

(a) limt→0 ϕ(t) = 0 and limt→∞ |ϕ(t)| = ∞ if ϕ is nonnegative and increasing, or
non-positive and decreasing;

(b) limt→0 |ϕ(t)| = ∞ and limt→∞ ϕ(t) = 0 if ϕ is nonnegative and decreasing, or
non-positive and increasing.

In this paper we shall establish the following.

Theorem 1.1 Let Th,Ω ,P,ϕ be the singular integral operator defined by (1.2) and ϕ ∈ G . If
Ω ∈ H1(Sn–1) satisfies (1.1) and h ∈ �γ (R+) for some γ ∈ (1,∞], then the operator Th,Ω ,P,ϕ

is bounded on L2(Rn). More precisely, we have

‖Th,Ω ,P,ϕ f ‖L2(Rn) ≤ C‖h‖�γ (R+)‖Ω‖H1(Sn–1)‖f ‖L2(Rn),

where C > 0 is independent of h, γ , Ω , f and the coefficients of P, but depends on ϕ and
deg(P).

Remark 1.2 By (1.3), Theorem 1.1 generalizes and improves Theorem A.

The second type of our operators we consider is the parametric Marcinkiewicz integral
operator along polynomial compound curves. More precisely, let h, Ω , P, ϕ be given as
in (1.2). For a complex number ρ = τ + iϑ (τ ,ϑ ∈ R with τ > 0), we consider the para-
metric Marcinkiewicz integral operator Mh,Ω ,P,ϕ,ρ along “polynomial compound curve”
P(ϕ(|y|))y′ on Rn by

Mh,Ω ,P,ϕ,ρ f (x) =
(∫ ∞

0

∣∣∣∣ 1
tρ

∫
|y|≤t

f
(
x – P

(
ϕ
(|y|))y′)h(|y|)Ω(y′)

|y|n–ρ
dy

∣∣∣∣
2 dt

t

)1/2

. (1.4)

If ρ = 1, P(t) ≡ t, and ϕ(t) ≡ t, Mh,Ω ,P,ϕ,ρ is just the classical Marcinkiewicz integral oper-
ator, which is denoted by Mh,Ω . The Lp mapping properties of Mh,Ω and other extensions
have been studied by many authors extensively (see [19–28] for example). Particularly,
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Ding et al. [21] proved that the parametric Marcinkiewicz integral operator along polyno-
mial mappings is of type (p, p) for 1 < p < ∞ if Ω ∈ H1(Sn–1) and h ∈ L∞(R+). In this paper
we focus on the parametric Marcinkiewicz integral operator along polynomial compound
curves. More precisely, we shall establish the following result.

Theorem 1.2 Let Mh,Ω ,P,ϕ,ρ be the Marcinkiewicz integral operator defined by (1.4) and
ϕ ∈ F. If Ω ∈ H1(Sn–1) satisfies (1.1) and h ∈ �γ (R+) for some γ ∈ (1,∞], then the operator
Mh,Ω ,P,ϕ,ρ is bounded on L2(Rn). More precisely, we have

‖Mh,Ω ,P,ϕ,ρ f ‖L2(Rn) ≤ C
γ

γ – 1
‖h‖�γ (R+)‖Ω‖H1(Sn–1)‖f ‖L2(Rn),

where C > 0 is independent of h, γ , Ω , f and the coefficients of P, but depends on ϕ, ρ and
deg(P).

Remark 1.3
(i) It was shown in [22] that the operator Mh,Ω ,P,ϕ,ρ with ρ > 0 and P(t) ≡ t is bounded

on Lp(Rn) for p with |1/p – 1/2| < min{1/2, 1/γ ′} under the same conditions of
Theorem 1.2 (see also [27] for more generalization results).

(ii) Theorem 1.2 is new even in the special case ρ = 1, h(t) ≡ 1, and ϕ(t) ≡ t.

In 2009, Sato [29] introduced a class of functions Nα(R+), which may be the most desir-
able size condition on the radial kernel of rough singular integrals so far. Here Nα(R+) for
α > 0 is the set of all measurable functions h : R+ → R satisfying

Nα(h) =
∑
m=1

mα2m sup
k∈Z

2–k∣∣E(k, m)
∣∣ < ∞,

where E(k, 1) = {t ∈ (2k , 2k+1]; |h(t)| ≤ 2} and

E(k, m) =
{

t ∈ (2k , 2k+1]; 2m–1 <
∣∣h(t)

∣∣ ≤ 2m}
for m ≥ 2.

It is easy to check that

�γ (R+) � Nα(R+), ∀γ > 1 and α > 0.

Applying Theorems 1.1–1.2 and the extrapolation arguments following from [29], we
have the following result.

Corollary 1.1 Let Th,Ω ,P,ϕ and Mh,Ω ,P,ϕ,ρ be defined by (1.2) and (1.4), respectively. Let Ω

satisfy (1.1) and Ω ∈ H1(Sn–1). Then
(i) If h ∈Nα(R+) for some α > 0 and ϕ ∈ G , then the operator Th,Ω ,P,ϕ is bounded on

L2(Rn). More precisely, we have

‖Th,Ω ,P,ϕ f ‖L2(Rn) ≤ C
(
1 + Nα(h)

)‖Ω‖H1(Sn–1)‖f ‖L2(Rn),

where C > 0 is independent of h, α, Ω , f and the coefficients of P, but depends on ϕ

and deg(P).
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(ii) If h ∈N1(R+) and ϕ ∈ F, then the operator Mh,Ω ,P,ϕ,ρ is bounded on L2(Rn). More
precisely, we have

‖Mh,Ω ,P,ϕ,ρ f ‖L2(Rn) ≤ C
(
1 + N1(h)

)‖Ω‖H1(Sn–1)‖f ‖L2(Rn),

where C > 0 is independent of h, Ω , f and the coefficients of P, but depends on ϕ, ρ
and deg(P).

The third type of our operators is the maximal functions related to the singular inte-
grals and Marcinkiewicz integrals along polynomial compound curves. More precisely,
let Th,Ω ,P,ϕ and Mh,Ω ,P,ϕ,� be defined as in (1.2) and (1.4), respectively. We define the maxi-
mal operators SΩ ,P,ϕ and MΩ ,P,ϕ,ρ along the “polynomial compound curve” P(ϕ(|y|))y′ on
Rn by

SΩ ,P,ϕ f (x) = sup
h∈K2

∣∣Th,Ω ,P,ϕ f (x)
∣∣, (1.5)

MΩ ,P,ϕ,ρ f (x) = sup
h∈K2

∣∣Mh,Ω ,P,ϕ,ρ f (x)
∣∣, (1.6)

where K2 is the set of all measurable functions h : R+ → R with ‖h‖L2(R+,r–1 dr) ≤ 1. Here
Lγ (R+, r–1 dr) (γ > 0) is the set of all measurable functions h : R+ → R that satisfies

‖h‖Lγ (R+,r–1 dr) :=
(∫ ∞

0

∣∣h(r)
∣∣γ r–1 dr

)1/γ

< ∞.

Clearly, Lγ (R+, r–1 dr) � �γ (R+) for γ > 0.
The rest of the main results can be formulated as follows.

Theorem 1.3 Let SΩ ,P,ϕ and MΩ ,P,ϕ,ρ be the maximal operators defined by (1.5) and (1.6),
respectively. If Ω ∈ H1(Sn–1) satisfies (1.1) and ϕ ∈ G , then both the operators SΩ ,P,ϕ and
MΩ ,P,ϕ,ρ are bounded on L2(Rn). More precisely, we have

‖SΩ ,P,ϕ f ‖L2(Rn) ≤ C‖Ω‖H1(Sn–1)‖f ‖L2(Rn),

‖MΩ ,P,ϕ,ρ f ‖L2(Rn) ≤ C‖Ω‖H1(Sn–1)‖f ‖L2(Rn),

where C > 0 is independent of Ω , f and the coefficients of P, but depends on ϕ and deg(P).

Remark 1.4 The maximal operator related to singular integrals, which is denoted by SΩ

and corresponds to the special case of SΩ ,P,ϕ with P(t) = ϕ(t) = t, was first introduced by
Chen and Lin [30]. Chen and Lin proved that if Ω ∈ C(Sn–1), then SΩ is of type (p, p)
for any p > 2n/(2n – 1) and the range of p is best possible. Subsequently, the Lp mapping
properties of SΩ have been discussed extensively by many authors. Particularly, Xu et al.
[31] established the Lp(Rn) bounds for SΩ with 2 ≤ p < ∞, provided that Ω ∈ H1(Sn–1)
satisfying (1.1). It should be pointed out that Theorem 1.3 is new even in the special case
ϕ(t) ≡ t.

The rest of this paper is organized as follows. After recalling some preliminary notations
and lemmas in Sect. 2, we prove the main results in Sect. 3. Finally, we present certain
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Hardy type inequalities related to the parametric Marcinkiewicz integral operators and
maximal operators related to singular integrals along polynomial compound curves in
Sect. 4. We would like to remark that our main results and proofs are inspired by the work
in [13], but our main results and proofs are more delicate and complex than those of [13].
Some ideas in our proofs are taken from [18, 29, 32, 33]. Throughout the paper, we denote
by p′ the conjugate index of p, which satisfies 1/p + 1/p′ = 1. The letter C or c, sometimes
with certain parameters, will stand for positive constants that are not necessarily the same
ones at each occurrence, but are independent of the essential variables. In what follows,
we denote e = limx→∞(1 + 1

x )x.

2 Preliminary definitions and lemmas
Recall that the Hardy space H1(Sn–1) is the set of all functions Ω ∈ L1(Sn–1) satisfying the
condition

‖Ω‖H1(Sn–1) :=
∥∥∥∥ sup

0≤r<1

∣∣∣∣
∫

Sn–1
Ω(θ )Pr(·)(θ ) dσ (θ )

∣∣∣∣
∥∥∥∥

L1(Sn–1)
< ∞,

where Prw(θ ) = 1–r2

|rw–θ |n for 0 ≤ r < 1 and θ , w ∈ Sn–1 denotes the Poisson kernel on Sn–1.

Definition 2.1 (H1(Sn–1) atoms) A function a : Sn–1 → C is a (1,∞) atom if there exist
ϑ ∈ Sn–1 and � ∈ (0, 2] such that

supp(a) ⊂ Sn–1 ∩ B(ϑ ,�), where B(ϑ ,�) =
{

y ∈ Rn : |y – ϑ | < �
}

; (2.1)

‖a‖L∞(Sn–1) ≤ �–n+1; (2.2)
∫

Sn–1
a(y) dσ (y) = 0. (2.3)

An important property of H1(Sn–1) is the atomic decomposition, which is listed as fol-
lows:

Lemma 2.1 ([34, 35]) If Ω ∈ H1(Sn–1) satisfies the cancelation condition (1.1), then there
exist a sequence of complex numbers {cj} and a sequence of (1,∞) atoms {Ωj} such that
Ω =

∑
j cjΩj and ‖Ω‖H1(Sn–1) ≈ ∑

j |cj|.

The following results are known (see [36]).

Lemma 2.2 ([36]) Suppose that n ≥ 3 and b(·) is a (1,∞) atom on Sn–1 supported in Sn–1 ∩
B(ζ ,�), where ζ ∈ Sn–1 and � ∈ (0, 2]. Let

Fb(s) =
(
1 – s2)(n–3)/2

χ(–1,1)(s)
∫

Sn–2
b
(
s,

(
1 – s2)1/2ỹ

)
dσ (ỹ).

Then there exists a constant C, independent of b, such that

supp(Fb) ⊂ (
ζ1 – 2r(ζ ), ζ1 + 2r(ζ )

)
; (2.4)

‖Fb‖L∞(R) ≤ C
r(ζ )

; (2.5)
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∫
R

Fb(s) ds = 0, (2.6)

where ζ = (ζ1, . . . , ζn), r(ζ ) = |L�(ζ )|, and L�(ζ ) = (�2ζ1,�ζ2, . . . ,�ζn).

Lemma 2.3 ([36]) Suppose that n = 2 and b(·) is a (1,∞) atom on S1 supported in S1 ∩
B(ζ ,�), where ζ ∈ S1 and � ∈ (0, 2]. Let

Fb(s) =
(
1 – s2)–1/2

χ(–1,1)(s)
(
b
(
s,

(
1 – s2)1/2) + b

(
s, –

(
1 – s2)1/2)).

Then Fb(·) satisfies (2.4), (2.6) and

‖Fb‖Lq(R) ≤ C
∣∣L�(ζ )

∣∣–1+1/q

for some q ∈ (1, 2), where ζ = (ζ1, ζ2), r(ζ ) = |L�(ζ )|, and L�(ζ ) = (�2ζ1,�ζ2).

The following lemmas will play key roles in the proof of Theorem 1.1.

Lemma 2.4 ([18]) Let ϕ ∈ G and h ∈ �γ (R+) for some γ > 1, then

∥∥h
(
ϕ–1)Υϕ

(
ϕ–1)∥∥

�γ (R+) ≤ C‖h‖�γ (R+),

where the constant C > 0 depends only on ϕ.

Lemma 2.5 Let ϕ ∈ G and Υϕ(t) = ϕ(t)
tϕ′(t) . Then

(i) if ϕ is nonnegative and increasing, Th,Ω ,P,ϕ f = Th(ϕ–1)Υϕ (ϕ–1),Ω ,Pf ;
(ii) if ϕ is nonnegative and decreasing, Th,Ω ,P,ϕ f = –Th(ϕ–1)Υϕ (ϕ–1),Ω ,Pf ;
(iii) if ϕ is non-positive and decreasing, Th,Ω ,P,ϕ f = Th(ϕ–1)Υϕ (ϕ–1),Ω̃ ,Pf ;
(iv) if ϕ is non-positive and increasing, Th,Ω ,P,ϕ f = –Th(ϕ–1)Υϕ (ϕ–1),Ω̃ ,Pf ,

where Ω̃(y) = Ω(–y).

Lemma 2.5 can be proved by similar arguments as in the proof of [18, Lemma 2.3], we
omit the details.

3 Proofs of the main results
In this section we shall prove Theorems 1.1–1.3. In what follows, we let deg(P) = N and
P(t) =

∑N
k=1 aktk and assume that Ω ∈ H1(Sn–1) satisfies (1.1).

Proof of Theorem 1.1 By Lemmas 2.4 and 2.5, to prove Theorem 1.1, it suffices to show
that

‖Th,Ω ,Pf ‖L2(Rn) ≤ C‖h‖�γ (R+)‖Ω‖H1(Sn–1)‖f ‖L2(Rn), (3.1)

where C > 0 is independent of h, Ω , f and the coefficients of P, but depends on deg(P). It
is clear that Th,Ω ,Pf (x) = Kh,Ω ,P ∗ f (x), where the function Kh,Ω ,P is defined by

K̂h,Ω ,P(ξ ) =
∫

Rn
e–2π iP(|y|)y′·ξ h(|y|)Ω(y′)

|y|n dy.
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By Plancherel’s theorem, (3.1) reduces to the following:

‖K̂h,Ω ,P‖L∞(Rn) ≤ C‖h‖�γ (R+)‖Ω‖H1(Sn–1), (3.2)

where C > 0 is independent of h, Ω and the coefficients of P. Invoking Lemma 2.1, we can
write Ω =

∑
j λjaj satisfying

∑
j |λj| ≤ C‖Ω‖H1(Sn–1), where each aj is a (1,∞) atom and

each λj is a complex number. Therefore, to prove (3.2), it is enough to prove that

‖K̂h,Ω ,P‖L∞(Rn) ≤ C‖h‖�γ (R+), (3.3)

where Ω is a (1,∞) atom and C > 0 is independent of h, Ω and the coefficients of P.
We now prove (3.3). Let Ω be a (1,∞) atom satisfying (2.1)–(2.3). Without loss of gener-

ality, we may assume that ϑ = (1, 0, . . . , 0). We only prove the case n ≥ 3, since the proof for
n = 2 is essentially the same (using Lemma 2.3 instead of Lemma 2.2). Fix ξ �= (0, 0, . . . , 0)
and write ξ ′ = ξ /|ξ | = (ξ ′

1, . . . , ξ ′
n). We can choose a rotation O such that O(ξ ′) = ϑ . By the

change of variables, we write

K̂h,Ω ,P(ξ ) =
∫ ∞

0
h(t)

∫
Sn–1

e–2π iP(t)|ξ |y′·ιΩ
(
O–1y′)dσ

(
y′)dt

t
.

Let b(y′) = Ω(O–1y′). It is easy to see that b is a regular (1,∞) atom satisfying (2.2)–(2.3)
and supp(b) ⊂ B(ξ ′,�) ∩ Sn–1. By the change of variables, we have

K̂h,Ω ,P(ξ ) =
∫ ∞

0
h(t)

∫
R

Fb(s)e–2π iP(t)|ξ |s ds
dt
t

,

where Fb is the function defined in Lemma 2.2. We know by Lemma 2.2 that supp(Fb) ⊂
(ξ ′

1 –2r(ξ ′), ξ ′
1 +2r(ξ ′)) and Fb satisfies (2.5)–(2.6), where r(ξ ′) = |(�2ξ ′

1,�ξ ′
2, . . . ,�ξ ′

n)|. We set
Nb(s) = r(ξ ′)Fb(r(ξ ′)s+ξ ′

1). One can easily check that supp(Nb) ⊂ (–2, 2) and ‖Nb‖L∞(R) ≤ C
and

∫
R Nb(s) ds = 0. By the change of variables again,

K̂h,Ω ,P(ξ ) =
∫ ∞

0
h(t)

∫
R

Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds
dt
t

.

For convenience, we set

bk = 2πak|ξ |r(ξ ′), |βκ |1/κ = max
1≤k≤N

|bk|1/k , and β = |βκ |–1/κ .

We can write

K̂h,Ω ,P(ξ ) =
∫ β

0
h(t)

∫
R

Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds
dt
t

+
∫ ∞

β

h(t)
∫

R
Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds

dt
t

=: I1 + I2. (3.4)
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For I1, let us choose an integer K0 such that 2K0 ≤ β < 2K0+1. By the cancelation condition
of Nb and Hölder’s inequality, we have

|I1| =
∣∣∣∣
∫ β

0
h(t)

∫
R

Nb(s)
(
e–2π iP(t)|ξ |r(ξ ′)s – 1

)
ds

dt
t

∣∣∣∣

≤
K0∑

j=–∞

∫ 2j+1

2j

∣∣h(t)
∣∣ ∫

R

∣∣Nb(s)
(
e–2π iP(t)|ξ |r(ξ ′)s – 1

)∣∣ds
dt
t

≤ C‖h‖�γ (R+)

K0∑
j=–∞

(∫ 2j+1

2j

( N∑
k=1

|bk|tk

)γ ′
dt
t

)1/γ ′

≤ C‖h‖�γ (R+)

K0∑
j=–∞

N∑
k=1

|bk|
(∫ 2j+1

2j
tkγ ′–1 dt

)1/γ ′

= C‖h‖�γ (R+)

K0∑
j=–∞

N∑
k=1

|bk|
(
kγ ′)–1/γ ′(

2kγ ′
– 1

)1/γ ′
2kj

≤ C‖h‖�γ (R+), (3.5)

where in the last inequality of (3.5) we have used the fact that αα ≤ 1 for all α ∈ (0, 1] and
max1≤k≤N |bk|2K0k ≤ 1. Here C > 0 is independent of f , ζ and the coefficients of P.

For I2, let Φ ∈ C∞
0 (R) such that Φ(t) ≡ 1 if |t| ≤ 1 and Φ(t) ≡ 0 if |t| ≥ 2. For any j ∈ Z,

we set Rj = [2j, 2j+1) and define the operator Tj by

Tjf (t) = χRj (t)
∫

R
Φ(s)f (s)e–2π iP(t)|ξ |r(ξ ′)s ds.

From the estimate on page 60 in [32], there exists a large integer Λ > 0 independent of j
such that

‖Tjf ‖L2(R) ≤ C2j/2|βk|–1/(2Λ)2–jκ/(2Λ)‖f ‖L2(R), (3.6)

where C > 0 is independent of f , ξ and the coefficients of P. By (3.6) and Hölder’s inequality,

|I2| ≤
∞∑

j=K0

∫ 2j+1

2j

∣∣h(t)
∣∣
∣∣∣∣
∫

R
Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds

∣∣∣∣dt
t

≤ 2‖h‖�γ (R+)

∞∑
j=K0

(∫ 2j+1

2j

∣∣∣∣
∫

R
Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds

∣∣∣∣
γ ′

dt
t

)1/γ ′

≤ C‖h‖�γ (R+)

∞∑
j=K0

(∫ 2j+1

2j

∣∣∣∣
∫

R
Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds

∣∣∣∣
2 dt

t

)1/γ̃

≤ C‖h‖�γ (R+)

∞∑
j=K0

2–j/γ̃
(∫

R

∣∣∣∣χRj (t)
∫

R
Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds

∣∣∣∣
2

dt
)1/γ̃

≤ C‖h‖�γ (R+)

∞∑
j=K0

2–j/γ̃ (
2j|βκ |–1/Λ2–jκ/Λ‖Nb‖2

L2(R)
)1/γ̃

≤ C‖h‖�γ (R+), (3.7)
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where in the last inequality of (3.7) we have used the fact that 2K0κ ≥ 2–κβ–1
κ . Here γ̃ =

max{2,γ ′} and the constant C > 0 is independent of h, b, ξ and the coefficients of P. We
get from (3.4)–(3.5) and (3.7) that

∣∣K̂h,Ω ,P(ξ )
∣∣ ≤ C‖h‖�γ (R+),

where C > 0 is independent of h, Ω , ξ and the coefficients of P. This yields (3.3) and com-
pletes the proof of Theorem 1.1. �

Proof of Theorem 1.2 Let h, Ω , ϕ be given as in Theorem 1.2. We only prove Theorem 1.2
for the case ϕ ∈ F satisfying condition (a), and another case is discussed similarly. For t > 0,
we define the measure σh,Ω ,P,ϕ,t by

̂σh,Ω ,P,ϕ,t(x) =
1
tρ

∫
t/2<|y|≤t

e–2π iP(ϕ(|y|))x·y′ h(|y|)Ω(y′)
|y|n–ρ

dy. (3.8)

By Minkowski’s inequality and the change of variables, one can easily verify that

Mh,Ω ,P,ϕ,ρ f (x) ≤ 1
1 – 2–τ

(∫ ∞

0

∣∣σh,Ω ,P,ϕ,t ∗ f (x)
∣∣2 dt

t

)1/2

. (3.9)

By Plancherel’s theorem and Fubini’s theorem, to prove Theorem 1.2, we only need to
show that

∥∥∥∥
(∫ ∞

0

∣∣ ̂σh,Ω ,P,ϕ,t(·)
∣∣2 dt

t

)1/2∥∥∥∥
L∞(Rn)

≤ C‖h‖�γ (R+)‖Ω‖H1(Sn–1), (3.10)

where C > 0 is independent of h, Ω and the coefficients of P, but depends on ϕ and N .
Invoking Lemma 2.1, (3.10) reduces to the following:

∥∥∥∥
(∫ ∞

0

∣∣ ̂σh,Ω ,P,ϕ,t(·)
∣∣2 dt

t

)1/2∥∥∥∥
L∞(Rn)

≤ C‖h‖�γ (R+), (3.11)

where Ω is a (1,∞) atom and C > 0 is independent of h, Ω and the coefficients of P, but
depends on ϕ and N .

Given ξ �= (0, 0, . . . , 0). To prove (3.11), we want to show that

∫ ∞

0

∣∣ ̂σh,Ω ,P,ϕ,t(ξ )
∣∣2 dt

t
≤ C‖h‖2

�γ (R+), (3.12)

where Ω is a (1,∞) atom and C > 0 is independent of h, Ω , ξ and the coefficients of P.
We now prove (3.12). Without loss of generality we may assume that Ω is a (1,∞) atom

satisfying (2.1)–(2.3) with ϑ = (1, 0, . . . , 0) and only prove the case n ≥ 3. Let b and Nb be
given as in the proof of Theorem 1.1. By some change of variables, we write

̂σh,Ω ,P,ϕ,t(ξ ) =
1
tρ

∫ t

t/2
h(r)

∫
R

Nb(s)e–2π iP(ϕ(r))|ξ |r(ξ ′)s ds
dr

r1–ρ
. (3.13)
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By (3.13) and Hölder’s inequality, we obtain that

∣∣ ̂σh,Ω ,P,ϕ,t(ξ )
∣∣ ≤ C‖h‖�γ (R+)

(∫ t

t/2

∣∣∣∣
∫

R
Nb(s)e–2π iP(ϕ(r))|ξ |r(ξ ′)s ds

∣∣∣∣
γ ′

dr
r

)1/γ ′

.

Hence, to prove (3.12), it suffices to show that

∫ ∞

0

(∫ t

t/2

∣∣∣∣
∫

R
Nb(s)e–2π iP(ϕ(r))|ξ |r(ξ ′)s ds

∣∣∣∣
γ ′

dr
r

)2/γ ′
dt
t

≤ C, (3.14)

where C > 0 is independent of h, Ω , ξ and the coefficients of P.
Next we shall prove (3.14). By a change of variable and the properties of ϕ,

∫ ∞

0

(∫ t

t/2

∣∣∣∣
∫

R
Nb(s)e–2π iP(ϕ(r))|ξ |r(ξ ′)s ds

∣∣∣∣
γ ′

dr
r

)2/γ ′
dt
t

≤ Cϕ

∫ ∞

0

(∫ ϕ(t)

ϕ(t/2)

∣∣∣∣
∫

R
Nb(s)e–2π iP(r)|ξ |r(ξ ′)s ds

∣∣∣∣
γ ′

dr
r

)2/γ ′
dt
t

. (3.15)

Let β be given as in the proof of Theorem 1.1 and δ = ϕ–1(β). We write

∫ ∞

0

(∫ ϕ(t)

ϕ(t/2)

∣∣∣∣
∫

R
Nb(s)e–2π iP(r)|ξ |r(ξ ′)s ds

∣∣∣∣
γ ′

dr
r

)2/γ ′
dt
t

=
∫ δ

0

(∫ ϕ(t)

ϕ(t/2)

∣∣∣∣
∫

R
Nb(s)e–2π iP(r)|ξ |r(ξ ′)s ds

∣∣∣∣
γ ′

dr
r

)2/γ ′
dt
t

+
∫ ∞

δ

(∫ ϕ(t)

ϕ(t/2)

∣∣∣∣
∫

R
Nb(s)e–2π iP(r)|ξ |r(ξ ′)s ds

∣∣∣∣
γ ′

dr
r

)2/γ ′
dt
t

=: J1 + J2. (3.16)

For J1, by the fact that
∫

R Nb(s) ds = 0 and the change of variables, we have

J1 =
∫ δ

0

(∫ ϕ(t)

ϕ(t/2)

∣∣∣∣
∫

R
Nb(s)

(
e–2π iP(r)|ξ |r(ξ ′)s – 1

)
ds

∣∣∣∣
γ ′

dr
r

)2/γ ′
dt
t

≤ C
N∑

k=1

|bk|2
∫ δ

0

(∫ ϕ(t)

ϕ(t/2)
rkγ ′–1 dr

)2/γ ′
dt
t

≤ C
N∑

k=1

|bk|2
∫ δ

0

(
ϕ(t)

)2k dt
t

≤ C
N∑

k=1

|bk|2
∫ ϕ(δ)

0
t2k–1 dt

≤ C
N∑

k=1

|bk|2β2k ≤ C, (3.17)

where C > 0 is independent of h, Ω , ξ and the coefficients of P, but depends on ϕ and N .
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For J2. Fix t ≥ δ, there exists an integer j0 such that 2j0 ≤ ϕ(t/2) < 2j0+1. By the fact that
ϕ(2t) ≤ cϕϕ(t), there exists an integer k0 such that 2k0 ≤ cϕ < 2k0+1 and then ϕ(t) ≤ 2k0+j0+2.
From (3.6) we have

∫ ϕ(t)

ϕ(t/2)

∣∣∣∣
∫

R
Nb(s)e–2π iP(r)|ξ |r(ξ ′)s ds

∣∣∣∣
2 dr

r

≤
k0+j0+1∑

j=j0

∫ 2j+1

2j

∣∣∣∣
∫

R
Nb(s)e–2π iP(r)|ξ |r(ξ ′)s ds

∣∣∣∣
2 dr

r

≤
k0+j0+1∑

j=j0

2–j2j|βκ |–1/Λ2–jκ/Λ‖Nb‖2
L2(R)

≤ C
k0+j0+1∑

j=j0

|βκ |–1/Λ2–jκ/Λ

≤ C|βκ |–1/Λϕ(t)–κ/Λ, (3.18)

where C > 0 is independent of Ω , ξ and the coefficients of P, but depends on ϕ. (3.18)
together with Hölder’s inequality and the change of variable shows that

J2 ≤ C(ϕ)
∫ ∞

δ

(∫ ϕ(t)

ϕ(t/2)

∣∣∣∣
∫

R
Nb(s)e–2π iP(r)|ξ |r(ξ ′)s ds

∣∣∣∣
2 dr

r

)2/γ̃ dt
t

≤ C
∫ ∞

δ

(|βκ |–1/Λϕ(t)–κ/Λ)2/γ̃ dt
t

≤ C|βκ |–2/(Λγ̃ )
∫ ∞

δ

ϕ(t)–2κ/(Λγ̃ ) dt
t

≤ C|βκ |–2/(Λγ̃ )
∫ ∞

β

t–2κ/(Λγ̃ )–1 dt

≤ C
Λγ̃

2κ
. (3.19)

Here C > 0 is independent of h, Ω , ξ and the coefficients of P, but depends on ϕ. Then
(3.14) follows from (3.15)–(3.17) and (3.19). This proves Theorem 1.2. �

Proof of Theorem 1.3 Let Ω , ϕ be given as in Theorem 1.3. By arguments similar to those
used in deriving (3.14) and (3.16) in [37], one can easily get that

MΩ ,P,ϕ,ρ f (x) ≤ C(ρ)SΩ ,P,ϕ f (x).

Thus, we only prove Theorem 1.3 for the operator SΩ ,P,ϕ . Define the measure σΩ ,P,ϕ,t by

σ̂Ω ,P,ϕ,t(ξ ) =
∫

Sn–1
e–2π iP(ϕ(t))y′·ξΩ

(
y′)dσ

(
y′). (3.20)

By duality we can write

SΩ ,P,ϕ f (x) =
(∫ ∞

0

∣∣σΩ ,P,ϕ,t ∗ f (x)
∣∣2 dt

t

)1/2

. (3.21)
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By (3.21) and the same arguments as in the proof of Theorem 1.2, to prove Theorem 1.3
for the operator SΩ ,P,ϕ , it suffices to show that

∥∥∥∥
(∫ ∞

0

∣∣σ̂Ω ,P,ϕ,t(·)
∣∣2 dt

t

)1/2∥∥∥∥
L∞(Rn)

≤ C‖Ω‖H1(Sn–1), (3.22)

where C > 0 is independent of Ω and the coefficients of P. By Lemma 2.1 and Minkowski’s
inequality, (3.22) reduces to the following:

∥∥∥∥
(∫ ∞

0

∣∣σ̂Ω ,P,ϕ,t(·)
∣∣2 dt

t

)1/2∥∥∥∥
L∞(Rn)

≤ C, (3.23)

where Ω is a (1,∞) atom and C > 0 is independent of Ω and the coefficients of P.
We now prove (3.23). We only assume that Ω is a (1,∞) atom satisfying (2.1)–(2.3) with

ϑ = (1, 0, . . . , 0) and consider the case n ≥ 3. Let ξ , b, and Nb be given as in the proof of
Theorem 1.1. By the change of variables, we have

∫ ∞

0

∣∣σ̂Ω ,P,ϕ,t(ξ )
∣∣2 dt

t
=

∫ ∞

0

∣∣∣∣
∫

R
Nb(s)e–2π iP(ϕ(t))|ξ |r(ξ ′)s ds

∣∣∣∣
2 dt

t
.

By a change of variable and the properties of ϕ, we obtain that

∫ ∞

0

∣∣σ̂Ω ,P,ϕ,t(ξ )
∣∣2 dt

t
≤ C(ϕ)

∫ ∞

0

∣∣∣∣
∫

R
Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds

∣∣∣∣
2 dt

t
. (3.24)

Let bk , β be given as in the proof Theorem 1.1. We write

∫ ∞

0

∣∣∣∣
∫

R
Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds

∣∣∣∣
2 dt

t

=
∫ β

0

∣∣∣∣
∫

R
Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds

∣∣∣∣
2 dt

t
+

∫ ∞

β

∣∣∣∣
∫

R
Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds

∣∣∣∣
2 dt

t

=: L1 + L2. (3.25)

For L1, by the cancelation condition of Nb, we have

L1 =
∫ β

0

∣∣∣∣
∫

R
Nb(s)

(
e–2π iP(t)|ξ |r(ξ ′)s – 1

)
ds

∣∣∣∣
2 dt

t
≤ C

N∑
k=1

|bk|2
∫ β

0
t–1+2k dt ≤ C, (3.26)

where C > 0 is independent of b, ξ and the coefficients of P.
For L2, let K0 be given as in the proof of Theorem 1.1. Applying (3.6), we get

L2 ≤
∞∑

j=K0

∫ 2j+1

2j

∣∣∣∣
∫

R
Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds

∣∣∣∣
2 dt

t

≤
∞∑

j=K0

2–j
∫

R

∣∣∣∣χRj (t)
∫

R
Nb(s)e–2π iP(t)|ξ |r(ξ ′)s ds

∣∣∣∣
2

dt

≤ C
∞∑

j=K0

2–j2j|βκ |–1/Λ2–jκ/Λ‖Nb‖2
L2(R) ≤ C, (3.27)
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where in the last inequality of (3.27) we have used the fact that 2K0κ ≥ 2–κβ–1
κ and C > 0 is

independent of b, ξ and the coefficients of P. We get from (3.24)–(3.27) that

∫ ∞

0

∣∣σ̂Ω ,P,ϕ,t(ξ )
∣∣2 dt

t
≤ C,

where C > 0 is independent of Ω , ξ and the coefficients of P. This yields (3.23) and com-
pletes the proof of Theorem 1.3. �

4 Hardy-type inequalities
In this section we shall establish the following Hardy-type inequalities.

Theorem 4.1 Let P be a real polynomial on R satisfying P(0) = 0 and Ω ∈ H1(Sn–1) satis-
fying (1.1). Then we have

(i) If ϕ ∈ F, then

(∫
Rn

∣∣∣∣ 1
|x|ρ

∫
|x|/2≤|y|<|x|

e–2π iP(ϕ(|y|))x′·y′ Ω(y)
|y|n–ρ

dy
∣∣∣∣
2 dx
|x|n

)1/2

≤ C‖Ω‖H1(Sn–1), (4.1)

where C is a positive constant independent of Ω and the coefficients of P, but
depends on ρ , ϕ, and deg(P).

(ii) If ϕ ∈ G , then

(∫
Rn

∣∣∣∣
∫

Sn–1
e–2π iP(ϕ(|x|))x′·y′

Ω
(
y′)dσ

(
y′)∣∣∣∣

2 dx
|x|n

)1/2

≤ C‖Ω‖H1(Sn–1), (4.2)

where C is a positive constant independent of Ω and the coefficients of P, but
depends on ϕ and deg(P).

Proof of Theorem 4.1 We first prove (i). Using Lemma 2.1, (4.1) reduces to the following:

(∫
Rn

∣∣∣∣ 1
|x|ρ

∫
|x|/2≤|y|<|x|

e–2π iP(ϕ(|y|))x′·y′ Ω(y)
|y|n–ρ

dy
∣∣∣∣
2 dx
|x|n

)1/2

≤ C, (4.3)

where Ω is a (1,∞) atom and C is a positive constant independent of Ω and the coefficients
of P. By the polar coordinates,

∫
Rn

∣∣∣∣ 1
|x|ρ

∫
|x|/2≤|y|<|x|

e–2π iP(ϕ(|y|))x′·y′ Ω(y)
|y|n–ρ

dy
∣∣∣∣
2 dx
|x|n

=
∫

Sn–1

∫ ∞

0

∣∣∣∣ 1
tρ

∫ t

t/2

∫
Sn–1

e–2π iP(ϕ(r))x′·y′
Ω

(
y′)dσ

(
y′) dr

r1–ρ

∣∣∣∣
2 dt

t
dσ

(
x′)

=
∫

Sn–1

∫ ∞

0

∣∣ ̂σb,Ω ,P,ϕ,t
(
x′)∣∣2 dt

t
dσ

(
x′)

≤ ωn–1

∥∥∥∥
(∫ ∞

0

∣∣ ̂σb,Ω ,P,ϕ,t(·)
∣∣2 dt

t

)1/2∥∥∥∥
2

L∞(Sn–1)
. (4.4)

Here ωn–1 is the surface area of the unit Sn–1 and σb,Ω ,P,ϕ,t is defined as in (3.8) with b(·) ≡ 1.
Then (4.3) follows from (4.4) and (3.11).
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It remains to prove (ii). To prove (4.2), by Lemma 2.1 it suffices to show that

(∫
Rn

∣∣∣∣
∫

Sn–1
e–2π iP(ϕ(|x|))x′·y′

Ω
(
y′)dσ

(
y′)∣∣∣∣

2 dx
|x|n

)1/2

≤ C, (4.5)

where Ω is a (1,∞) atom and C is a positive constant independent of Ω and the coefficients
of P. Using the polar coordinates, we can obtain

∫
Rn

∣∣∣∣
∫

Sn–1
e–2π iP(ϕ(|x|))x′·y′

Ω
(
y′)dσ

(
y′)∣∣∣∣

2 dx
|x|n

=
∫

Sn–1

∫ ∞

0

∣∣∣∣
∫

Sn–1
e–2π iP(ϕ(t))x′·y′

Ω
(
y′)dσ

(
y′)∣∣∣∣

2 dt
t

dσ
(
x′)

=
∫

Sn–1

∫ ∞

0

∣∣σ̂Ω ,P,ϕ,t
(
x′)∣∣2 dt

t
dσ

(
x′)

≤ ωn–1

∥∥∥∥
(∫ ∞

0

∣∣σ̂Ω ,P,ϕ,t
(
x′)∣∣2 dt

t

)1/2∥∥∥∥
2

L∞(Sn–1)
, (4.6)

where σ̂Ω ,P,ϕ,t is defined as in (3.20). (4.6) together with (3.22) yields (4.5). Theorem 4.1 is
proved. �
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