
Li and Li Journal of Inequalities and Applications         (2019) 2019:69 
https://doi.org/10.1186/s13660-019-2022-x

R E S E A R C H Open Access

Characterizing the R-duality of g-frames
Liang Li1* and Pengtong Li1

*Correspondence:
liliang1100@126.com
1Department of Mathematics,
Nanjing University of Aeronautics
and Astronautics, Nanjing, P.R. China

Abstract
In this paper, we define the g-Riesz-dual of a given special operator-valued sequence
with respect to g-orthonormal bases for a separable Hilbert space. We demonstrate
that the g-R-dual keeps some synchronous frame properties with the operator-valued
sequence given. We also display some Schauder basis-like properties of the g-R-dual
in the light of the properties of the given sequence. In particular, the g-R-dual can be
characterized by the use of another sequence, related to the given sequence. Finally,
a special sequence is constructed to build the relationship between an
operator-valued sequence and a g-Riesz sequence.
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1 Introduction
Duality principles in Gabor theory play a fundamental role in analyzing the Gabor system.
In [1], the authors described the concept of the Riesz-dual of a vector-valued sequence
and illustrated the common frame properties for the give sequence and its R-dual. The
conditions under which a Riesz sequence can be a R-dual of a given frame are investigated
in [2]. In this paper, we are interested in the duality principles for g-frames. In [3], the
g-R-dual was first defined, and some frame properties of g-R-dual were exhibited by the
properties of the given operator-valued sequence. In this paper, our definition of g-R-dual
in Sect. 2 is much weaker, and we characterize the g-R-dual with the analysis operator. The
properties of the g-completeness, g-w-linearly independent, g-minimality of the g-R-dual
is accounted in Sect. 3. In Sect. 4, we construct a sequence with a g-Riesz sequence and a
given operator-valued sequence to consider the g-R-dual in a different way.

Throughout this paper, we use N to denote the set of all natural numbers, and assume
that {Hi}i∈N is a sequence of closed subspaces of a separable Hilbert space K , H is a sep-
arable Hilbert space. Denote by {Ai}i∈N, or for short {Ai}, a sequence of operators with
Ai ∈ B(H , Hi) for any i ∈ N. Suppose that B(H , Hi) denotes the collection of all the bounded
linear operators from H into Hi, i ∈ N. Denote by

⊕
i∈N Hi the orthogonal direct sum

Hilbert space of {Hi}i∈N, {gi} := {gi}i∈N for any {gi}i∈N ∈ ⊕
i∈N Hi.

In [10], Sun raised the concept of a g-frame as follows. Let Ai ∈ B(H , Hi), i ∈ N. If there
exist two constants a, b such that

a‖f ‖2 ≤
∑

i∈N
‖Aif ‖2 ≤ b‖f ‖2, ∀f ∈ H ,
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we call {Ai} a g-frame for H . We call {Ai} a tight g-frame for H if a = b. Specially, if a =
b = 1, {Ai} is called a Parseval g-frame for H . If the inequalities above hold only for f ∈
span {A∗

i Hi}i∈N, we call {Ai} a g-frame sequence for H . If only the right-hand inequality
above holds, then we say that {Ai} is a g-Bessel sequence for H . If span {A∗

i Hi}i∈N = H , we
say that {Ai} is g-complete in H . If {Ai} is g-complete and such that

a
∥
∥{gi}

∥
∥2 ≤

∑

i∈N

∥
∥A∗

i gi
∥
∥2 ≤ b

∥
∥{gi}

∥
∥2, ∀{gi} ∈

⊕

i∈N
Hi,

we call {Ai} a g-Riesz basis for H . If the g-completeness is not satisfied, it is called a g-Riesz
sequence for H . As we know, if {Ai} is a g-frame for H , we define SAf =

∑
i∈N A∗

i Aif for any
f ∈ H , then SA is a well-defined, bounded, positive, invertible operator by [10]. We call SA

a frame operator of {Ai}. Another basic fact is that {Ãi}i∈N = {AiS–1
A }i∈N is a g-frame for

H , we call it a canonical dual g-frame of {Ai}. Extensively, by [8], if a g-frame {Bi} for H
such that f =

∑
i∈N B∗

i Aif for every f ∈ H , we say that it is a dual g-frame of {Ai}. Recently,
g-frames in Hilbert spaces have been studied intensively; for more details see [4–10] and
the references therein.

In the following we introduce some definitions and lemmas connected with the g-bases
in Hilbert space which will be needed in the paper.

Definition 1.1 ([10]) If {Ai} satisfies
(1) {Ai} is a g-orthonormal sequence for H , i.e., 〈A∗

i gi, A∗
j gj〉 = δij〈gi, gj〉 for any i, j ∈N,

any gi ∈ Hi, gj ∈ Hj.
(2) {Ai} is g-complete in H .

We call {Ai} a g-orthonormal basis for H . Obviously, (2) is equivalent to that {Ai} is a
Parseval g-frame for H by [5, Corollary 4.4], when (1) holds. Specially, if {Ai} only satisfies
AiA∗

j = 0 for any i, j ∈N, i 	= j, {Ai} is called a g-orthogonal sequence for H .

The g-orthonormal basis is a special case that itself is g-biorthonormal. The following
result shows that for the g-Riesz basis there also exists a g-biorthonormal sequence.

Lemma 1.2 ([10], Corollary 3.3) Let {Ai} be a g-Riesz basis for H . Then {Ai} and {Ãi} are
g-biorthonormal, where {Ãi} is the canonical dual g-frame of {Ai}.

In this paper, we only interested in the case when the g-orthonormal basis for H exists,
which is equivalent to the following result.

Lemma 1.3 ([5], Theorem 3.1) Let H be a separable Hilbert space, {Hi}i∈N be a sequence of
separable Hilbert spaces. Then there exists a sequence {Γi}, which is a g-orthonormal basis
for H if and only if dim H =

∑
i∈N dim Hi.

The concept of g-bases in Hilbert space is a generalization of the Schauder basis. Let
{Ai}. If for any f ∈ H , there is a unique sequence {gi}i∈N with gi ∈ Hi for any i ∈N such that
f =

∑
i∈N A∗

i gi, we call {Ai} a g-basis for H . If {Ai} is a g-basis for span {A∗
i Hi}i∈N, {Ai} is

called a g-basic sequence for H . Moreover, If
∑

i∈N A∗
i gi = 0 for {gi} ∈ ⊕

i∈N Hi, then gi = 0,
we call {Ai} g-w-linearly independent. If A∗

j gj /∈ spani	=j {A∗
i gi}i∈N for any {gi} ∈ ⊕

i∈N Hi

such that gi ∈ Hi, gi 	= 0, any i ∈ N, we call {Ai} g-minimal. For more details as regards
g-bases see [4].
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2 Duality for g-frame
Before giving the definition of g-R-dual, we introduce a lemma which is related to the
g-Bessel sequence.

Lemma 2.1 The sequence {Ai} is a g-Bessel sequence for H if and only if
∑

i∈N A∗
i gi is con-

vergent for any {gi} ∈ ⊕
i∈N Hi, and is also equivalent to that

∑
i∈N ‖Aif ‖2 < ∞ for every

f ∈ H .

Proof Suppose
∑

i∈N A∗
i gi is convergent for any {gi} ∈ ⊕

i∈N Hi. For any n ∈ N, {gi} ∈
⊕

i∈N Hi, we define Tn :
⊕

i∈N Hi → H , Tn{gi} =
∑n

i=1 A∗
i gi. Thus Tn is bounded evidently.

Since {Tn}n∈N converges to T in the strong operator topology as n → ∞, where T{gi} =
∑

i∈N A∗
i gi for every {gi} ∈ ⊕

i∈N Hi. Then T is bounded by the uniform boundedness prin-
ciple in Banach space. The rest follows directly. �

For a g-Bessel sequence {Ai}, we can define the analysis operator as θA : H →
⊕

i∈N Hi, θAf = {Aif }i∈N for any f ∈ H , which is well defined and bounded obviously by
Lemma 2.1.

Definition 2.2 Let {Λi}, {Γi} be two g-orthonormal bases for H . Suppose a sequence {Ai}
such that

∑
i∈N ‖AiΛ

∗
j gj‖2 < ∞ for any j ∈N, any gj ∈ Hj. We define

A∗
j gj =

∑

i∈N
Γ ∗

i AiΛ
∗
j gj, ∀j ∈N, gj ∈ Hj.

We call {Ai} a g-R-dual sequence of {Ai}.

Remark 2.3 By [4, Theorem 4.4], for any j ∈N,Aj is well defined if and only if {AiΛ
∗
j gj}i∈N ∈

⊕
i∈N Hi for any gj ∈ Hj, i.e., {AiQjf }i∈N ∈ ⊕

i∈N Hi for any f ∈ H , i.e., {Ai} is a g-Bessel
sequence for ran Qj by Lemma 2.1, where Qj is the orthogonal projection from H onto
ranΛ∗

j . Obviously, {Ai} may not be a g-Bessel sequence for H . The condition of our def-
inition is weaker than that in [3, Definition 1.13]. Thus Definition 2.2 is equivalent to
Aj =

∑
i∈N ΛjA∗

i Γi for any j ∈N. By Definition 1.1, we get ΓkA∗
j = AkΛ

∗
j for every i, k ∈N.

The following exhibits that the sequence {Ai} satisfying Definition 2.2 shares the com-
mon properties with its g-R-dual {Ai}. Similar results are referred to in [3, Theorem 2.2].

Theorem 2.4 Let {Ai} satisfy Definition 2.2, {Ai} be its g-R-dual defined in Definition 2.2.
Then {Ai} is a g-Bessel sequence for H if and only if {Ai} is a g-Bessel sequence for H . More-
over, they have the same upper bound.

Proof For every {gi} ∈ ⊕
i∈N Hi, let f =

∑
i∈N Λ∗

i gi, h =
∑

i∈N Γ ∗
i gi. Suppose {Ai} is a g-

Bessel sequence for H and has an upper bound b. Since θΛ, θΓ : H → ⊕
i∈N Hi are unitary,

∥
∥
∥
∥

∑

j∈N
A∗

j gj

∥
∥
∥
∥

2

=
∥
∥
∥
∥

∑

j∈N
θ∗
Γ θΓ A∗

j gj

∥
∥
∥
∥

2

=
∥
∥
∥
∥

∑

j∈N

∑

i∈N
Γ ∗

i ΓiA∗
j gj

∥
∥
∥
∥

2

=
∥
∥
∥
∥

∑

j∈N

∑

i∈N
Γ ∗

i AiΛ
∗
j gj

∥
∥
∥
∥

2

=
∥
∥
∥
∥

∑

i∈N
Γ ∗

i Aif
∥
∥
∥
∥

2
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=
∥
∥θ∗

Γ θAf
∥
∥2 = ‖θAf ‖2 ≤ b‖f ‖2

= b
∥
∥θ∗

Γ {gi}
∥
∥2 = b

∥
∥{gi}

∥
∥2.

By Lemma 2.1, {Ai} is a g-Bessel sequence for H and has an upper bound b. The converse
is similar. �

When {Ai} is a g-Bessel sequence, there exists a unitary equivalence between {ΛiS
1
2
A }

and the R-dual {Ai}.

Theorem 2.5 Let {Ai} be a g-Bessel sequence for H , {Ai} be its g-R-dual defined in Defini-
tion 2.2. Then

(1) 〈A∗
i gi,A∗

j gk〉 = 〈S 1
2
A Λ∗

j gj, S
1
2
A Λ∗

i gi〉 for any i, j ∈N, any gi ∈ Hi, gj ∈ Hj.

(2) ‖∑
i∈NA∗

i gi‖ = ‖∑
i∈N S

1
2
A Λ∗

i gi‖ for any {gi} ∈ ⊕
i∈N Hi.

(3) there exists an isometric operator T from ran S
1
2
A θ∗

Λ onto ran θ∗
A such that AiT = ΛiS

1
2
A

for any i ∈N.

Proof (1) Since {Ai} is a g-Bessel sequence for H , so is {Ai} by Theorem 2.4. Then, for any
i, j ∈N, any gi ∈ Hi, gj ∈ Hj, we have

〈
A∗

i gi,A∗
j gk

〉
=

〈
θ∗
A{δikgi}k , θ∗

A{δjkgj}k
〉

=
〈
θ∗
Γ θAθ∗

Λ{δikgi}k , θ∗
Γ θAθ∗

Λ{δjkgj}k
〉

=
〈
S

1
2
A Λ∗

i gi, S
1
2
A Λ∗

j gj
〉
.

(2) It is direct by (1).
(3) Define T∗ : ran θ∗

A → ran S
1
2
A , T∗(

∑
i∈NA∗

i gi) =
∑

i∈N S
1
2
A Λ∗

i gi for any {gi} ∈ ⊕
i∈N Hi. It

is easy to verify T∗ is well defined by (2). We can extend T to an isometric operator from
ran S

1
2
A θ∗

Λ onto ran θ∗
A. We still denote the operator as T for convenience. �

In the following results we show the properties of g-R-dual in the case that {Ai} is a
g-frame sequence by the corresponding analysis operators. The results are similar to the
conclusions in [3, Corollary 2.6].

Theorem 2.6 Let {Ai} satisfy Definition 2.2, {Ai} be its g-R-dual defined in Definition 2.2.
Then {Ai} is a g-frame sequence for H if and only if {Ai} is a g-frame sequence for H with
the same frame bounds. Specially, in this case the following are equivalent:

(1) {Ai} is a g-frame for H with the frame bounds a, b.
(2) {Ai} is a g-Riesz sequence for H with the frame bounds a, b.
(3) There exists 0 < b1 < ∞ such that

∑
i∈N ‖AiPf ‖2 ≤ b1

∑
i∈N ‖Aif ‖2 for any f ∈ H ,

where P is an arbitrary orthogonal projection on H .
(4) There exists 0 < b1 < ∞ such that

∑
i∈N ‖AiPnf ‖2 ≤ b1

∑
i∈N ‖Aif ‖2 for any f ∈ H ,

where Pn is the orthogonal projection from H onto span {Λ∗
i Hi}n

i=1 for any n ∈N.

Proof The case of the g-Bessel upper bound we get easily by Theorem 2.4. We now show
the case of the lower bound in a similar way as the proof of Theorem 2.4.
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Because {Ai}, {Ai} are g-Bessel sequences, we easily have θA = θΓ θ∗
AθΛ. Then g ∈ ker θA

if and only if g ∈ ker θ∗
AθΛ, i.e., θΛg ∈ ker θ∗

A. Hence, g ∈ (ker θA)⊥ if and only if θΛg ∈
(ker θ∗

A)⊥ since θΛ is unitary.
Evidently, {Ai} is a g-frame sequence for H if and only if for any f ∈ ran θ∗

A, one has
a‖f ‖2 ≤ ∑

i∈N ‖Aif ‖2 = ‖θAf ‖2 ≤ b‖f ‖2, i.e.,

a‖θΛf ‖2 =
∥
∥θ∗

AθΛf
∥
∥2 ≤ b‖f ‖2 = b‖θΛf ‖2,

which is equivalent to {Ai} is a g-frame sequence for H .
The equivalence of (1) and (2) is obvious since (ker θA)⊥ = {0} if and only if (ker θ∗

A)⊥ = {0}
by the proof above.

(1) ⇒ (3). Let {Ai} be a g-frame for H with the frame bounds a, b. Take P as an arbitrary
orthogonal projection on H . For any f = f1 + f2 ∈ H , where f1 ∈ ran P, f2 ∈ ker P, we have

∑

i∈N
‖AiPf ‖2 =

∑

i∈N
‖Aif1‖2 ≤ b‖f ‖2 ≤ a–1b

∑

i∈N
‖Aif ‖2.

(3) ⇒ (4) is direct.
(4) ⇒ (2). It is obvious by Theorem 3.3. �

The following result was given in [3, Theorem 4.1], we here give a simple illustration by
the use of the analysis operators.

Lemma 2.7 Let {Ai}, {Bi} be two g-frames for H , {Ai}, {Bi} be their g-R-dual sequences
defined in Definition 2.2, respectively. Then {Ai} is a dual g-frame of {Bi} if and only if
〈A∗

i gi,B∗
j gj〉 = δij〈gi, gj〉 for any i, j ∈N, any gi ∈ Hi, gj ∈ Hj.

Proof By Definition 2.2, we get θA = θΛθ∗
AθΓ , θB = θΛθ∗

BθΓ . Then θAθ∗
B = θΛθ∗

AθBθ∗
Λ. Obvi-

ously, θ∗
AθB = I if and only if θAθ∗

B = I⊕i∈N Hi , i.e., 〈A∗
i gi,B∗

j gj〉 = δij〈gi, gj〉 for any i, j ∈ N, any
gi ∈ Hi, gj ∈ Hj. �

The following shows that the g-R-dual of the canonical dual g-frame is the “minimal”
and has the “smallest distance” with {Ai} among the g-R-duals of all the alternate dual
g-frames, which is a generalization of the result in [3, Theorem 4.5].

Theorem 2.8 Let {Ai} be a g-frame for H , {Ãi} be the canonical dual g-frame of {Ai}, {Bi}
be a dual g-frame of {Ai}. {Ai} and {Bi} are the corresponding g-R-duals defined in Defini-
tion 2.2, respectively. Then the following are equivalent:

(1) Bi = Ãi for every i ∈N.
(2) ‖B∗gi‖ ≤ ‖C∗

i gi‖ for every i ∈N, gi ∈ Hi, where {Ci} is an arbitrary dual g-frame of
{Ai}, {Ci} is the g-R-dual of {Ci}.

(3) ‖B∗
i gi – A∗

i gi‖ ≤ ‖C∗
i gi – A∗

i gi‖ for every i ∈N, gi ∈ Hi, where {Ci} is an arbitrary
dual g-frame of {Ai}, {Ci} is the g-R-dual of {Ci}.

Proof (1) ⇔ (2). By [3, Theorem 4.4], we obtain Bi = Ãi + �i for any i ∈N, where {�i} is a
g-Bessel sequence for H such that ran θ∗

� ⊂ (ran θ∗
A)⊥. Then, for every {gi} ∈ ⊕

i∈N Hi, we
get

∥
∥θ∗

B{gi}
∥
∥2 =

∥
∥θ ∗̃

A{gi} + θ∗
�{gi}

∥
∥2 ≥ ∥

∥θ ∗̃
A{gi}

∥
∥2.
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Specially, if we take {δijgi}j∈N, then ‖B∗
i gi‖ ≥ ‖Ã∗

i gi‖. Hence, Bi = Ãi if and only if �i = 0 for
any i ∈N.

(2) ⇔ (3). By Lemma 2.7, for any i ∈N, we obtain

∥
∥B∗

i gi – A∗
i gi

∥
∥2 =

∥
∥B∗

i gi
∥
∥2 +

∥
∥A∗

i gi
∥
∥2 – 2.

Similarly, ‖Ã∗
i gi – A∗

i gi‖ = ‖Ã∗
i gi‖2 + ‖A∗

i gi‖2 – 2. Thus the equivalence is direct. �

3 Characterization of the Schauder basis-like properties of g-R-dual
Suppose {Ai} is a g-Bessel sequence for H , {Ai} is its g-R-dual defined in Definition 2.2.
We will characterize the Schauder basis-like properties (g-completeness, g-w-linearly in-
dependence, g-minimality) of {Ai} in terms of {Ai}.

Theorem 3.1 Let {Ai} be a g-Bessel sequence for H , {Ai} be its g-R-dual defined in Defini-
tion 2.2. Then the following are equivalent:

(1) {Ai} is g-complete.
(2) {Ai} is g-w-linearly independent.
(3) If limn→∞ ‖θAxn‖2 = 0, then {gi} = 0, where xn =

∑n
i=1 Λ∗

i gi ∈ H for any n ∈N and
any {gi} ∈ ⊕

i∈N Hi.

Proof (1) ⇔ (2). By Definition 2.2, θ∗
A = θ∗

Γ θAθ∗
Λ. For arbitrary {gi} ∈ ⊕

i∈N Hi, we have
{gi} ∈ ker θ∗

A if and only if θ∗
Λ{gi} ∈ ker θA. Then {Ai} is g-complete if and only if ker θ∗

A = {0},
i.e., {Ai} is g-w-linearly independent.

(2) ⇔ (3). It is evident as ‖θAxn‖2 = ‖θ∗
AθΛxn‖2. �

Now we have the next special result. By [4, Theorem 5.2], if {Ai} is a g-frame sequence
for H , the existing condition of the g-biorthonormal sequence means the minimality of
{Ai}.

Theorem 3.2 Let {Ai} be a g-Bessel sequence for H , {Ai} defined in Definition 2.2 be its
g-R-dual. If there exists a sequence {�i} which is g-biorthonormal with {Ai} such that �∗

i

is injective for any i ∈N, then
(1) there are constants 0 < ci ≤ 1 for arbitrary i ∈N such that ‖cigi‖ ≤ ‖∑

j∈NA∗
j gj‖ for

any {gi} ∈ ⊕
i∈N Hi;

(2) there are constants 0 < ai for arbitrary i ∈N such that

∥
∥{aigi}i∈N

∥
∥2 ≤

∑

j∈N

∥
∥Ajθ

∗
Λ{gi}

∥
∥2, ∀{gi} ∈

⊕

i∈N
Hi.

Moreover, (1) and (2) are equivalent.

Proof Take arbitrary hi ∈ Hi and ‖hi‖ = 1 and let ci = min{1, 1
‖�i‖ } for every i ∈ N. Since

〈A∗
i gi,�∗

j gj〉 = δij〈gi, gj〉 for any i, j ∈N, gi ∈ Hi gj ∈ Hj, we have

∥
∥
∥
∥

∑

j∈N
A∗

j gj

∥
∥
∥
∥ = sup

‖f ‖=1,f ∈H

∣
∣
∣
∣

〈∑

j∈N
A∗

j gj, f
〉∣
∣
∣
∣
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≥
∣
∣
∣
∣

〈∑

j∈N
A∗

j gj,
1

‖�∗
i hi‖�∗

i hi

〉∣
∣
∣
∣

≥
∣
∣
∣
∣

〈∑

j∈N
A∗

j gj,
1

‖�i‖�∗
i hi

〉∣
∣
∣
∣

≥ |ci|
∣
∣
∣
∣

〈∑

j∈N
A∗

j gj,�∗
i hi

〉∣
∣
∣
∣ = |ci|

∣
∣〈gi, hi〉

∣
∣.

By the arbitrariness of hi, we have |ci‖gi‖ ≤ ‖∑
j∈NA∗

j gj‖.
Take ai = ci

2i for every i ∈N. For any {gi} ∈ ⊕
i∈N Hi, we obtain

∥
∥{aigi}

∥
∥2 =

∑

i∈N

∥
∥
∥
∥

ci

2i gi

∥
∥
∥
∥

2

=
∑

i∈N

1
22i ‖cigi‖2

≤
∑

i∈N

1
22i sup

i∈N
‖cigi‖2

≤
∥
∥
∥
∥

∑

j∈N
A∗

j gj

∥
∥
∥
∥ =

∑

j∈N

∥
∥Ajθ

∗
Λ{gi}

∥
∥2.

The converse is evident since ‖aigi‖2 ≤ ‖{aigi}‖2. �

In the following we illustrate that the g-R-dual {Ai} is a g-basic sequence by the proper-
ties of {Ai}, which also shows the conclusion of Theorem 2.6 from another perspective. It
can be realized as a kind of g-completeness of {Ai}.

Theorem 3.3 Let {Ai} be a g-frame sequence for H , {Ai} defined in Definition 2.2 be its g-
R-dual. Let Pn be the orthogonal projection from H onto Nn := span {Λ∗

i Hi}n
i=1 for any n ∈N.

Then the following are equivalent:
(1) {Ai} a g-basic sequence for H .
(2) There exists a constant 0 < b < ∞ such that

∑
i∈N ‖AiPnf ‖2 ≤ b

∑
i∈N ‖Aif ‖2 for any

n ∈N, any f ∈ H .
(3) There exists a constant 0 < b < ∞ such that SAPn ≤ bSA for any n ∈N, where SAPn is

the frame operator of the g-Bessel sequence {AiPn}i∈N.
In this case, we have

ran θ∗
A = span

{

Λ∗
i gi :

∑

i∈N

∥
∥AiΛ

∗
i gi

∥
∥2 	= 0,∀i ∈N, gi ∈ Hi

}

.

Proof Let I = {j ∈ N : A∗
j = θ∗

Γ θAΛ∗
j 	= 0}. Without loss of generality, we can suppose Ai 	= 0

for any i ∈N.
(1) ⇔ (2). By [4, Theorem 3.3], {Ai} is a g-basic sequence for H if and only if there exists

a constant 0 < b < ∞ such that, for arbitrary n ≤ m, any {gi} ∈ ⊕
i∈N Hi, one has

∥
∥
∥
∥
∥

n∑

i=1

A∗
i gi

∥
∥
∥
∥
∥

2

≤ b

∥
∥
∥
∥
∥

m∑

i=1

A∗
i gi

∥
∥
∥
∥
∥

2

= b
∑

i∈N
‖Aix‖2,

where x =
∑m

i=1 Λ∗
i gi. Since PnΛ

∗
i = 0 for every i ∈ N such that n < i ≤ m,

∑n
i=1 Λ∗

i gi = Pnx.
Similarly, we have ‖∑n

i=1 A∗
i gi‖2 =

∑
i∈N ‖AiPnx‖2.
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(2) ⇔ (3). (2) is equivalent to 〈SAPn f , f 〉 = 〈θAPnf , θAPnf 〉 ≤ b〈Sf , f 〉 for any f ∈ H , which
is obvious.

By [4, Lemma 2.16], {Ai} is a g-Riesz sequence for H . Then Ai 	= 0 for any i ∈ N. By
Definition 2.2, we have A∗

i = θ∗
Γ θAΛ∗

i . Then θAΛ∗
i 	= 0, i.e.,

∑
i∈N ‖AiΛ

∗
i gi‖2 	= 0 for any

i ∈ N, gi ∈ Hi. Hence,

span

{

Λ∗
i gi :

∑

i∈N

∥
∥AiΛ

∗
i gi

∥
∥2 	= 0,∀i ∈N, gi ∈ Hi

}

= H .

Therefore, we only need to show the g-completeness of {Ai} in H .
Suppose there exists f ∈ H , f 	= 0 such that 〈A∗

i gi, f 〉 = 0 for arbitrary i ∈ N, gi ∈ Hi. Ob-
viously, there is a sequence {fi} ∈ ⊕

i∈N Hi such that f =
∑

i∈N Λ∗
i fi. Assume k ∈ N is the

smallest positive integer such that fi 	= 0. Then Pkf = Λ∗
kfk . We get

0 	=
∑

i∈N

∥
∥AiΛ

∗
kfk

∥
∥2 =

∑

i∈N
‖AiPkf ‖2 ≤ b

∑

i∈N
‖Aif ‖2 = 0,

which is a contradiction. �

Now we give some equivalent characterizations for a g-frame to be a g-Riesz basis.

Theorem 3.4 Let {Ai} be a g-frame for H . Then the following are equivalent:
(1) {Ai} is a g-basis for H .
(2) {Ai} is g-w-linearly independent.
(3) {Ai} is a g-Riesz basis for H .
(4) The g-R-dual {Ai} defined in Definition 2.2 is a g-Riesz basis for H .
(5) If limn→∞

∑
i∈N ‖Aixn‖2 = 0, then {gi} = 0, where xn =

∑n
i=1 Γ ∗

i gi for any n ∈ N,
{gi} ∈ ⊕

i∈N Hi.
(6) {Ai} is exact (i.e., if it ceases to be a g-frame whenever any one of its elements is

removed), and the canonical dual g-frame is biorthonormal with {Ai}.

Proof The equivalence of (1), (2), (3) can be obtained by [4, Lemma 2.16]. By [9,
Corollary 2.6], we get the equivalence of (3) and (6). Since {Ai} is a g-frame, we get
∑

i∈N ‖Aixn‖2 = ‖θ∗
AθΓ xn‖2. Then (5) holds if and only if θ∗

A is injective, i.e., (3) holds.
Similarly, by Definition 2.2, we have θA = θΛθ∗

AθΓ . For any f ∈ H , we obtain f ∈ ker θA if
and only if θΓ f ∈ ker θ∗

A. Thus we get the equivalence of (3), (4) by Theorem 2.6. �

4 G-R-dual and the g-orthogonal sequence
4.1 The characterization of g-R-dual
Let {Λi} be a g-orthonormal basis for H . In this section we mainly investigate the con-
ditions under which a g-Riesz sequence {Ai} is the g-R-dual of a g-frame {Ai}. We de-
note {Ãi} as the canonical dual g-frame of {Ai}, which is also a g-Riesz sequence. Define
Ci = Aiθ

∗
ΛθÃ for any i ∈N. Then

C∗
i gi =

∑

j∈N
Ã∗

j ΛjA∗
i gi, ∀gi ∈ Hi.

Evidently, {Ci} is a g-Bessel sequence for H . Let M = ran θ∗
A. Thus ran θ∗

C ⊂ M. By
Lemma 1.2, we also get AjC∗

i = ΛjA∗
i for any i ∈N.
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Proposition 4.1 Let {Λi} be a g-orthonormal basis for H , {Ai} be a g-Riesz basis for M,
{Ãi} be the canonical dual g-frame of {Ai} in M, where M is a closed subspace of H . For
any sequence {Ai}, we have the following:

(1) There exists a sequence {Γ ′
i } such that Ai = Γ ′

i θ
∗
AθΛ for any i ∈N, i.e.,

A∗
i gi =

∑
j∈N Λ∗

j AjΓ
′∗
i gi for any gi ∈ Hi.

(2) The sequence {Γ ′
i } satisfying Ai = Γ ′

i θ
∗
AθΛ can be written as Γ ′

i = Ci + Di for every
i ∈N, where Ci = Aiθ

∗
ΛθÃ, Di ∈ B(H , Hi) and ran D∗

i ⊂ M⊥.
(3) If H = M, the sequence {Γ ′

i } satisfying Ai = Γ ′
i θ

∗
AθΛ has the unique solution Γ ′

i = Ci

for any i ∈N, where Ci = Aiθ
∗
ΛθÃ.

Proof (1) Since A∗
i gi =

∑
j∈N Λ∗

j ΛjA∗
i gi for any i ∈ N, gi ∈ Hi and AjC∗

i = ΛjA∗
i , we have

A∗
i gi =

∑
j∈N Λ∗

j AjC∗
i gi. We take Γ ′

i = Ci.
(2) For any i ∈ N, take arbitrary operator Di ∈ B(M⊥, Hi). Obviously, ran D∗

i ⊂ M⊥ is
satisfied. Let Γ ′

i = Ci + Di. Since M = ran θ∗
A, by (1), we have

Γ ′
i θ

∗
AθΛ = (Ci + Di)θ∗

AθΛ = Ciθ
∗
AθΛ = Ai.

For the converse, suppose Ai = Γ ′
i θ

∗
AθΛ for any i ∈ N. By (1), Ciθ

∗
AθΛ = Ai. Let Di = Γ ′

i –
Ci. Hence, Diθ

∗
AθΛ = 0. Since M = ran θ∗

A, M ⊂ ker Di. Thus ran D∗
i ⊂ M⊥.

(3) If H = M, we have Di = 0 for any i ∈N from (2). �

Proposition 4.1 did not have any assumption on {Ai} or use any relationship between
{Ai} and {Ai}.

The next result exhibits that {Ci} and {Ai} have the common properties.

Proposition 4.2 Let {Λi} be a g-orthonormal basis for H , {Ai} be a g-Riesz basis for M
with the frame bounds c and d, {Ãi} be the canonical dual g-frame of {Ai} in M, where M
is a closed subspace of H . For a sequence {Ai}, define Ci = Aiθ

∗
ΛθÃ, for any i ∈N, we have

(1) If {Ai} is a g-Bessel sequence for H with the upper bound b, then {Ci} is a g-Bessel
sequence for H with the upper bound bc–1. Moreover, for any {gi} ∈ ⊕

i∈N Hi, we have

c
∥
∥
∥
∥

∑

i∈N
C∗

i gi

∥
∥
∥
∥

2

≤
∥
∥
∥
∥

∑

i∈N
A∗

i gi

∥
∥
∥
∥

2

≤ d
∥
∥
∥
∥

∑

i∈N
C∗

i gi

∥
∥
∥
∥

2

.

Specially, {Ai} is g-w-linearly independent if and only if {Ci} is g-w-linearly
independent.

(2) If {Ai} is a g-frame for H with the frame bounds a, b, then {Ci} is a g-frame for M
with the frame bounds ad–1, bc–1.

(3) If {Ai} is a g-Riesz basis for H with the frame bounds a, b, then {Ci} is a g-Riesz basis
for M with the frame bounds ad–1, bc–1.

(4) If {Ci} is a g-Bessel sequence for H with the upper bound b1, then {Ai} is a g-Bessel
sequence for H with the upper bound b1d.

(5) If {Ci} is a g-frame for M with the frame bounds a1, b1, then {Ai} is a g-frame for H
with the frame bounds a1c, b1d.

(6) If {Ci} is a g-Riesz basis for M with the frame bounds a1, b1, then {Ai} is a g-Riesz
basis for H with the frame bounds a1c, a1d.
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Proof (1) Since Ci = Aiθ
∗
ΛθÃ for any i ∈N, for every f ∈ H , we have

∑

i∈N
‖Cif ‖2 =

∑

i∈N

∥
∥Aiθ

∗
ΛθÃf

∥
∥2 ≤ bc–1‖f ‖2.

Moreover, because θ∗
C = θ ∗̃

AθΛθ∗
A, for any {gi} ∈ ⊕

i∈N Hi, we have

∥
∥
∥
∥

∑

i∈N
C∗

i gi

∥
∥
∥
∥

2

=
∥
∥
∥
∥

∑

i∈N
Ã∗

i θΛθ∗
Agi

∥
∥
∥
∥

2

≤ c–1
∥
∥
∥
∥

∑

i∈N
A∗

i gi

∥
∥
∥
∥

2

.

As θ∗
A = θ∗

ΛθAθ∗
C , for every {gi} ∈ ⊕

i∈N Hi, we get

∥
∥
∥
∥

∑

i∈N
A∗

i gi

∥
∥
∥
∥

2

=
∑

i∈N

∥
∥Aiθ

∗
Cgi

∥
∥2 ≤ d

∥
∥
∥
∥

∑

i∈N
C∗

i gi

∥
∥
∥
∥

2

.

Obviously, {Ai} is g-w-linearly independent if and only if {Ci} is g-w-linearly independent
from the above.

(2) The case of upper bound was obtained by (1). Similarly as (1), for every f ∈ M, we
get

ad–1‖f ‖2 ≤ a
∥
∥θ∗

ΛθÃf
∥
∥2 ≤

∑

i∈N

∥
∥Aiθ

∗
ΛθÃf

∥
∥2 =

∑

i∈N
‖Cif ‖2.

(3) Suppose {Ai} is a g-Riesz basis for H . Since {Ci} is a g-frame for M by (2) and is g-w-
linearly independent by (1), {Ci} is a g-Riesz basis for M by [4, Lemma 2.16]. The frame
bounds can be obtained by (2).

The rest is similar to the above. �

From the above, {Ci}, {Ai} have the same properties, but the bounds may not be com-
mon.

Corollary 4.3 Let {Λi} be a g-orthonormal basis for H , {Ai} be a g-orthonormal basis for
M, where M is a closed subspace of H . For a sequence {Ai}, define Ci = Aiθ

∗
ΛθÃ for any i ∈N,

we have:
(1) {Ci} is a g-Bessel sequence for H if and only if {Ai} is a g-Bessel sequence for H with

the same bound.
(2) {Ci} is a g-frame for M if and only if {Ai} is a g-frame for H with the same bounds.
(3) {Ci} is a g-Riesz basis for M if and only if {Ai} is a g-Riesz basis for H with the same

bounds.

Proof Take c = d = 1 by the proof of Proposition 4.2, which can be obtained directly. �

Let {Ai} be a g-Riesz basis for M, where M is a closed subspace of H . Let Ai = AiS
– 1

2
A

for any i ∈ N, where SA is the frame operator of {Ai}. Then {Ai} is a g-orthonormal basis
for M. Let {Λi} be a g-orthonormal basis for H and Θ = θ∗

ΛθA. Obviously, Θ : M → H is
unitary and Ai = ΛiΘ . Then we have the following result.
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Proposition 4.4 Let {Λi} be a g-orthonormal basis for H , {Ai} be a g-Riesz basis for M with
the frame bounds c, d, where M is a closed subspace of H , {Ai} be a g-frame for H with the
frame bounds a, b. Define Ci = Aiθ

∗
ΛθÃ for every i ∈ N. Then the following are equivalent:

(1) {Ci} is a Parseval g-frame for M.
(2) SA = Θ∗SAΘ , where Θ = θ∗

ΛθÃS
1
2
A.

Proof By Proposition 4.2, {Ci} is a g-frame for M. Since θC = θAθ∗
ΛθÃ and θÃ = θΛΘS– 1

2
A ,

we have SC = S– 1
2

A Θ∗SAΘS– 1
2

A . Obviously, SC = P if and only if SA = Θ∗SAΘ , where P is the
orthogonal projection from H onto M. �

If {Ai} is a tight g-frame for H with the bound a. Let {Ai} be a tight g-Riesz basis for
M with frame bound a. Then SA = aI , SA = aP. Thus Proposition 4.4(2) holds obviously.
Then we get Corollary 4.6 directly.

Proposition 4.5 Let {Λi} be a g-orthonormal basis for H , {Ai} be a g-Riesz basis for M,
where M is a closed subspace of H . If {Ai} is a g-frame for H , define Ci = Aiθ

∗
ΛθÃ for any

i ∈ N. Then the following are equivalent:
(1) If {Ai} is the g-R-dual sequence of {Ai} with respect to two g-orthonormal bases {Λi},

{Γi}.
(2) There exists a g-orthonormal basis {Γi} for H such that Ai = Γiθ

∗
AθΛ for every i ∈N.

(3) There exists a g-orthonormal basis {Γi} for H such that Ci = ΓiP for every i ∈N,
where P is the orthogonal projection from H onto M.

(4) {Ci} is a Parseval g-frame for M and dim ker θ∗
C = dim M⊥.

(5) SA = Θ∗SAΘ and dim ker θ∗
C = dim M⊥, where Θ = θ∗

ΛθÃS
1
2
A.

Proof (1) ⇒ (2) By Definition 2.2, we have A∗
i = θ∗

Γ θAΛ∗
i for every i ∈ N. Hence, Ai =

Γiθ
∗
AθΛ.

(2) ⇒ (1) It is obvious by Definition 2.2. The equivalence of (2) and (3) can be obtained
by Proposition 4.1.

(3) ⇒ (4) For any {gi} ∈ ⊕
i∈N Hi, we have

θ∗
C{gi} =

∑

i∈N
C∗

i gi =
∑

i∈N
PΓ ∗

i gi = Pθ∗
Γ {gi}.

Obviously, {gi} ∈ ker θ∗
C if and only if θ∗

Γ {gi} ∈ M⊥. Then dim ker θ∗
C = dim M⊥ as θΓ is uni-

tary. Evidently, {Ci} is a Parseval g-frame for M.
(4) ⇒ (3) Suppose {Ci} is a Parseval g-frame for M. Let K = M⊕ (ran θC)⊥, Ti = Ci ⊕PiQ⊥

for any i ∈ N, where Q, Pi are the orthogonal projection from
⊕

i∈N Hi onto ran θC , Hi,
respectively, for every i ∈ N. It is easy to get {Ti} is a g-orthonormal basis for K by [7,
Theorem 4.1].

Since dim ker θ∗
C = dim M⊥, there exists a unitary operator V : M⊥ → ker θ∗

C . Let Γi =
Ti(P ⊕ V ) = Ci ⊕ PiQ⊥V for every i ∈N. As P ⊕ V : M ⊕ M⊥ → M ⊕ (ran θC)⊥ is unitary,
where P is the orthogonal projection from H onto M, we see that {Γi} is a g-orthonormal
basis for H by [6, Theorem 3.5]. Obviously, we have Ci = ΓiP. The equivalence of (4), (5)
is direct by Proposition 4.4. �
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By Proposition 4.5, we can also get the following corollary, which was showed in [3,
Theorem 2.7].

Corollary 4.6 Let {Λi} be a g-orthonormal basis for H , {Ai} be a tight g-Riesz basis for
M with the frame bound a, where M is a closed subspace of H . If {Ai} is a tight g-frame
with the frame bound a. Then there exists a g-orthonormal basis {Γi} for H such that {Ai}
is the g-R-dual of {Ai} with respect to two g-orthonormal bases {Λi}, {Γi} if and only if
dim ker θ∗

C = dim M⊥, where Ci = Aiθ
∗
ΛθÃ for any i ∈N.

Proof By Proposition 4.2(3), {Ci} is a Parseval g-frame for M. It is obvious by Proposi-
tion 4.5. �

Corollary 4.7 Let {Λi} be a g-orthonormal basis for H , {Ai} be a g-Riesz basis for M, {Ãi}
be the canonical dual g-frame of {Ai} in M, where M is a closed subspace of H . If {Ai} is a
g-frame for H . Define Ci = Aiθ

∗
ΛθÃ for any i ∈N. For any {gi} ∈ ⊕

i∈N Hi, let g = θ∗
Λ{gi} ∈ H ,

h = θ∗
A{gi} ∈ M. Then there exists a g-orthonormal basis {Γi} for H such that {Ai} is the g-R-

dual of {Ai} with respect to two g-orthonormal bases {Λi}, {Γi} if and only if
∑

i∈N ‖Aig‖2 =
‖h‖2 and dim ker θ∗

C = dim M⊥.

Proof Obviously, we have

∑

i∈N
‖Aig‖2 =

∥
∥θAθ∗

Λ{gi}
∥
∥2 =

∥
∥θ∗

A{gi}
∥
∥2 = ‖h‖2.

The result now follows from Proposition 4.5 directly. �

4.2 The construction of orthogonal sequence
Now we will construct a sequence {Γ ′

i } such Ai =
∑

j∈N Γ ′
i Ã∗

j Λj, which is characterized in
Proposition 4.1.

Proposition 4.8 Let {Λi} be a g-orthonormal basis for H , {Ai} be a g-Riesz basis for M,
{Ãi} be the canonical dual g-frame of {Ai} in M, where M is a closed subspace of H . If
dim M⊥ =

∑
i dim Hi = ∞, we have:

(1) For any sequence {Ai}, there exists a g-w-linearly independent sequence {Γ ′
i } such

that Ai =
∑

j∈N Γ ′
i Ã∗

j Λj for every i ∈N.
(2) For any g-Bessel sequence {Ai}, there exists a norm-bounded and g-w-linearly

independent sequence {Γ ′
i } such that Ai =

∑
j∈N Γ ′

i Ã∗
j Λj for every i ∈N.

(3) For any operator sequence {Ai}, there exists a g-orthogonal sequence {Γ ′
i } such that

Ai =
∑

j∈N Γ ′
i Ã∗

j Λj for every i ∈N.

Proof (1) Since dim M⊥ =
∑

i∈N dim Hi, there exists a g-orthonormal basis {Ei} for M⊥ by
[5, Theorem 3.1] with Ei ∈ B(M⊥, Hi) for any i ∈ N. Let Wi = ran E∗

i for any i ∈ N. Then
M⊥ =

⊕
i∈N Wi and Ei : Wi → Hi is unitary. Let Ci = Aiθ

∗
ΛθÃ for any i ∈ N. Then AiE∗

j = 0
and CiE∗

j =
∑

k∈N AiΛ
∗
kÃkE∗

j = 0.
Since there exists an invertible operator Di : Wi → Hi for any i ∈ N, we see that DiE∗

i +
CiE∗

i = DiE∗
i ∈ B(H , Hi) is invertible. Let Γ ′

i = Di + Ci ∈ B(H , Hi). Obviously, Γ ′
i 	= 0.



Li and Li Journal of Inequalities and Applications         (2019) 2019:69 Page 13 of 14

For any {gi} ∈ ⊕
i∈N Hi, if

∑
i∈N Γ

′∗
i gi = 0, then, for any j ∈N, we have

Ej
∑

i∈N
Γ ′∗

i gi =
∑

i∈N

(
EjC∗

i + EjD∗
i
)
gi = EjD∗

j gj = 0.

Then gj = 0.
(2) By the proof of (1), we can choose Di such that ‖Di‖ = 1 (if not, we choose D′

i = Di
‖Di‖ )

for any i ∈ N. By Proposition 4.2, {Ci} is a g-Bessel sequence for M. Suppose the upper
bound of {Ci} is b. Then ‖Ci‖ ≤ b. Hence, for every i ∈N, gi ∈ Hi, we have

∥
∥Γ ′∗

i gi
∥
∥2 =

∥
∥C∗

i gi
∥
∥2 +

∥
∥D∗

i gi
∥
∥2 ≤ (

b2 + 1
)‖gi‖2.

(3) By Proposition 4.1, the sequence {Γ ′
i } such that Ai =

∑
j∈N Γ ′

i Ã∗
j Λj = Γ ′

i θ
∗̃
AθΛ can be

written as Γ ′
i = Ci + Di, where Ci = Aiθ

∗
ΛθÃ, ran D∗

i ⊂ M⊥ for any i ∈ N. For every i, j ∈
N, i 	= j, gi ∈ Hi, gj ∈ Hj, we have

〈
Γ ′∗

i gi,Γ ′
j
∗gj

〉
= 0 if and only if

〈
C∗

i gi, C∗
j gj

〉
+

〈
D∗

i gi, D∗
j gj

〉
= 0.

We will use the following inductive procedure to construct {Di} such that ran D∗
i ⊂ M⊥

and DjD∗
i = –CjC∗

i for every i, j ∈ N, i 	= j. Let Tij = –CiC∗
j ∈ B(Hj, Hi). Then T∗

ij = Tji. Let Ii

be the identity on Hi.
(1) Let D∗

1 = E∗
1 .

(2) Let D∗
2 = E∗

1X∗
1,2 + E∗

2 , where X∗
1,2 = T12.

Obviously, D1D∗
2 = E1E∗

1X∗
1,2 + E1E∗

2 = T12. Then Γ ′
1Γ

′
2
∗ = 0.

3) For any k ∈ N, assuming that we have gotten operators D1, D2, . . . , Dk in terms of Xi,k ∈
B(Hi, Hk) (i = 1, . . . , k –1) such that D∗

k =
∑k–1

i=1 E∗
i X∗

i,k +E∗
k . Then, for k +1, we define Dk+1 by

D∗
k+1 =

∑k
i=1 E∗

i X∗
i,k+1 +E∗

k+1, where operators Xi,k+1 (i = 1, 2, . . . , k) are given by the following
equation:

⎛

⎜
⎜
⎜
⎜
⎝

I1

X12 I2
...

. . .
X1k X2k · · · Ik

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

X∗
1,k+1

X∗
2,k+1
...

X∗
k,k+1

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

T1,k+1

T2,k+1
...

Tk,k+1

⎞

⎟
⎟
⎟
⎟
⎠

.

Obviously, we can obtain Xi,k+1 ∈ B(Hi, Hk+1) (i = 1, . . . , k). Thus we have constructed the
sequence {Di} and obtained {Γ ′

i } by Γ ′
i = Ci +Di for any i ∈N. Then {Γ ′

i } such that Γ ′
i Γ

′∗
j =

0 for every i, j ∈N with i 	= j.
Lastly, we show the sequence {Γ ′

i } satisfies the desired condition: Ai =
∑

j∈N Γ ′
i A∗

j Λj for
all i ∈N.

Since (ker Di)⊥ = ran D∗
i ⊂ M⊥ and ran Ã∗

j ⊂ M for any i, j ∈N, we have

ran Ã∗
j ⊂ M ⊂ ker Di.

Hence, DiÃ∗
j = 0 for any i, j ∈ N. On the other hand, since Ci = Aiθ

∗
ΛθÃ for any i ∈ J, we

get AjC∗
i = ΛjA∗

i . By A∗
i gi =

∑
j∈N Λ∗

j ΛjA∗
i gi for any gi ∈ Hi, any i ∈ N, we have A∗

i gi =
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∑
j∈N Λ∗

j AjC∗
i gi. So

∑
j∈N CiÃ∗

j Λj = Ai for any i ∈N. Then

∑

j∈N
Γ ′

i Ã∗
j Λj =

∑

j∈N
(Ci + Di)Ã∗

j Λj =
∑

j∈N
CiÃ∗

j Λj = Ai, ∀i ∈N.
�
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