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1 Introduction

Let R” (n > 2) be the n-dimensional Euclidean space and $"~! denote the unit sphere in
R” equipped with the induced Lebesgue measure do. Let K(-) be a kernel of Calderén—
Zygmund type on R” given by

2()h(y1)

K(y) =
[yl"

where / is a suitable function defined on R, := (0,00) and §2 is homogeneous of degree
zero, with £2 € L}(S""!) and

2(u)do(u) = 0. (1.1)
gn-1
Suppose that P is a real polynomial on R of degree N and satisfies P(0) = 0. For a suitable
function ¢ defined on R,, we consider that the singular integral operator T}, p,, along
the “polynomial compound curve” P(¢(|y|))y’ on R” is defined by

Thonf @)i=p. [ fs=Plolb1)Y)KO) D, (12)

where y' = ﬁ for any nonzero point y € R".
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For the sake of simplicity, we denote T}, o p,p = Th if P(t) = tand p(t) = tand Tj,o = Te
if h(¢) = 1. In their fundamental work on singular integrals, Calderén and Zygmund [1]
proved that T, is bounded on LP(R") for 1 < p < oo, provided that 2 € Llog L(S"!). The
same conclusion under the less restrictive condition that £2 € H'(S""!) was later obtained
independently by Coifman and Weiss [2] and Connett [3]. It should be pointed out that
the condition that 2 € H'(S"!) turns out to be the most desirable size condition for the
L? boundedness of T,. For the singular integral operator with radial kernel, Fefferman [4]
in 1978 first introduced the singular integral operator T} i and established the L” (1 < p <
00) boundedness of T, o, provided that £2 € Lip,(S"!) for some a > 0 and & € L(R,).
Later on, Namazi [5] improved Fefferman’s result by assuming §2 € L4(S"!) for some g > 1
instead of £2 € Lip,(S"!). In 1986, Duoandikoetxea and Rubio de Francia [6] used the
Littlewood—Paley theory to improve the above results to the case £2 € L1(S"!) for any
g>1landh € Ay(R,). Here A, (R,) (¥ > 0) is the set of all measurable functions #: R, — R
satisfying

R 1y
4lla, ®,) = sup(R1 / |h(t)fy dt) < 00.
R0 0
It is clear that
L¥([R)) = Ax(Ry) C Ayz(R+) C Ay Ry), Vi=y<yr<o0 (1.3)
and
Lip, (S"") € L9(S"") C LlogL(S"") C H'(S*') CL'(S""), Va>0andg>1.

In both T; and T}, the singularity is along the diagonal {x = y}. However, many prob-
lems in analysis have led one to consider singular integral operators with singularity along
more general sets. One of the principal motivations for the study of such operators is the
requirements of several complex variables and large classes of “subelliptic” equations. We
refer the readers to Stein’s survey articles [7, 8] for more background information. During
the last several years the L” mapping properties for singular integral operators with singu-
larity along various sets and with rough kernel in H'(S"~!) have been actively studied by
many authors. For example, see [9] for polynomial mappings, [10] for real-analytic sub-
manifolds, [11, 12] for homogeneous mappings, [13] for polynomial curves. For further re-
sults on the singular integral operators with singularity along the above curves or surfaces,
we refer the readers to consult [14—17], among others. Particularly, Fan and Pan [9] estab-
lished the L” boundedness of the singular integral operator along polynomial mappings for
pwith |1/p—1/2| < max{1/2,1/y'} under the conditions that £2 € H'(S""')and h € A, (R,)
for some y > 1. In this paper we focus on the L”-boundedness of the singular integral
operator along the polynomial compound curves with rough kernels £2 € H(S""!) and
he A,(R,) for some y > 1. Recently, Fan and Pan [13] proved the following result.

Theorem A ([13]) Let ¢(t) =t. If 2 € H(S"!) satisfies (1.1) and h € L*(R,), then the
operator Ty, o p,, is bounded on L2(R"). More precisely, we have

| The.pef | 12@ny < Cllkll Lo, ) 182 1| 1sn-1y Il Nl L2 vy

Here C > 0 is independent of h, 2, f and the coefficients of P.
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Before stating our main results, let us introduce two classes of functions.

Definition 1.1 (G class) Let G be the set of all nonnegative (or non-positive) and mono-
tonic C'(R,) functions ¢ such that 7,,(¢) := tZEQ)
constant that depends only on ¢.

with |7, (£)| < C,, where C, is a positive

Definition 1.2 (§ class) We denote by § the set of all functions ¢ satisfying one of the
following conditions:
(i) ¢ is a positive increasing C!(R,) function such that t¢'(¢) > C,¢(¢) and
@(2t) < c,p(t) for all t > 0, where C, and ¢, are independent of ¢.
(ii) ¢ isa positive decreasing C!(R,) function such that t¢'(¢) < —~C,¢(t) and
o(t) < cpp(2¢) for all £ > 0, where C, and ¢, are independent of ¢.

Remark 1.1 ltis clear that § C G. There are some model examples for the class §, such as
t* (o #0), *(In(1 +1))? (o, B > 0), tInlIn(e + £), t 1 In(1 + £71), real-valued polynomials P on
R with positive coefficients and P(0) = 0, and so on. Note that the following facts are valid
(see [18]):if ¢ € G, then
(a) limy—o@(t) =0 and lim,_,  |@(¢)| = 0o if ¢ is nonnegative and increasing, or
non-positive and decreasing;
(b) lim;—¢ |@(2)] = co and lim,_, » ¢(¢) = 0 if ¢ is nonnegative and decreasing, or
non-positive and increasing.

In this paper we shall establish the following.

Theorem 1.1 Let T}, p, be the singular integral operator defined by (1.2) and ¢ € G. If
2 € H(S") satisfies (1.1) and h € A, (R,) for some y € (1,00], then the operator Ty, o p,,
is bounded on L*>(R"). More precisely, we have

I Th,Q,P,<pf||L2(R”) = C||h||Ay(R+)||~Q||H1(S”‘1)|V||L2(R”)x

where C > 0 is independent of h, y, §2, f and the coefficients of P, but depends on ¢ and
deg(P).

Remark 1.2 By (1.3), Theorem 1.1 generalizes and improves Theorem A.

The second type of our operators we consider is the parametric Marcinkiewicz integral
operator along polynomial compound curves. More precisely, let 4, 2, P, ¢ be given as
in (1.2). For a complex number p = 7 + i (7,9 € R with t > 0), we consider the para-
metric Marcinkiewicz integral operator M, ¢ py,, along “polynomial compound curve”

P(p(|yl))y on R" by

My,2,p0,0f (%) = < /(; !

5 |16 Ple(on) RED

ly["=°

2 1/2
dt

If p=1,P(t) =t and ¢(t) = t, M), 2 p,p is just the classical Marcinkiewicz integral oper-
ator, which is denoted by 91, ;. The L” mapping properties of My,  and other extensions
have been studied by many authors extensively (see [19-28] for example). Particularly,



Liu and Zhang Journal of Inequalities and Applications (2019) 2019:67 Page 4 of 16

Ding et al. [21] proved that the parametric Marcinkiewicz integral operator along polyno-
mial mappings is of type (p, p) for 1 < p < 00 if 2 € H'(S"!) and & € L*(R,). In this paper
we focus on the parametric Marcinkiewicz integral operator along polynomial compound
curves. More precisely, we shall establish the following result.

Theorem 1.2 Let My, o p,,, be the Marcinkiewicz integral operator defined by (1.4) and
¢ €F.1f 2 € H'(S" ") satisfies (1.1) and h € A, (R,) for some y € (1,00], then the operator
My, 2,p.p,p is bounded on L*(R"). More precisely, we have

YV
19,2,0,0,0f Il 2Ry < Cr”h”Ay(RQ”Q“Hl(s"*l)”f”ﬂ(R”)’

where C > 0 is independent of h, y, §2, f and the coefficients of P, but depends on ¢, p and
deg(P).

Remark 1.3
(i) It was shown in [22] that the operator 9, o p,,, With p > 0 and P(t) =t is bounded
on L#(R") for p with |1/p — 1/2| < min{1/2,1/y’} under the same conditions of
Theorem 1.2 (see also [27] for more generalization results).
(ii) Theorem 1.2 is new even in the special case p =1, h(¢) =1, and ¢(t) = ¢.

In 2009, Sato [29] introduced a class of functions AV, (R, ), which may be the most desir-
able size condition on the radial kernel of rough singular integrals so far. Here N, (R,) for
a > 0 is the set of all measurable functions % : R, — R satisfying

N, (h) = ;m"‘Z”’ ilellZ) 2’k|E(k, m)‘ <00,
where E(k, 1) = {t € (2%, 2K*1];|h(¢)| < 2} and

E(k,m) = {te 25,2127 < |n()| <2} form > 2.
It is easy to check that

A,(Ry) CN,(R,), Vy>landa>0.

Applying Theorems 1.1-1.2 and the extrapolation arguments following from [29], we
have the following result.

Corollary 1.1 Let T}, 0 p, and My, o py,, be defined by (1.2) and (1.4), respectively. Let $2
satisfy (1.1) and 2 € HY(S"™1). Then
(i) Ifh € No(R,) for some a > 0 and ¢ € G, then the operator Tj, p, is bounded on
L2(R"). More precisely, we have

I Th,2.p.0f 2@y < C(1+ No ()12l g1 sn-1y If Nl 2y

where C > 0 is independent of h, o, 2, f and the coefficients of P, but depends on ¢
and deg(P).
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(ii) Ifh e Ni(R,) and ¢ € T, then the operator My, o p.,,, is bounded on L*(R"). More
precisely, we have

199%,2.p.0,0f L2 < C(L+ N1()) 1821111 sn1) I 2 ey

where C > 0 is independent of h, 2, f and the coefficients of P, but depends on ¢, p
and deg(P).

The third type of our operators is the maximal functions related to the singular inte-
grals and Marcinkiewicz integrals along polynomial compound curves. More precisely,
let T}, ,p,, and My, p, o be defined as in (1.2) and (1.4), respectively. We define the maxi-
mal operators Sg p, and Mg p, , along the “polynomial compound curve” P(¢(|y|))y on

R” by
So.paf ) = sup | T0.p0f ()|, (1.5)
he]Cz
Mg pgof (%) = sup [ My 0.py,of (%)), (1.6)
hE/Cz

where K, is the set of all measurable functions / : R, — R with ||kl 2R, ,-14 < 1. Here
LY(R,,r1dr) (y > 0) is the set of all measurable functions 4 : R, — R that satisfies

(o] 17y
17l R, -1 ar) = </ |h(r)|"r ! di’) <00,
0

Clearly, L (Ry, 7t dr) C A, (R,) for y > 0.
The rest of the main results can be formulated as follows.

Theorem 1.3 Let Sq p, and Mg p,,, be the maximal operators defined by (1.5) and (1.6),
respectively. If $2 € H'(S"™") satisfies (1.1) and ¢ € G, then both the operators Sg p, and
Mg g, are bounded on L*(R"). More precisely, we have

1Se.pof l12®m) < ClIS2 || g1 sn-1y If | L2 ey

||MQ,P,w,ﬂf||L2(Rﬂ) = C||-Q||H1(SW-1)|lf||L2(Rn),
where C > 0 is independent of 2, f and the coefficients of P, but depends on ¢ and deg(P).

Remark 1.4 The maximal operator related to singular integrals, which is denoted by Sg,
and corresponds to the special case of S p, with P(£) = ¢(t) = t, was first introduced by
Chen and Lin [30]. Chen and Lin proved that if 2 € C(S"™!), then S, is of type (p,p)
for any p > 2n/(2n — 1) and the range of p is best possible. Subsequently, the L” mapping
properties of S, have been discussed extensively by many authors. Particularly, Xu et al.
[31] established the L”(R”) bounds for Sp with 2 < p < oo, provided that 2 € H*(S"!)
satisfying (1.1). It should be pointed out that Theorem 1.3 is new even in the special case
p(t) =t.

The rest of this paper is organized as follows. After recalling some preliminary notations
and lemmas in Sect. 2, we prove the main results in Sect. 3. Finally, we present certain
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Hardy type inequalities related to the parametric Marcinkiewicz integral operators and
maximal operators related to singular integrals along polynomial compound curves in
Sect. 4. We would like to remark that our main results and proofs are inspired by the work
in [13], but our main results and proofs are more delicate and complex than those of [13].
Some ideas in our proofs are taken from [18, 29, 32, 33]. Throughout the paper, we denote
by p’ the conjugate index of p, which satisfies 1/p + 1/p’ = 1. The letter C or ¢, sometimes
with certain parameters, will stand for positive constants that are not necessarily the same
ones at each occurrence, but are independent of the essential variables. In what follows,
we denote e = lim,,_, (1 + i)".

2 Preliminary definitions and lemmas
Recall that the Hardy space H'(S""!) is the set of all functions £2 € L' (S"!) satisfying the

condition

sup
0<r<1

- £2(0)Pyy(0)do (6)

<00,
Ll(sn—l)

1821 1 (g1 2=

where P,,,(0) = ﬁ for 0 <r<1and®,w e S"! denotes the Poisson kernel on "1,

Definition 2.1 (H'(S"!) atoms) A function a : "' — C is a (1,00) atom if there exist
¥ € §" ! and g € (0,2] such that

supp(a) C "1 NB(9,0), where B(9,0) = {y eR":|ly-0|< Q}; (2.1)

el oo g1y < 07" (2.2)

/ a(y)do(y) = 0. (2.3)
gn-1

An important property of H'(S"™1) is the atomic decomposition, which is listed as fol-
lows:

Lemma 2.1 ([34, 35]) If 2 € H'(S"!) satisfies the cancelation condition (1.1), then there
exist a sequence of complex numbers {c;} and a sequence of (1,00) atoms {§2;} such that
2 = Z/’ ¢j$2j and || 2| gn-1) ~ Zj lcjl.

The following results are known (see [36]).

Lemma 2.2 ([36]) Suppose thatn > 3 and b(-) is a (1,00) atom on 8" supported in " N
B(¢,0), where ¢ € S" ' and o € (0,2]. Let

F() = (1-9)"x ) f 2 b(s, (1-5%)"%) do (3.
=
Then there exists a constant C, independent of b, such that

supp(Fp) C (&1 —2r(¢), &1 +2r(2)); (2.4)

lEplloo®) < (2.5)

<.
()’
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/ Fy(s)ds =0, (2.6)
R

where { = (¢1,...,8n), 7(¢) = |LQ(§)|7 a”dLQ(C) = (Q2€1’Q§2"--)Q§n)~

Lemma 2.3 ([36]) Suppose that n =2 and b(-) is a (1,00) atom on S* supported in S* N
B(¢,0), where ¢ € 8 and 0 € (0,2]. Let

o) = (12 5 (b(s (1= 2)") + b(s,—(1 - ) ).

Then Fy,(-) satisfies (2.4), (2.6) and

—1+1/
IEpllzam) < C|Lo(0)]

forsome VAS (172)7 where ¢= (Cl} €2)) r(;) = |LQ(C)|) andLQ({) = (Qzé‘l: Q;Z)
The following lemmas will play key roles in the proof of Theorem 1.1.

Lemma 2.4 ([18]) Let ¢ € G and h € A,(R,) for some y > 1, then

”h((p_l)TW (9"_1) ” ARy S Clialla, ®,)

where the constant C > 0 depends only on ¢.

Lemma 2.5 Let ¢ € G and 7, () = ti%' Then
(i) if ¢ is nonnegative and increasing, Tno,p.ef = Tuy-1yr, o120/
(i) if ¢ is nonnegative and decreasing, Tp,e,pof = —Ty-1yr, o100/
(iii) if @ is nomn-positive and decreasing, Ty, o pof = Th((ﬂ—l)')fw(w—l)'évpf;
(iv) if ¢ is non-positive and increasing, Ty o pof = —Th(wfl)rw(go—l),fz,l)f,
where §2(y) = £2(-y).

Lemma 2.5 can be proved by similar arguments as in the proof of [18, Lemma 2.3], we
omit the details.

3 Proofs of the main results
In this section we shall prove Theorems 1.1-1.3. In what follows, we let deg(P) = N and
P(t) = 22[:1 axt* and assume that £2 € H'(S"!) satisfies (1.1).

Proof of Theorem 1.1 By Lemmas 2.4 and 2.5, to prove Theorem 1.1, it suffices to show
that

I Th2.2f 2@y < CllAll Ay ®) 1821 11 g1y U | 2R (3.1)

where C > 0 is independent of /1, £2, f and the coefficients of P, but depends on deg(P). It
is clear that T}, ¢ pf (x) = Kj,,p * f (x), where the function Kj,  p is defined by

= _amip(yy-¢ PUYN2(Y)
Kh,.o,P(%‘)=/ o271y & ymn(y d
RVI
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By Plancherel’s theorem, (3.1) reduces to the following:

1Kn2.plliLe®ny < Clihlla, ®) 1821 1sm-1), (3.2)

where C > 0 is independent of /4, £2 and the coefficients of P. Invoking Lemma 2.1, we can
write 2 = Z}- Aja; satisfying Z]. |Aj| < ClI$2]ly1(sn-1), where each a; is a (1,00) atom and

each A; is a complex number. Therefore, to prove (3.2), it is enough to prove that
1Kn,pllzemey < Cllhlla, ®,), (3.3)

where £2 is a (1,00) atom and C > 0 is independent of %, £2 and the coefficients of P.

We now prove (3.3). Let £2 be a (1, 00) atom satisfying (2.1)—(2.3). Without loss of gener-
ality, we may assume that o = (1,0, ...,0). We only prove the case n > 3, since the proof for
n =2 is essentially the same (using Lemma 2.3 instead of Lemma 2.2). Fix £ #(0,0,...,0)
and write £ = £/|§| = (&{,...,£,). We can choose a rotation O such that O(¢') = ©. By the
change of variables, we write

—_— © . ! dt
Kiop(€) = / h(t) / IR (07 ) do (v) -
0 gn-1

Let b(y') = 2(O7'y). It is easy to see that b is a regular (1, 00) atom satisfying (2.2)—(2.3)
and supp(b) C B(£’,0) N S"~L. By the change of variables, we have

— o0 , dt
Kion(®) - / ne) f Fy(o)e P01 s,
0 R

where Fj is the function defined in Lemma 2.2. We know by Lemma 2.2 that supp(Fj) C
(&) -2r(&'), & +2r(&")) and Fy satisfies (2.5)—(2.6), where r(&') = |(0%&1, 0&), ..., 0&])|. We set
Np(s) = r(&")Fp(r(&")s +&1). One can easily check that supp(N,) C (-2,2) and || Np|| o) < C
and [, Nj(s) ds = 0. By the change of variables again,

— 00 . , dt
Kion(®) - / ne) f Ny(s)e e 45 L
0 R

For convenience, we set
1 17k -1
bi=2mal€lr(€), 1Bl = max ||, and B =BV
1<k<N

We can write

Krop g i ’ dt
Kop&) = / h(t) / N (s)e 27 POIEIEs ds?
0 R

b i ne 5 At
+ f h(t) / Nb(s)e*2ﬂll’(t)\§|r(§ )s ds—
B R P

=211 +12. (34')
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For I1, let us choose an integer K; such that 20 < 8 < 2K0*1 By the cancelation condition
of N}, and Holder’s inequality, we have

dt

|| = h(t)/Nb(s)(e*hip(”‘s"@’)s_1) ds<
R

Ko

2/+1 dt
YT ——
Ky 9j+1 /dt 17y’
< Clihlla,®,) Z (‘/; (Z |bk|tk> 7)

Jj=—00
9j+1 1/)//
< Clihla, ®.) Z Z'bﬂ(/ ky —ldt>
-0 k=1
-1/y’ 1Y ki
= Cllillayw,) Z Zw |(ky) ™" (2" = 1)1 28
j=—00 k=1
= Cllalla, ®,)» (3.5)

where in the last inequality of (3.5) we have used the fact that «® <1 for all @ € (0, 1] and
max;<x<n |bx|250F < 1. Here C > 0 is independent of f, ¢ and the coefficients of P.

For I, let @ € C°(R) such that @(¢) = 1if [{| <1 and ®(t) =0 if |t| > 2. For any j € Z,
we set R; = [2/,2*!) and define the operator T; by

Tif (0) = xz;(8) /R B (s)f (s)e 2T POEIEs gg.

From the estimate on page 60 in [32], there exists a large integer A > 0 independent of j
such that

I Tif 2@ < C2P 1B V27D £ 12w, (3.6)

where C > Oisindependent of f, £ and the coefficients of P. By (3.6) and Holder’s inequality,

|12|<Z/

g i / dt
|h(t)|’ / N (s)e 27 POIEIE)s ds’—
R

j=Ko
[e’e} oj+1 dt 1y
<20l m) Z( / f Nj(s)e- 2 POIEIEs g ‘ 7)
j=Ko
[e'e} 2/+1 dt
SC”h“Ay(RQZ(‘/ /Nb(s)e—wmsv(s Js >
j=Ko t
00 . ) , 2 11y
< Clhlla,®y Y 277 </ XR/_(t)/Nb(s)e—ZmP(t)\éIr(é 5 s dt)
j=Ko R R
3 /
—ilv i — —i 1 ~
= C||h||Ay(R+) Zz jI7 (2/|,BK| /49 }K/A”Nb”iz(m) %
j=Ko

< Cllhlla,®,) (3.7)
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where in the last inequality of (3.7) we have used the fact that 250 > 27 -1, Here y =
max{2,y’} and the constant C > 0 is independent of %, b, & and the coefficients of P. We
get from (3.4)—(3.5) and (3.7) that

|Kin2.p()| < Clilla, ®,)»

where C > 0 is independent of /, £2, & and the coefficients of P. This yields (3.3) and com-
pletes the proof of Theorem 1.1. O

Proof of Theorem 1.2 Let h, §2, ¢ be given as in Theorem 1.2. We only prove Theorem 1.2
for the case ¢ € § satisfying condition (a), and another case is discussed similarly. For ¢ > 0,

we define the measure 0,0 p,,: by

_— 1 )  h 20
OnopptX) = — / e 2miP(e(lyD)xy M dav. (3.8)
2 Jeaciyi<e ly|"=»

By Minkowski’s inequality and the change of variables, one can easily verify that

d
My ) = T ( [ lonaraes sl t) . (39)

By Plancherel’s theorem and Fubini’s theorem, to prove Theorem 1.2, we only need to
show that

zdt 1/2
H( |ahQPwt() 7)

where C > 0 is independent of %, §2 and the coefficients of P, but depends on ¢ and N.

= Clinlla, @) 18211 sy, (3.10)
L°(R")

Invoking Lemma 2.1, (3.10) reduces to the following:

dt\ V2
H( |0'h.QP<pt()|27)

where £2 is a (1,00) atom and C > 0 is independent of /4, £2 and the coefficients of P, but
depends on ¢ and N.
Given & #(0,0,...,0). To prove (3.11), we want to show that

= Clhlla,®)» (3.11)

LOO(R™)

- 2 dt 2
|Uh,Q,P,¢,t(‘§)| 3 = C||h||Ay(R+): (3.12)
0

where £2 is a (1,00) atom and C > 0 is independent of %, £2, & and the coefficients of P.
We now prove (3.12). Without loss of generality we may assume that §2 is a (1, 00) atom
satisfying (2.1)—(2.3) with ¥ = (1,0,...,0) and only prove the case n > 3. Let b and N}, be

given as in the proof of Theorem 1.1. By some change of variables, we write

dr

- (3.13)

On2.ppi(E) = — / h(r) ] N (s)e 2 PeIElrEs go T
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By (3.13) and Holder’s inequality, we obtain that

t
/ Ny (s)e 2T POOVEREs g
t/21J/R

ot ppt€)] < C||h||Ay(R+)(

Hence, to prove (3.12), it suffices to show that

oo( t
-/0 t/2

where C > 0 is independent of /4, §2, £ and the coefficients of P.

_SC;
r t

v dr)W dt

/ Nb(s)e‘zﬂip(w(f))lélr(é/)s ds
R

Next we shall prove (3.14). By a change of variable and the properties of ¢,

Y ar\*" dt
t

o0 t
/(L
s @(6)

e[ ([
0 @(t/2)

Let B be given as in the proof of Theorem 1.1 and § = ¢~1(8). We write

/ Ny (s)e- 2T POOVEEs g
R

r

Y ar\* dt
-

/ Nb(s)e—hiP(r)IE\r(E’)s ds

r

2y
/ (/ be(S)e’zﬂlP(r)IEIr( " ds v dr) Y ﬂ
0 o(t/2) . t
20y’

:/ </ /Nb(s)e—2mP PIEIEs g v ﬂ) Y g

t/2) - :

! ’
Y dr\*" dt
t

oo o(t)
A (
E) o(t/2)

=1 +/2

/ N, (s)e—2ﬂiP(r)IE r&s gg
r

For /1, by the fact that fR Nj(s) ds = 0 and the change of variables, we have

Y ar\ dt
t

/ Ny(s) (e 27 P0IEE)s _ 1) g
r

3 o(t)
N =/ (/

0 (¢/2)
® 2 gy
<C |b|/</ k”‘ldr) =
Z ‘ (t/2) 14

dt

<CZ|bk|2f (o)™
N 0(5)
§C2|bk|2/ 2 dt
k=1 0

N
=C) Inl’p* =G,

k=1

’
Y dr 1y
r
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(3.14)

(3.15)

(3.16)

(3.17)

where C > 0 is independent of %, §2, & and the coefficients of P, but depends on ¢ and N.
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For J,. Fix t > §, there exists an integer j, such that 20 < ¢(¢/2) < 20*1, By the fact that
@(2¢) < c,(t), there exists an integer ko such that 2%0 < ¢, < 250+ and then ¢(£) < 2ko*io+2,
From (3.6) we have

/fﬂ(t)
@(t/2)
ko+jo+1l L oj+l

SZ/W

Jj=jo

2dr
/Nb(s)e—2ﬂi1’(r)|$r(&’)sds‘ =
R r

2dr

/ Ny (s)e 2 POEIEDs g
R

ko+jo+1
—jinj —1/Ao—jk/A 2
< Y 27212 A NG
Jj=jo
ko+jo+1

SC Z |ﬂk|71/A27jK/A

Jj=jo

< C|BeI ™M p(t)™"4, (3.18)

where C > 0 is independent of £2, & and the coefficients of P, but depends on ¢. (3.18)
together with Holder’s inequality and the change of variable shows that

0) 2 27
J» < Cly) /oo (fw /Nb(s)e—ZﬂiP(V)\élr(E’)s ds ﬂ) ﬂ
- 5 oe/2)|JR r 13
o0
_ e/ an2/7 At
<C / (1817007
§
Y - dt
< C|B 27 / () =
s ¢
o0
< C|‘3K|—2/(A?)f t—ZK/(A);)—l dt
B
"
<cZ, (3.19)

2K

Here C > 0 is independent of %, §2, £ and the coefficients of P, but depends on ¢. Then
(3.14) follows from (3.15)—(3.17) and (3.19). This proves Theorem 1.2. O

Proof of Theorem 1.3 Let £2, ¢ be given as in Theorem 1.3. By arguments similar to those
used in deriving (3.14) and (3.16) in [37], one can easily get that

Mapgof (%) = C(P)Sa,pof ().

Thus, we only prove Theorem 1.3 for the operator Sg p,,. Define the measure o p,y; by

Gare) = [ e do (). .20
Sn—l

By duality we can write

oo d 1/2
Sapef(x) = (/(; |U.Q,P,<p,t *f(x)|27t) . (3.21)
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By (3.21) and the same arguments as in the proof of Theorem 1.2, to prove Theorem 1.3
for the operator Sg p,y, it suffices to show that

H( |U{2P(pt()|2dt>

where C > 0 is independent of §2 and the coefficients of P. By Lemma 2.1 and Minkowski’s

< ClIR21m sy, (3.22)
LO(RM)

inequality, (3.22) reduces to the following:

H< |09Pwt()|2dt>

where £2 is a (1,00) atom and C > 0 is independent of £2 and the coefficients of P.

<C, (3.23)
L®(R")

We now prove (3.23). We only assume that £2 is a (1, 00) atom satisfying (2.1)—(2.3) with
©? =(1,0,...,0) and consider the case n > 3. Let &, b, and N}, be given as in the proof of
Theorem 1.1. By the change of variables, we have

— dt » .
/ |09P<pt(§)|2 P / ‘/Nb s)e 2miPp(0))IE1r(E")s S ds
0

By a change of variable and the properties of ¢, we obtain that

dt
t

> dt
/ Iagpw(éf)l — <C((p)/ '/Nb(s)e—w e Es g = (3.24)
Let by, B be given as in the proof Theorem 1.1. We write
/ /N(S)e—erzP )EIr(E)s 5 ds ﬂ
t
2 dt
/Nb(s —2miP(t)|&|r(E dS _+/ /Nb(s)e 2 iP(t)|E|r(€ )d ab
t
:ZLI + L2. (325)

For L;, by the cancelation condition of N, we have

d B
L= —<CZ|bk| / % dr <, (3.26)

0

/Nh S) -2 iP(t)|E|r(& s )dS

where C > 0 is independent of b, & and the coefficients of P.
For L, let Ky be given as in the proof of Theorem 1.1. Applying (3.6), we get

L2<Z/

j=Ko

<221/

j=Ko

9j+1

Zdt
t

/ Ny (s)e- 2T POIEIEs g
R

dt

XR: (t)/Nb S)e—ZmP Ié\ré)sds

e}
< CY 272 A Nyl oy < C, (327)

j=Ko
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where in the last inequality of (3.27) we have used the fact that 250 > 2~ and C > 0 is
independent of b, £ and the coefficients of P. We get from (3.24)—(3.27) that

N dt
/ lGora & = <C,
0 t

where C > 0 is independent of £2, £ and the coefficients of P. This yields (3.23) and com-
pletes the proof of Theorem 1.3. d

4 Hardy-type inequalities
In this section we shall establish the following Hardy-type inequalities.

Theorem 4.1 Let P be a real polynomial on R satisfying P(0) = 0 and 2 € H'(S"!) satis-
fying (1.1). Then we have
(i) Ifp €3, then

( / 1 / 2Py $20)
RY fe/25lyl <l

|x1? ly["=*
where C is a positive constant independent of §2 and the coefficients of P, but

2 dx
|]”

172
) S C”Q”Hl(sn—l), (4.1)

depends on p, ¢, and deg(P).
(i) Ifp € G, then

(.

where C is a positive constant independent of §2 and the coefficients of P, but

2

e\ 12
) < ClIL2 || g1 (sn-1y, (4.2)

|x["

/S N 2P 3 (3/) do ()

depends on ¢ and deg(P).

Proof of Theorem 4.1 We first prove (i). Using Lemma 2.1, (4.1) reduces to the following:

2 1/2
( / dy dx) <c, (4.3)
RY[

|x”
where §2 is a (1, 00) atom and C is a positive constant independent of §2 and the coefficients

L / e 2Py Q_(y)
%12 J ir2<yi<ix =

of P. By the polar coordinates,

2
/ L / 2Py 20) |7 d%
r | 121P S e 2<iy1<la ly"=° ||
©|1 [t , I dr |*dt
[ L e 2 dot) | do )
sn-1 Jo tP t/2 Jsn-1 r=r t

p— dt
) /sn—l /0 |22 (%) ‘27 do (x')

o S dt 1/2 )12
|(7b,.(2,P,(p,t(')| -
0 t

Here w,,_; is the surface area of the unit $”~! and 0, o p ¢ is defined as in (3.8) with b(-) = 1.
Then (4.3) follows from (4.4) and (3.11).

(4.4)

= Wy-1

Loo(sn—l)
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It remains to prove (ii). To prove (4.2), by Lemma 2.1 it suffices to show that

2 1/2
( / dx ) -c (4.5)
Rn

|x”
where £2 isa (1, 00) atom and C is a positive constant independent of £2 and the coefficients

/;n_l e~ 2miPe(x)x"y ¢ (y’) do ()//)

of P. Using the polar coordinates, we can obtain
T

:/ / / e O Q(y) do ()
sn-1 Jo gn-1
© t .
<[, e o)
sn-1 Jo t
o0

172
([Clommm)rs)
0 t

where @ ; is defined as in (3.20). (4.6) together with (3.22) yields (4.5). Theorem 4.1 is
proved. O

2 dx

|x[”

2
% do (x')

2

) (4.6)
Loo(sn—l)

< w1
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