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1 Introduction

Duality principles in Gabor theory play a fundamental role in analyzing the Gabor system.
In [1], the authors described the concept of the Riesz-dual of a vector-valued sequence
and illustrated the common frame properties for the give sequence and its R-dual. The
conditions under which a Riesz sequence can be a R-dual of a given frame are investigated
in [2]. In this paper, we are interested in the duality principles for g-frames. In [3], the
g-R-dual was first defined, and some frame properties of g-R-dual were exhibited by the
properties of the given operator-valued sequence. In this paper, our definition of g-R-dual
in Sect. 2 is much weaker, and we characterize the g-R-dual with the analysis operator. The
properties of the g-completeness, g-w-linearly independent, g-minimality of the g-R-dual
is accounted in Sect. 3. In Sect. 4, we construct a sequence with a g-Riesz sequence and a
given operator-valued sequence to consider the g-R-dual in a different way.

Throughout this paper, we use N to denote the set of all natural numbers, and assume
that {H;};cn is a sequence of closed subspaces of a separable Hilbert space K, H is a sep-
arable Hilbert space. Denote by {4;};cn, or for short {A4;}, a sequence of operators with
A; € B(H, H;) for any i € N. Suppose that B(H, H;) denotes the collection of all the bounded
linear operators from H into Hj, i € N. Denote by €D, H; the orthogonal direct sum
Hilbert space of {H}en, {g} := {g:}ien for any {gi}ien € P, Hi-

In [10], Sun raised the concept of a g-frame as follows. Let A; € B(H, H;), i € N. If there
exist two constants 4, b such that

2 2 2
alflI” < E IASII” < bIfII%  Vf €H,
ieN
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we call {A;} a g-frame for H. We call {A;} a tight g-frame for H if a = b. Specially, if a =
b =1, {A;} is called a Parseval g-frame for H. If the inequalities above hold only for f €
span {A}H;}ien, we call {A;} a g-frame sequence for H. If only the right-hand inequality
above holds, then we say that {A;} is a g-Bessel sequence for H. If span {A}H,};en = H, we
say that {A;} is g-complete in H. If {A;} is g-complete and such that

2

a(g)]” <>l <bliehl’, vis) < DHs

ieN ieN

we call {A;} a g-Riesz basis for H. If the g-completeness is not satisfied, it is called a g-Riesz
sequence for H. As we know, if {A;} is a g-frame for H, we define Suf = >, _yAFAf for any
f € H, then S, is a well-defined, bounded, positive, invertible operator by [10]. We call S4
a frame operator of {A;}. Another basic fact is that {Zi}ieN = {AiSATI}ieN is a g-frame for
H, we call it a canonical dual g-frame of {A;}. Extensively, by [8], if a g-frame {B;} for H
such that f = )", BfAf for every f € H, we say that it is a dual g-frame of {A;}. Recently,
g-frames in Hilbert spaces have been studied intensively; for more details see [4—10] and
the references therein.

In the following we introduce some definitions and lemmas connected with the g-bases
in Hilbert space which will be needed in the paper.

Definition 1.1 ([10]) If {A;} satisfies
(1) {A;}isag-orthonormal sequence for H, i.e., (A;‘g[,A;‘g/) =8;(gi,g) forany i,j e N,
any g; € H;, g € H;.
(2) {A;}is g-complete in H.
We call {A;} a g-orthonormal basis for H. Obviously, (2) is equivalent to that {A;} is a
Parseval g-frame for H by [5, Corollary 4.4], when (1) holds. Specially, if {4;} only satisfies
AiAf =0 foranyi,jeN,i#j,{A;} is called a g-orthogonal sequence for H.

The g-orthonormal basis is a special case that itself is g-biorthonormal. The following
result shows that for the g-Riesz basis there also exists a g-biorthonormal sequence.

Lemma 1.2 ([10], Corollary 3.3) Let {A;} be a g-Riesz basis for H. Then {A;} and {71,»} are
g-biorthonormal, where {A;} is the canonical dual g-frame of {A;}.

In this paper, we only interested in the case when the g-orthonormal basis for H exists,
which is equivalent to the following result.

Lemma 1.3 ([5], Theorem 3.1) Let H be a separable Hilbert space, {H,}cn be a sequence of
separable Hilbert spaces. Then there exists a sequence {I;}, which is a g-orthonormal basis
Sor H if and only if dimH = )", _ydim H;.

The concept of g-bases in Hilbert space is a generalization of the Schauder basis. Let
{A;}. If for any f € H, there is a unique sequence {g;};,cny with g; € H; for any i € N such that
f = cnArgi, we call {A;} a g-basis for H. If {A;} is a g-basis for span {AH;}ien, {Ai} is
called a g-basic sequence for H. Moreover, If ), Afgi = 0 for {g;} € P,y Hi» then g; = 0,
we call {A;} g-w-linearly independent. If Ajg; ¢ span,; {A;gi}ien for any {g;} € D Hi
such that g; € H;, g; # 0, any i € N, we call {A;} g-minimal. For more details as regards
g-bases see [4].
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2 Duality for g-frame
Before giving the definition of g-R-dual, we introduce a lemma which is related to the
g-Bessel sequence.

Lemma 2.1 The sequence {A;} is a g-Bessel sequence for H if and only if )", Alg; is con-
vergent for any {g;} € @, Hi» and is also equivalent to that ),y I|Af > < 0o for every
feH.

Proof Suppose Y, Afg is convergent for any {g;} € @, H;. For any n € N, {g} €
D, Hi, we define T, : @, .y H; — H, T,{g:} = Y, Ajgi. Thus T}, is bounded evidently.
Since {T),},en converges to T in the strong operator topology as n — oo, where T{g;} =
Y ienAfg forevery {g;} € @, Hi. Then T is bounded by the uniform boundedness prin-
ciple in Banach space. The rest follows directly. d

For a g-Bessel sequence {A;}, we can define the analysis operator as 64 : H —
@D, His0af = {Aif}ien for any f € H, which is well defined and bounded obviously by
Lemma 2.1.

Definition 2.2 Let {A;}, {I}} be two g-orthonormal bases for H. Suppose a sequence {4;}
such that ), ||A,»A7g,-||2 < oo for anyj € N, any g; € H;. We define

Argi=Y ITAiAlg, VjeNgeH,
ieN

We call {A;} a g-R-dual sequence of {A;}.

Remark 2.3 By [4, Theorem 4.4], forany; € N, A; is well defined if and only if {AiA]’."gj},-eN €
P, Hi for any g € Hj, i.e, {A;Qf Yien € D,y Hi for any f € H, i.e., {A;} is a g-Bessel
sequence for ran Q; by Lemma 2.1, where Q; is the orthogonal projection from H onto
ran A;. Obviously, {A;} may not be a g-Bessel sequence for H. The condition of our def-
inition is weaker than that in [3, Definition 1.13]. Thus Definition 2.2 is equivalent to
Aj =2 e AjA] T for any j € N. By Definition 1.1, we get I Af = Ay A for every i,k € N.

The following exhibits that the sequence {A;} satisfying Definition 2.2 shares the com-
mon properties with its g-R-dual {.4;}. Similar results are referred to in [3, Theorem 2.2].

Theorem 2.4 Let {A;} satisfy Definition 2.2, { A;} be its g-R-dual defined in Definition 2.2.
Then {A;} is a g-Bessel sequence for H if and only if { A;} is a g-Bessel sequence for H. More-
over, they have the same upper bound.

Proof For every {g;} € @,y Hir let f =), ATg h =), I7°g. Suppose {A;} is a g-
Bessel sequence for H and has an upper bound b. Since 64,0 : H — @, H; are unitary,

2 2 2
S ag| - | oiordig) - | L X rrdg
jeN jeN jeN ieN
2 2
ST rase| - | Cras
jeN ieN ieN
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= [|656af|)* = 16411 < BIFI
= b|o54g}])” = bl (g ]

By Lemma 2.1, {4} is a g-Bessel sequence for H and has an upper bound 4. The converse
is similar. O

1
When {4;} is a g-Bessel sequence, there exists a unitary equivalence between {A;S}}
and the R-dual {A;}.

Theorem 2.5 Let {A;} be a g-Bessel sequence for H, {A;} be its g-R-dual defined in Defini-
tion 2.2. Then ) )

1) (Afg Agr) = (57/1*5,7,,57 A}g) forany i,j € N, any g; € H;, g € H;.

@) 12 ien A7l = 1 X e Sa : Ajgil for any {gi} € Diary Hi

(3) there exists an isometric operator T from ranS 0 onto tan 0’ such that A;T = A;S; 2
foranyieN.

Proof (1) Since {A;} is a g-Bessel sequence for H, so is {A;} by Theorem 2.4. Then, for any
i,j € N, any g; € H;, g € H;, we have

(A gnA gk) <9_,4{81kgt}k: 9,4{5;kg;}k>
<9 OAG {8tkgz}kt'9 9A9 {&kg;}k)

- (83 47 A7g).

(2) It is direct by (1).
1 1
(3) Define T* :ran 0%y — ran Sy, T*(3 .y Afg) = Y ien Si Afgi for any {g;} € @, Hi. It
is easy to verify T* is well defined by (2). We can extend T to an isometric operator from

1
ran S} 0% onto ran6%. We still denote the operator as T for convenience. O

In the following results we show the properties of g-R-dual in the case that {4} is a
g-frame sequence by the corresponding analysis operators. The results are similar to the
conclusions in [3, Corollary 2.6].

Theorem 2.6 Let {A;} satisfy Definition 2.2, { A;} be its g-R-dual defined in Definition 2.2.
Then {A;} is a g-frame sequence for H if and only if { A;} is a g-frame sequence for H with
the same frame bounds. Specially, in this case the following are equivalent:
(1) {A;} is a g-frame for H with the frame bounds a, b.
(2) {A;} is a g-Riesz sequence for H with the frame bounds a, b.
(3) There exists 0 < by < 00 such that Yy, . IAPfI> < b1 >y WAS I for any f € H,
where P is an arbitrary orthogonal projection on H.
(4) There exists 0 < by < 00 such that Y ;. |APAf 1> < by Y ;o NAS N1 for any f € H,
where P, is the orthogonal projection from H onto span{A}H;}}, for any n € N.

Proof The case of the g-Bessel upper bound we get easily by Theorem 2.4. We now show
the case of the lower bound in a similar way as the proof of Theorem 2.4.
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Because {A;}, {A;} are g-Bessel sequences, we easily have 6, = 0r0%04. Then g € kerf,
if and only if g € ker6%6,, i.e., 64¢ € ker6%. Hence, g € (ker,)* if and only if 6,¢ €
(ker6% )™ since 6,4 is unitary.

Evidently, {A;} is a g-frame sequence for H if and only if for any f € ran6}, one has

alfI? < X 1AL = 164 1> < BIFII, ie.,
alloAfI2 = 03041 |” < BIFI? = blIOASII,

which is equivalent to {4;} is a g-frame sequence for H.

The equivalence of (1) and (2) is obvious since (ker64)* = {0} if and only if (ker 9{’2‘)l = {0}
by the proof above.

(1) = (3). Let {A;} be a g-frame for H with the frame bounds a, b. Take P as an arbitrary
orthogonal projection on H. For any f = f; + f, € H, where f; € ran P, f; € ker P, we have

D IAPA =) IAAI <bIfIP <a ') AL
ieN ieN ieN
(3) = (4) is direct.
(4) = (2). It is obvious by Theorem 3.3. O

The following result was given in [3, Theorem 4.1], we here give a simple illustration by
the use of the analysis operators.

Lemma 2.7 Let {A;},{B;} be two g-frames for H, {A;}, {B;} be their g-R-dual sequences
defined in Definition 2.2, respectively. Then {A;} is a dual g-frame of {B;} if and only if
(A7gi Bg) = 8;(gi»g) for any i,j €N, any g; € H;, g € H;.

Proof By Definition 2.2, we get 6.4 = 0,056r, 05 = 04050. Then 040} = 0,6506,. Obvi-
ously, 076z = I if and only if 040} = I, Hyy L€, (Afgi, B]’-*gj) =08;(gg) forany i,j € N, any
gi € Hi, g] € ]‘11 0

The following shows that the g-R-dual of the canonical dual g-frame is the “minimal”
and has the “smallest distance” with {A4;} among the g-R-duals of all the alternate dual
g-frames, which is a generalization of the result in [3, Theorem 4.5].

Theorem 2.8 Let {A;} be a g-frame for H, {Zi} be the canonical dual g-frame of {A;}, {B;}
be a dual g-frame of {A;}. {A;} and {B;} are the corresponding g-R-duals defined in Defini-
tion 2.2, respectively. Then the following are equivalent:
(1) B; = Zifor everyieN.
(2) IB*gll < IC;gill for every i € N, g; € H;, where {C;} is an arbitrary dual g-frame of
{A;}, {C} is the g-R-dual of {C;}.
(3) I1Brgi — Afgill <ICfgi — Aigill for every i € N, g; € H;, where {C;} is an arbitrary
dual g-frame of {A;}, {C;} is the g-R-dual of {C;}.

Proof (1) < (2). By [3, Theorem 4.4], we obtain B; = .Zi + A; foranyi € N, where {A;} isa
g-Bessel sequence for H such that ran6% C (ran6%)*. Then, for every {g;} € @, Hi» we
get

o3 = 0%ien + 05 (g | = |05t .
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Specially, if we take {5;;g;}jen, then || B} g;|| > ||.Z;kg,- l. Hence, B; = Zi ifand onlyif A; = 0 for
any i e N.
(2) & (3). By Lemma 2.7, for any i € N, we obtain

|Bgi - Asel” = |Bia]” + | Arail” - 2.
Similarly, ”./Z(;'kgj - Agll = ||./21V;"g,-||2 + | A%gi||* - 2. Thus the equivalence is direct. O

3 Characterization of the Schauder basis-like properties of g-R-dual
Suppose {A;} is a g-Bessel sequence for H, {A;} is its g-R-dual defined in Definition 2.2.
We will characterize the Schauder basis-like properties (g-completeness, g-w-linearly in-

dependence, g-minimality) of {4;} in terms of {A;}.

Theorem 3.1 Let {A;} be a g-Bessel sequence for H, {A;} be its g-R-dual defined in Defini-
tion 2.2. Then the following are equivalent:
(1) {A;} is g-complete.
(2) {A;} is g-w-linearly independent.
(3) Iflim,—, o |84, ||* = O, then {g;} = 0, where x,, = Y | A%g; € H for any n € N and
any (g7} € Do Hi.

Proof (1) < (2). By Definition 2.2, 0% = 6646 For arbitrary {g;} € €, H;, we have
{gi} € ker07 ifand onlyif 67 {g;} € kerf4. Then {A;} is g-complete if and only if ker 6% = {0},
i.e, {A;} is g-w-linearly independent.

(2) & (3). Itis evident as ||04x,|1* = [|0% 0 4% % O

Now we have the next special result. By [4, Theorem 5.2], if {A;} is a g-frame sequence
for H, the existing condition of the g-biorthonormal sequence means the minimality of
{Ai}.

Theorem 3.2 Let {A;} be a g-Bessel sequence for H, {A;} defined in Definition 2.2 be its
g-R-dual. If there exists a sequence {A;} which is g-biorthonormal with {A;} such that A}
is injective for any i € N, then
(1) there are constants 0 < ¢; <1 for arbitrary i € N such that ||c;g;| < || ZjeN A}‘g,'llfor
any {gi} € iy His
(2) there are constants 0 < a; for arbitrary i € N such that

laghen]” < 3 |4050e ] Vie) € DH.

jeN ieN
Moreover, (1) and (2) are equivalent.

Proof Take arbitrary /; € H; and ||/;]| = 1 and let ¢; = min{1, m} for every i € N. Since
(Ajgi Arg) = 8;(gig) forany i,j €N, g; € H; g; € Hj, we have

2 Ay

jeN

2]

jeN

= sup
Ifli=1feH
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* 1 *
= KZA’g” AT Aihi>'

jeN

1
> Yg, —— ATh;
—KZ A& Tt >
jeN

<Z Afgj, A}khi>' =lcil | (gi» i) |

jeN

> |cil

By the arbitrariness of %;, we have |c;||g;|| < || ZjeN Afg,'H.
Take a; = % for every i € N. For any {g;} € ),y H:» we obtain

2
2 C; 1
[taghl"= 3 | Srei| =D olleel’?
ieN ieN
=3 2 supleigil?
—_ : IS81
ieN 2 ieN
" 2
<[ 45] - Slassieal
jeN jeN
The converse is evident since ||a;g;[|> < ||[{aig:}]>. 0

In the following we illustrate that the g-R-dual {4} is a g-basic sequence by the proper-
ties of {A;}, which also shows the conclusion of Theorem 2.6 from another perspective. It
can be realized as a kind of g-completeness of {A4;}.

Theorem 3.3 Let {A;} be a g-frame sequence for H, { A;} defined in Definition 2.2 be its g-
R-dual. Let P, be the orthogonal projection from H onto N, := span { A} H;}!, foranyn € N.
Then the following are equivalent:
(1) {A;} a g-basic sequence for H.
(2) There exists a constant 0 < b < 0o such that ),y AP flI?> <b DN |Af11? for any
neN,anyf e H.
(3) There exists a constant 0 < b < 0o such that Syp, < bSa for any n € N, where Syp, is
the frame operator of the g-Bessel sequence {A;Py}ieN.
In this case, we have

ranf}; =span {Aj‘gi : ZHAiA;ng“Z #0,VieN,g € Hi}.
ieN
Proof Letl={j e N: A’ =076, A7 #0}. Without loss of generality, we can suppose A; #0
forany i e N.
(1) < (2). By [4, Theorem 3.3], {A;} is a g-basic sequence for H if and only if there exists
a constant 0 < b < oo such that, for arbitrary n < m, any {g;} € @, H:> one has

2

<b

2
=b) A,

ieN

Z Argi
i=1

m
Z ‘A;'kgi
i=1

where x = )", A¥g;. Since P, A} =0 for every i € Nsuch that m<i <m, ) . Ag; = Pyx.
Similarly, we have || Y0, Afgill® = >, APl
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(2) © (3). (2) is equivalent to (Sap,f,f) = (OaPyf,04Pyf) < b(Sf.f) for any f € H, which
is obvious.

By [4, Lemma 2.16], {4;} is a g-Riesz sequence for H. Then A; # 0 for any i € N. By
Definition 2.2, we have A} = 6704 AF. Then 04 A7 #0, i.e, Y ;o lA;iAZg > # 0 for any
ieN, g € H;. Hence,

span {A;‘gi > ||’ #0,VieNg e H,»} =H.
ieN

Therefore, we only need to show the g-completeness of {4;} in H.

Suppose there exists f € H, f # 0 such that (A}g;,f) = 0 for arbitrary i € N, g; € H;. Ob-
viously, there is a sequence {f;} € @, H; such that f = )", A%f;. Assume k € N is the
smallest positive integer such that f; # 0. Then Pif = Affi. We get

0# Y |Aihi]’ = Y 1A P <6 IASI? =0,

ieN ieN ieN
which is a contradiction. O

Now we give some equivalent characterizations for a g-frame to be a g-Riesz basis.

Theorem 3.4 Let {A;} be a g-frame for H. Then the following are equivalent:

(1) {A;}isag-basis for H.

(2) {A;} is g-w-linearly independent.

(3) {A;} is a g-Riesz basis for H.

(4) The g-R-dual { A;} defined in Definition 2.2 is a g-Riesz basis for H.

(5) Iflimy oo Yo A ||* = 0, then {gi} = 0, where x,, = Y+, I*g; forany n € N,
{gi} € @ieNHi'

(6) {A;}isexact (i.e., if it ceases to be a g-frame whenever any one of its elements is
removed), and the canonical dual g-frame is biorthonormal with {A;}.

Proof The equivalence of (1), (2), (3) can be obtained by [4, Lemma 2.16]. By [9,
Corollary 2.6], we get the equivalence of (3) and (6). Since {A;} is a g-frame, we get
> ien IAx, 1> = 11056 r%,]1%. Then (5) holds if and only if 67 is injective, i.e., (3) holds.
Similarly, by Definition 2.2, we have 6 4 = 6,400 For any f € H, we obtain f € ker0 4 if
and only if O.f € ker6;. Thus we get the equivalence of (3), (4) by Theorem 2.6. d

4 G-R-dual and the g-orthogonal sequence

4.1 The characterization of g-R-dual

Let {A;} be a g-orthonormal basis for H. In this section we mainly investigate the con-
ditions under which a g-Riesz sequence {A;} is the g-R-dual of a g-frame {A4;}. We de-
note {.Zi} as the canonical dual g-frame of {.4;}, which is also a g-Riesz sequence. Define
C;=A;03,6 3 forany i € N. Then

Crgi=Y ArAAlg, YgeH.
jeN

Evidently, {C;} is a g-Bessel sequence for H. Let M = ran6%. Thus ran6$ C M. By
Lemma 1.2, we also get A;C; = A;A} for any i € N.
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Proposition 4.1 Let {A;} be a g-orthonormal basis for H, {A;} be a g-Riesz basis for M,
{./Zj} be the canonical dual g-frame of {A;} in M, where M is a closed subspace of H. For
any sequence {A;}, we have the following:
(1) There exists a sequence {I7} such that A; = I/0% 0, foranyieN,ie.,
Afgi=3 e AT AT gifor any g; € Hi.
(2) The sequence {I7} satisfying A; = I'70% 6, can be written as I'] = C; + D; for every
i € N, where C; = Ai046 1, D; € B(H, H;) and ranD} C M*.
(3) IfH = M, the sequence {I'}} satisfying A; = I'/0%6 4 has the unique solution I'] = C;
foranyieN, where C; =A;6,0 3.

Proof (1) Since Ajg; = } oy Af AjA7g; for any i € N, g; € H; and A;C; = A;A7, we have
Ajgi=D ey AfAClgi. We take I/ = C;.

(2) For any i € N, take arbitrary operator D; € B(M*,H,). Obviously, ranD} C M~ is
satisfied. Let I'/ = C; + D;. Since M =ran6%, by (1), we have

179:29/‘ = (Cl + D,)@:Z@A = CzQZGA = Al‘.

For the converse, suppose A; = /6756, forany i € N. By (1), Ci0% 0, = A;. Let D; = I'{ -
C;. Hence, D;0% 64 = 0. Since M =ran 0%, M C ker D;. Thus ran D} C M.
(3) If H = M, we have D; = 0 for any i € N from (2). (I

Proposition 4.1 did not have any assumption on {A;} or use any relationship between
{A;} and {A;}.
The next result exhibits that {C;} and {A;} have the common properties.

Proposition 4.2 Let {A;} be a g-orthonormal basis for H, { A;} be a g-Riesz basis for M
with the frame bounds c and d, { A} be the canonical dual g-frame of {A;} in M, where M
is a closed subspace of H. For a sequence {A;}, define C; = A;0%6 1, for any i € N, we have
(1) If{A;} is a g-Bessel sequence for H with the upper bound b, then {C;} is a g-Bessel
sequence for H with the upper bound bc™'. Moreover, for any {g;} € B, H;, we have

2
=

2

2
c <d

Z Cig
ieN

ZA}kgi Z Cg
ieN ieN

Specially, {A;} is g-w-linearly independent if and only if {C;} is g-w-linearly
independent.

(2) If{A;} is a g-frame for H with the frame bounds a, b, then {C;} is a g-frame for M
with the frame bounds ad™",bc™!.

(3) If{A;} is a g-Riesz basis for H with the frame bounds a, b, then {C;} is a g-Riesz basis
for M with the frame bounds ad™',bc™!.

(4) If{C:} is a g-Bessel sequence for H with the upper bound by, then {A;} is a g-Bessel
sequence for H with the upper bound bid.

(5) If{Ci} is a g-frame for M with the frame bounds ay, by, then {A;} is a g-frame for H
with the frame bounds ayc, by d.

(6) If{Ci} is a g-Riesz basis for M with the frame bounds ay, by, then {A;} is a g-Riesz
basis for H with the frame bounds a;c,a1d.
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Proof (1) Since C; = A;603,6 ;1 for any i € N, for every f € H, we have

STucsIR =" [Ab0af | < b I

ieN ieN
Moreover, because 6 = 9}9/\9;‘, for any {g;} € D, Hi, we have

2 2

<c!

2

Z C;kgi

ieN

Y 04038

ieN

ZA;'kgi

ieN

As 0% = 030468, for every {g;} € P,y Hi, we get

2

2
Yl Adzal <

ieN

ZA;‘kgi

ieN

Zcfgi

ieN

Obviously, {4;} is g-w-linearly independent if and only if {C;} is g-w-linearly independent
from the above.

(2) The case of upper bound was obtained by (1). Similarly as (1), for every f € M, we
get

ad \fI? <al0z0zf | < Y lAbs0af]” = S ICh I

ieN ieN

(3) Suppose {A;} is a g-Riesz basis for H. Since {C;} is a g-frame for M by (2) and is g-w-
linearly independent by (1), {C;} is a g-Riesz basis for M by [4, Lemma 2.16]. The frame
bounds can be obtained by (2).

The rest is similar to the above. O

From the above, {C;}, {A;} have the same properties, but the bounds may not be com-

mon.

Corollary 4.3 Let {A;} be a g-orthonormal basis for H, {A;} be a g-orthonormal basis for
M, where M is a closed subspace of H. For a sequence {A;}, define C; = A,0%0 ; forany i € N,
we have:
(1) {Ci} is a g-Bessel sequence for H if and only if {A;} is a g-Bessel sequence for H with
the same bound.
(2) {Ci} is a g-frame for M if and only if {A;} is a g-frame for H with the same bounds.
(3) {Ci} is a g-Riesz basis for M if and only if {A;} is a g-Riesz basis for H with the same
bounds.

Proof Take ¢ = d = 1 by the proof of Proposition 4.2, which can be obtained directly. O

Let {A;} be a g-Riesz basis for M, where M is a closed subspace of H. Let A, = AiSj
for any i € N, where S 4 is the frame operator of {A;}. Then {+A;} is a g-orthonormal basis
for M. Let {A;} be a g-orthonormal basis for H and & = 6%6,4. Obviously, ® : M — H is
unitary and #4; = A4;0. Then we have the following result.
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Proposition4.4 Let{A;} bea g-orthonormal basis for H, {A;} be a g-Riesz basis for M with

the frame bounds c,d, where M is a closed subspace of H, {A;} be a g-frame for H with the

frame bounds a, b. Define C; = A;07,0 1 for every i € N. Then the following are equivalent:
(1) {C;}is a Parseval g-frame for M.

1
(2) Sa=0*S O, where © =036 1S%.

1
Proof By Proposition 4.2, {C;} is a g-frame for M. Since 6c = 040,60 5 and 0 5 = 0,08 7,
1 1
we have Sc = S * ©*S4,0S8 /. Obviously, Sc = Pifand only if S 4 = ©*S4©, where P is the

orthogonal projection from H onto M. O

If {A;} is a tight g-frame for H with the bound a. Let {4;} be a tight g-Riesz basis for
M with frame bound a. Then Sy = al, S 4 = aP. Thus Proposition 4.4(2) holds obviously.
Then we get Corollary 4.6 directly.

Proposition 4.5 Let {A;} be a g-orthonormal basis for H, { A;} be a g-Riesz basis for M,
where M is a closed subspace of H. If {A;} is a g-frame for H, define C; = A,0’,0 3 for any
i € N. Then the following are equivalent:
(1) If{A;} is the g-R-dual sequence of {A;} with respect to two g-orthonormal bases { A;},
{I3}.
(2) There exists a g-orthonormal basis {I3} for H such that A; = I,6%6 4 for every i e N.
(3) There exists a g-orthonormal basis {I;} for H such that C; = I';P for every i € N,
where P is the orthogonal projection from H onto M.
(4) {C;} is a Parseval g-frame for M and dimker 6}, = dim M=,

1
(5) Sa=0*S4O and dimker6¢ = dim M=, where © = 646 5S%.

Proof (1) = (2) By Definition 2.2, we have A} = 0}.04 A} for every i € N. Hence, A; =
[6%6,4.

(2) = (1) It is obvious by Definition 2.2. The equivalence of (2) and (3) can be obtained
by Proposition 4.1.

(3) = (4) For any {g;} € @, Hi, we have

Oclgt =) Cigi= Y PI}gi=Pojig).

ieN ieN

Obviously, {g;} € ker6¢ if and only if 67 {g;} € M*. Then dimker 6% = dim M~ as 6 is uni-
tary. Evidently, {C;} is a Parseval g-frame for M.

(4) = (3) Suppose {C;} is a Parseval g-frame for M. Let K = M@ (ran6c)*, T; = C; ® P;,Q*
for any i € N, where Q,P; are the orthogonal projection from €, _ H; onto ran6c, H;
respectively, for every i € N. It is easy to get {7} is a g-orthonormal basis for K by [7,
Theorem 4.1].

Since dimker6}; = dim M*, there exists a unitary operator V : M+ — ker6}. Let I} =
T(P®V)=Ci®P;Q 'V foreveryic N.AsP® V : M O M* — M ® (ranfc)* is unitary,
where P is the orthogonal projection from H onto M, we see that {I}} is a g-orthonormal
basis for H by [6, Theorem 3.5]. Obviously, we have C; = I';P. The equivalence of (4), (5)
is direct by Proposition 4.4. O
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By Proposition 4.5, we can also get the following corollary, which was showed in [3,
Theorem 2.7].

Corollary 4.6 Let {A;} be a g-orthonormal basis for H, {A;} be a tight g-Riesz basis for
M with the frame bound a, where M is a closed subspace of H. If {A;} is a tight g-frame
with the frame bound a. Then there exists a g-orthonormal basis {I;} for H such that {A;}
is the g-R-dual of {A;} with respect to two g-orthonormal bases {A;}, {1} if and only if
dimker 6} = dim M+, where C; = A;0%0 5 for any i € N.

Proof By Proposition 4.2(3), {C;} is a Parseval g-frame for M. It is obvious by Proposi-
tion 4.5. O

Corollary 4.7 Let { A;} be a g-orthonormal basis for H, {A;} be a g-Riesz basis for M, {.;l,'}
be the canonical dual g-frame of {A;} in M, where M is a closed subspace of H. If {A;} is a
g-frame for H. Define C; = A;030 j for any i € N. For any {g;} € @,y H,, let g = 0%{g:} € H,
h =0%1{g:} € M. Then there exists a g-orthonormal basis { I';} for H such that {A;} is the g-R-
dual of {A;} with respect to two g-orthonormal bases { A;}, {I} ifand only if Y, lAgl? =
|4]|> and dimker6f = dim M.

Proof Obviously, we have

> Al = |0a0iigd|)” = 0:lgd ] = 1hI>.
ieN

The result now follows from Proposition 4.5 directly. O

4.2 The construction of orthogonal sequence
Now we will construct a sequence {I7/} such 4; =} Fi’fo Aj, which is characterized in

Proposition 4.1.

Proposition 4.8 Let {A;} be a g-orthonormal basis for H, { A;} be a g-Riesz basis for M,
{A} be the canonical dual g-frame of {A;} in M, where M is a closed subspace of H. If
dimM* = )", dimH; = oo, we have:
(1) For any sequence {A;}, there exists a g-w-linearly independent sequence {I/} such
that A; =} ey Fi’;l;f‘Ajfor everyieN.
(2) For any g-Bessel sequence {A;}, there exists a norm-bounded and g-w-linearly
independent sequence {I'/} such that A; =} F/,Z;"A,-for everyieN.
(3) For any operator sequence {A;}, there exists a g-orthogonal sequence {I'/} such that
A=) N Q/,Z}*A,»for every i € N.

Proof (1) Since dimM* = > ey dim H;, there exists a g-orthonormal basis {E;} for M* by
[5, Theorem 3.1] with E; € B(M*,H,) for any i € N. Let W; = tTan £} for any i € N. Then
M+ =@, W;and E; : Wi — H; is unitary. Let C; = A;6;6 1 for any i € N. Then A;E] = 0
and GE; = ZkGNAiA,f.AkE]T“ =0.

Since there exists an invertible operator D; : W; — H; for any i € N, we see that D;E; +
C.Ef = D;Ef € B(H, H;) is invertible. Let I'/ = D; + C; € B(H, H;). Obviously, I'/ #0.
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For any {g;} € @,y Hir if ;e I/*g; = 0, then, for any j € N, we have

E)y I'ig=) (EC +ED;)g = EDjg=0.

ieN ieN
Then g; = 0.
(2) By the proof of (1), we can choose D; such that ||D;|| = 1 (if not, we choose D; = Wg—f”)

for any i € N. By Proposition 4.2, {C;} is a g-Bessel sequence for M. Suppose the upper
bound of {C;} is b. Then ||C;|| < b. Hence, for every i € N, g; € H;, we have

[ral = Icial” + 1Dia]” < (0% + 1)l

(3) By Proposition 4.1, the sequence {I"/} such that A4; = ZjeN ﬂ/,éT]*Aj = 1'}’9}0,\ can be
written as I} = C; + D;, where C; = A;67,0 3, Tan D} C M+ for any i € N. For every i,j €
N,i#j, g € H;, gj € H;, we have

(F/fg,», I';.’*g,») =0 ifand onlyif (C;kgl-, Cj*gj> + (D;"gi,ng,») =0.

We will use the following inductive procedure to construct {D;} such that fan D} ¢ M+
and D;D} = -C;C; for every i,j e N, i #j. Let Tj; = —C,C/* € B(Hj,H;). Then T; =Tj. LetI;
be the identity on H;.

(1) Let Dy = E.

(2) Let D3 = ETXT, + E5, where X7, = T1.

Obviously, D1 D} = E\E; X}, + E\Ej = T1p. Then I'/I}* = 0.

3) Forany k € N, assuming that we have gotten operators Dy, D,, ..., Dy in terms of X, €
B(H;,Hy) (i=1,...,k—1)such that D} = ;:11 E;“X;fk +E;. Then, for k + 1, we define Dy; by
Dy, = Zle E;‘X;f,“l +Ef,,, where operators X;x,1 (i = 1,2,..., k) are given by the following

equation:
5L XT ke Tk
X b X3 T ket
Xue Xox o I) \X{pa Thk+1

Obviously, we can obtain Xjx,1 € B(H;, Hry1) (i = 1,..., k). Thus we have constructed the
sequence {D;} and obtained {1/} by I'/ = C; + D; for any i € N. Then {I7} such that 1"/1"/;‘ =
0 for every i,j € N with i #}.

Lastly, we show the sequence {17} satisfies the desired condition: 4; = 3 I'7 A} 4; for
allie N.

Since (ker D;)* =tan D} C M* and m_nj;-k C M for any i,j € N, we have

ran Af € M C ker D;.

Hence, D,«.Z]’f =0 for any i,j € N. On the other hand, since C; = A4;60 1 for any i € [, we

get A;C; = AjA7. By Afgi = ) oy Af AjAfg: for any g € H;, any i € N, we have Ajg; =
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Y ien AFACIgi. S0 Y A Aj = A; for any i € N. Then

Y A A=Y (Ci+D)ATA; =Y CAT A=A, VieN.

jeN jeN jeN
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