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Abstract
We investigate a kind of generalized equations involving absolute values of variables
as |A|x – |B||x| = b, where A ∈ Rn×n is a symmetric matrix, B ∈ Rn×n is a diagonal matrix,
and b ∈ Rn. A sufficient condition for unique solvability of the proposed generalized
absolute value equations is also given. By utilizing an equivalence relation to the
unconstrained optimization problem, we propose a modified HS conjugate gradient
method to solve the transformed unconstrained optimization problem. Only under
mild conditions, the global convergence of the given method is also established.
Finally, the numerical results show the efficiency of the proposed method.
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1 Introduction
The absolute value equation of the type

Ax + B|x| = b (1.1)

was investigated in [14, 22, 25–28]. If det(B) �= 0, then (1.1) can be reduced to the form

Ax – |x| = b. (1.2)

The absolute value Eq. (1.2) has also been intensively studied, e.g., see [9, 12, 13, 15–17, 19,
30, 33, 34]. In this paper, we propose a new generalized absolute value equation (GAVE)
problem of the form

|A|x – |B||x| = b, (1.3)

where A = (aij) ∈ Rn×n is a symmetric matrix, B = (bij) ∈ Rn×n is a diagonal matrix, the
absolute values of matrices are defined as |A| = (|aij|), |B| = (|bij|), i, j = 1, 2, . . . , n, b ∈ Rn

and |x| = (|x1|, |x2|, . . . , |xn|)T . As we all know, the study of absolute value equations comes
from linear complementarity problem. The general linear complementarity problem [5],
which subsumes many mathematical programming problems, bimatrix games, and equi-
librium programming problems, can be formulated as the absolute value equations of the
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forms such as (1.1)–(1.3). Mangasarian [14] showed that (1.1) is NP-hard. Prolopyev [22]
stated the relations of (1.1) with linear complementarity problem and mixed integer pro-
gramming problem. Rohn et al. [30] gave the sufficient conditions for unique solvability
of AVE (1.2) and an iterative method to solve it. Mangasarian et al. [17] gave the existence
and nonexistence results of (1.2) and proved the equivalence relations between (1.2) and
the generalized linear complementarity problem. Hu et al. [9] proved that (1.2) can be
equivalently reformulated as a standard linear complementarity problem without any as-
sumption. In [16] and [15], Mangasarian proposed a concave minimization optimization
method and a generalized Newton method, respectively. Zhang et al. [34] presented a gen-
eralized Newton method. Noor et al. [19] gave an iterative algorithm for solving (1.2). Yong
[33] proposed a smoothing Newton algorithm to solve (1.2). Saheya et al. [31] focused on
numerical comparisons based on four smoothing functions for (1.2). Bello Cruz et al. [2]
showed the global Q-linear convergence of the inexact semi-smooth Newton method for
solving (1.2). Ke et al. [10] studied a SOR-like iteration method for solving system of (1.2).
Abdallah et al. [1] reformulated (1.2) as a sequence of concave minimization problems
and gave a smoothing method to solve it. Cacceta et al. [4] proposed a smoothing Newton
method with global and quadratic convergence for solving (1.2). Rohn [29] proved a the-
orem of alternatives for equation |Ax| – |B||x| = b and gave some sufficient conditions for
solvability of the equation. The current research on the methods for solving (1.1) and (1.2)
is based mostly on nonlinear optimization techniques. Little attention, however, has been
paid so far to the nonlinear conjugate gradient method with smaller storage capacity and
faster convergence speed for solving GAVE (1.3). In this paper, we propose a modified HS
conjugate gradient method to compute the solution of GAVE (1.3).

This paper is organized as follows. In Sect. 2, we provide a sufficient condition for the
solution of GAVE (1.3). In Sect. 3, a modified HS conjugate gradient method for solving
GAVE (1.3) is given. Under mild conditions, we prove the global convergence theorem
of the given method. In Sect. 4, we present numerical results of the relevant numerical
experiments to show the effectiveness and the efficiency of the proposed method.

Throughout the paper, lowercase x, y, . . . denote vectors, β , ε, . . . denote parameters, up-
percase letters A, B, . . . denote matrices.

2 General absolute value equation and unconstrained optimization problem
We will start by showing that (1.3) is equivalent to an unconstrained optimization prob-
lem with an objective function that is continuously differentiable. Firstly, we introduce the
relevant definition from [24, 25].

Definition 2.1 Given two matrices E, F ∈ Rn×n and F ≥ 0, the set of matrices

Σ =
{

Ã||E| – F ≤ Ã ≤ |E| + F
}

is called an interval matrix. Σ is called regular if ∀Ã is nonsingular.

Theorem 2.1 Suppose that Σ̃ = {Ã||A|– F ≤ Ã ≤ |A|+ F} is regular and |B| ≤ F , then (1.3)
has a unique solution.

Proof By x+ = max{x, 0} = |x|+x
2 , x– = min{x, 0} = |x|–x

2 , we get

|x| = x+ + x–, x = x+ – x–.
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Then (1.3) can be rewritten as

x+ =
(|A| – |B|)–1(|A| + |B|)x– +

(|A| – |B|)–1b. (2.1)

From |B| ≤ F , we know that |A| – |B|, |A| + |B| ∈ Σ̃ and (|A| – |B|)–1 exists. Similar to
Theorem 1 in [25], by [18, 23], we know that (2.1) has a unique solution. Hence (1.3) has
a unique solution. We finish the proof. �

In the remaining part of this section, we transform (1.3) to an unconstraint optimization
problem. Denote

f (x) =
〈|A|x, x

〉
–

〈|B||x|, x
〉
– 2〈b, x〉, (2.2)

where A, B are defined similarly as (1.3). 〈·〉 denotes the inner product of vectors, namely
∀x, y ∈ Rn

〈x, y〉 =
n∑

i=1

xiyi.

Now, we give the related notation and lemmas.

Definition 2.2 Suppose that matrix A ∈ Rn×n is symmetric, then A is a positive definite
matrix if and only if 〈x, Ax〉 > 0 is set up for arbitrarily nonzero vector x ∈ Rn.

In the remainder of this paper, we consider the matrices A and B such that |A| – |B|D is
positive definite for any arbitrary matrix D. If A is symmetric and B, D are both diagonal
matrices, then |A| – |B|D is symmetric. The diagonal matrix D is defined as D = ∂|x| =
diag(sign(x)), where diag(x) denote a vector with components equal to 1, 0, –1 depending
on whether the corresponding component of x is positive, zero, or negative.

Theorem 2.2 If matrix |A| – |B|D is a positive definite matrix, then x is a solution of (1.3)
⇔ x is a minimum of the function f (x), where f (x) is defined as (2.2).

Proof Case I. For arbitrary α ∈ R and ν ∈ Rn, by Taylor’s series, we get

f (x + αν) = f (x) + α
〈∇f (x),ν

〉
+

α2

2
〈∇2f (x)ν,ν

〉
,

where ∇f (x) = 2(|A|x – |B||x| – b), ∇2f (x) = 2(|A| – |B|D). Let C = |A| – |B|D, then C is a
positive definite matrix and

f (x + αν) = f (x) + 2α
〈|A|x – |B||x| – b,ν

〉
+ α2〈Cν,ν〉.

Let g : Rn → R be a function about α, we get

g(α) = f (x) + 2α
〈|A|x – |B||x| – b,ν

〉
+ α2〈Cν,ν〉,
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then g has the minimum point with 〈Cν,ν〉 > 0,

α = –
〈|A|x – |B||x| – b,ν〉

〈Cν,ν〉 ,

and

g(α) = f (x) –
〈|A|x – |B||x| – b,ν〉2

〈Cν,ν〉 .

So, we have

f (x + αν) ≤ f (x), ∀ν �= 0.

The above strict inequality is impossible. Then we have

〈|A|x – |B||x| – b,ν
〉
= 0.

And it follows that

f (x) = f (x + αν).

If x∗ satisfies |A|x∗ – |B||x∗| = b, then 〈|A|x∗ – |B||x∗| – b,ν〉 = 0 for arbitrary ν and f (x)
cannot be made any smaller than f (x∗). Then x∗ minimizes f .

Case II. Suppose that x∗ is the minimum point of f (x), then ∀ν ∈ Rn, α ∈ R, it follows
that

f
(
x∗ + αν

) ≥ f
(
x∗).

So,

〈|A|x∗ – |B|∣∣x∗∣∣ – b,ν
〉

= 0.

Then the above equation implies that

|A|x∗ – |B|∣∣x∗∣∣ – b = 0,

that is,

|A|x∗ – |B|∣∣x∗∣∣ = b.

This shows that x∗ is a solution of (1.3). Hence, this completes the proof. �

Therefore, GAVE (1.3) can be transformed into the following unconstrained optimiza-
tion problem:

min
x∈R

f (x),



Li and Du Journal of Inequalities and Applications         (2019) 2019:68 Page 5 of 12

where f is defined by formula (2.2). It is well known that nonlinear conjugate gradi-
ent methods such as Hestenes–Stiefel (HS) method [8], Fletcher–Reeves (FR) method
[7], Polak–Ribiere–Polyak (PRP) method [20, 21], Dai–Yuan (DY) method [6], and other
methods [3, 11, 32, 35, 36] are very efficient for large-scale smooth optimization problems
due to their simplicity and low storage. Moreover, we notice that some modified HS conju-
gate gradient methods are more efficient to solve the unconstrained optimization problem
than classical methods, see [11, 32]. In the next section, we give a modified HS conjugate
gradient method for (1.3). To develop an efficient optimization method for (1.3), we also
use the Armijo-type line search globalization technique [36].

3 Modified HS conjugate gradient method
In this section, we firstly propose the modified HS conjugate gradient method based on
[11] with Armijo-type line search based on [36]. Then we present the global convergence
of the given method under mild conditions.

Algorithm 3.1 (Modified HS Conjugate Gradient Method)
Step 0. Choose initial point x0 ∈ Rn and constants δ1, δ2,ρ ∈ (0, 1), ε > 0. Let k := 0.
Step 1. Denote gk = ∇f (xk). If ‖gk‖ ≤ ε, stop. Otherwise, compute dk by

dk =

⎧
⎨

⎩
–gk , if k = 0,

–gk + βNHS
k dk–1 – βNHS

k
gT

k dk–1
‖gk‖2 gk , if k > 0,

(3.1)

where

βNHS
k =

gT
k (gk – gk–1)

zk
, zk = max

{
t‖dk–1‖, dT

k–1(gk – gk–1)
}

.

Step 2. Determine αk by the Armijo-type line search, that is, αk = max{ρ j, j = 0, 1, 2, . . .}
satisfying

f (xk + αkdk) ≤ f (xk) + δ1αkgT
k dk – δ2α

2
k‖dk‖2. (3.2)

Step 3. Set xk+1 = xk + αkdk , k := k + 1. Go to Step 1.

To get the convergence of Algorithm 3.1, we only need the following mild assumption.

Assumption 3.1 The level set Ω = {x|f (x) ≤ f (x0)} is bounded.

Lemma 3.1 Let Assumption 3.1 hold, g(x) = 2(|A|x – |B||x| – b), then g(x) satisfies the Lip-
schitz condition, that is,

∥∥g(x) – g(y)
∥∥ ≤ L‖x – y‖,

where ∀x, y ∈ N , N is a neighborhood of Ω and L > 0 is a constant.

Proof By g(x) = 2(|A|x – |B||x| – b), we get

∥∥g(x) – g(y)
∥∥ = 2

∥∥|A|x – |B||x| – b – |A|y + |B||y| + b
∥∥

= 2
∥∥|A|x – |B||x| – |A|y + |B||y|∥∥
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= 2
∥∥|A|(x – y) – |B|(|x| – |y|)∥∥

≤ 2
∥∥|A|(x – y)

∥∥ + 2
∥∥|B|(|x| – |y|)∥∥

≤ 2
(|‖A|‖ + |‖B|‖)(‖x – y‖) = L‖x – y‖.

Denote L = 2(‖|A‖| + ‖|B‖|), we get this lemma. �

Remark 3.1 On account of the descent property of {f (xk)}, the sequence {xk} generated by
Algorithm 3.1 is contained in Ω . Besides, it follows from Assumption 3.1 that there exists
a constant η > 0 such that

∥∥g(x)
∥∥ ≤ η, ∀x ∈ Ω .

Lemma 3.2 ([11]) Let {dk} be computed by Algorithm 3.1, then

gT
k dk = –‖gk‖2 (3.3)

holds for arbitrary k > 0.

From Assumption 3.1, Lemma 3.1, and Lemma 3.2, we can get the following lemma.

Lemma 3.3 ([11]) Suppose that Assumption 3.1 holds. Let {dk} and {xk} be generated by
Algorithm 3.1, then there exists a positive constant c such that

‖dk‖ ≤ c, ∀k > 0. (3.4)

Based on the above assumptions and lemmas, we now give the global convergence the-
orem of Algorithm 3.1.

Theorem 3.1 Suppose that Assumption 3.1 holds. If {xk} is generated by Algorithm 3.1,
then

lim inf
k→∞

‖gk‖ = 0. (3.5)

Proof Now, assume that this theorem is not true, namely (3.5) does not hold, then there
exists a positive constant τ > 0 such that

‖gk‖ ≥ τ , ∀k ≥ 0. (3.6)

From Assumption 3.1 and (3.2), it follows

∑

k≥0

(
–δ1αkgT

k dk + δ2α
2
k‖dk‖2) < ∞,

this with (3.3) indicates

∑

k≥0

α2
k‖dk‖2 < ∞,
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and

–
∑

k≥0

αkgT
k dk =

∑

k≥0

αk‖gk‖2 < ∞,

then we obtain

lim
k→∞

αk‖gk‖2 = 0. (3.7)

If lim infk→∞ αk > 0, then we have lim infk→∞ ‖gk‖ = 0 by (3.7), which contradicts (3.6).
If lim infk→∞ αk = 0, then there exists a set K ∈ N such that

lim
k∈K ,k→∞

αk = 0. (3.8)

The Armijo-type line search rule suggests that ρ–1αk does not satisfy line search condition
(3.2) for k sufficiently enough, namely

f
(
xk + ρ–1αkdk

)
– f (xk) > δ1ρ

–1αkgT
k dk – δ2ρ

–2α2
k‖dk‖2

= –δ1ρ
–1αk‖gk‖2 – δ2ρ

–2α2
k‖dk‖2. (3.9)

By the mean value theorem and Lemma 3.1, there exists ξk ∈ (0, 1) such that

f
(
xk + ρ–1αkdk

)
– f (xk) = ρ–1αkg

(
xk + ξkρ

–1αkdk
)T dk

= ρ–1αkgT
k dk + ρ–1αk

[
g
(
xk + ξkρ

–1αkdk
)

– g(xk)
]T dk

≤ ρ–1αkgT
k dk + Lρ–2α2

k‖dk‖2

= –ρ–1αk‖gk‖2 + Lρ–2α2
k‖dk‖2.

This together with Lemma 3.3 and (3.9) implies

‖gk‖2 <
L + δ2

(1 – δ1)ρ
c2αk .

Then we obtain lim infk∈K ,k→∞ ‖gk‖ = 0 from (3.8), which also contradicts (3.6). The proof
is completed. �

Remark 3.2 In Step 2 of Algorithm 3.1, we adopt the Armijo-type line search [36]. The
following line searches are also well defined in Algorithm 3.1 since the search directions
are descent. The Wolfe line search [6]

f (xk + αkdk) ≤ f (xk) + ραkgT
k dk

and

gT
k+1dk ≥ σ gT

k dk , ρ ∈
(

0,
1
2

)
,σ ∈ (ρ, 1),
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and the standard Armijo line search [35]

f (xk + αkdk) ≤ f (xk) + ρ1αkgT
k dk , ρ1 ∈ (0, 1). (3.10)

4 Numerical experiments
In this section, we present numerical results to show the efficiency of the modified HS
conjugate gradient method (Algorithm 3.1). The numerical testing was carried out on a
Lenovo PC with the use of Matlab. The following tables and figures list the numerical
results for the given GAVE problems, where we set ε = 10–6, ρ = 0.6, ρ1 = 0.4, δ1 = 0.4,
δ2 = 0.4, t = 2.

Example 4.1 Consider GAVE (1.1), where

A =

⎛

⎜
⎝

7 2 2
2 7 2
2 2 7

⎞

⎟
⎠ , B =

⎛

⎜
⎝

3 0 0
0 –3 0
0 0 –3

⎞

⎟
⎠ , b =

⎛

⎜
⎝

8
8
8

⎞

⎟
⎠ .

The exact solution of Example 4.1 is (1, 1, 1)T . The initial points in Algorithm 3.1 are
taken randomly five times. The detailed numerical results are showed in Table 1 and Fig. 1.
x∗ denotes the numerical solution, k denotes the number of iterations, and Val denotes
‖|A|xk – |B||xk|– b‖∞. From Table 1 and Fig. 1, we can see that Algorithm 3.1 is promising.

Table 1 Numerical results for Example 4.1

x∗ k Val

(1.0000, 1.0000, 1.0000)T 23 1.0688e–07
(1.0000, 1.0000, 1.0000)T 27 4.0769e–07
(1.0000, 1.0000, 1.0000)T 23 1.9399e–07
(1.0000, 1.0000, 1.0000)T 23 3.1369e–07
(1.0000, 1.0000, 1.0000)T 25 1.4218e–07

Figure 1 Numerical results for Example 4.1
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Example 4.2 Consider GAVE (1.1), where

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

6 –3 –3 –3 –3 –3
–3 6 –3 –3 –3 –3
–3 –3 6 –3 –3 –3
–3 –3 –3 6 –3 –3
–3 –3 –3 –3 6 –3
–3 –3 –3 –3 –3 6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0 0 0 0
0 –1 0 0 0 0
0 0 2 0 0 0
0 0 0 –1 0 0
0 0 0 0 2 0
0 0 0 0 0 –1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, b =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

19
20
19
20
19
20

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The exact solution of this example is (1, 1, 1, 1, 1, 1)T . Compute this example by Algo-
rithm 3.1 with random initial points uniformly distributed in (0, 1). The results of the nu-
merical experiments are showed in Table 2, where x∗ denotes the numerical solution, k
denotes the number of iterations, and Val denotes ‖|A|xk – |B||xk| – b‖∞. From Table 2
and Fig. 2, we can see that Algorithm 3.1 is also efficient to get the solution of this kind of
GAVE.

Example 4.3 Consider GAVE (1.1), where A ∈ Rn×n whose diagonal elements are 2n and
other elements are 1, B ∈ Rn×n whose diagonal elements are n and other elements are

Table 2 Numerical results for Example 4.2

x∗ k Val

(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)T 47 2.1860e–07
(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)T 47 4.0285e–07
(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)T 53 2.3442e–07
(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)T 49 3.8555e–07
(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)T 52 2.7053e–07

Figure 2 Numerical results for Example 4.2
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Table 3 Numerical results for Example 4.3

n x∗ k Val

10 (1.0000, 1.0000, . . . , 1.0000)T 8 4.5674e–05
10 (1.0000, 1.0000, . . . , 1.0000)T 9 5.0220e–05
50 (1.0000, 1.0000, . . . , 1.0000)T 11 7.1865e–05
50 (1.0000, 1.0000, . . . , 1.0000)T 12 3.1082e–05
100 (1.0000, 1.0000, . . . , 1.0000)T 14 4.2381e–05
100 (1.0000, 1.0000, . . . , 1.0000)T 14 4.2647e–05
200 (1.0000, 1.0000, . . . , 1.0000)T 12 4.0803e–05
200 (1.0000, 1.0000, . . . , 1.0000)T 12 4.3772e–05
300 (1.0000, 1.0000, . . . , 1.0000)T 12 5.5250e–05
300 (1.0000, 1.0000, . . . , 1.0000)T 12 4.3772e–05

Figure 3 Numerical results for Example 4.3 with n = 300

0, and b = (2n – 1)e. The exact solution of this example is (1, 1, . . . , 1)T . We use random
initial points uniformly distributed in (0, 1) to compute this example by Algorithm 3.1 with
Armijo line search (3.10) and Algorithm 3.1 stops at iteration xk if ‖|A|xk – |B||xk| – b‖ <
10–3. The results of the numerical experiments are showed in Table 3, where n denotes
the dimension of the vector, x∗ denotes the numerical solution, k denotes the number
of iterations, and Val denotes ‖|A|xk – |B||xk| – b‖∞. Figure 3 represents the number of
iterations with n = 300. From Table 3 and Fig. 3, we can see that Algorithm 3.1 can also
efficiently get the solution of this kind of GAVE.

5 Conclusions
Absolute value equation problem has been widely used in mathematical programming
and other related areas of science and engineering. However, little attention has been paid
to solving general absolute value equation problems by the nonlinear conjugate gradient
method. In this paper, we provide a sufficient condition for the unique solution of general
absolute value equation of the form as (1.3) and propose a modified HS conjugate gradient
method to solve it. The global convergence of the nonlinear conjugate gradient method is
proved under only one mild assumption. This method is also very easy to implement and
is also very promising.



Li and Du Journal of Inequalities and Applications         (2019) 2019:68 Page 11 of 12

Funding
This work was supported by the Shandong Provincial Nature Science Foundation, China (No. ZR2016AM29) and also by
the National Natural Science Foundation of China (No. 11671220).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 December 2018 Accepted: 8 March 2019

References
1. Abdallah, L., Haddou, M., Migot, T.: Solving absolute value equation using complementarity and smoothing

functions. J. Comput. Appl. Math. 327, 196–207 (2018)
2. Bello Cruz, J.Y., Ferreira, O.P., Prudente, L.F.: On the global convergence of the inexact semi-smooth Newton method

for absolute value equation. Comput. Optim. Appl. 65(1), 93–108 (2016)
3. Birgin, E.G., Martinez, J.M.: A spectral conjugate gradient method for unconstrained optimization. Appl. Math. Optim.

43, 117–128 (2001)
4. Caccetta, L., Qu, B., Zhou, G.L.: A globally and quadratically convergent method for absolute value equations.

Comput. Optim. Appl. 48, 45–58 (2011)
5. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)
6. Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim.

10, 177–182 (1999)
7. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)
8. Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49,

409–436 (1952)
9. Hu, S.L., Huang, Z.H.: A note on absolute value equations. Optim. Lett. 4(3), 417–424 (2010)
10. Ke, Y.F., Ma, C.F.: SOR-like iteration method for solving absolute value equations. Appl. Math. Comput. 311, 195–202

(2017)
11. Li, M., Qu, A.P.: Some sufficient descent conjugate gradient methods and their global convergence. Comput. Appl.

Math. 33, 333–347 (2014)
12. Liu, C.H., Liu, H.W., Zhu, J.G.: A new semi-smooth Newton method for absolute value equations. Chin. J. Eng. Math.

30(1), 101–111 (2013)
13. Magasarian, O.L.: Knapsack feasibility as an absolute value equation solvable by successive linear programming.

Optim. Lett. 3(2), 161–170 (2009)
14. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53 (2007)
15. Mangasarian, O.L.: Absolute value equation solution via concave minimization. Optim. Lett. 1(1), 3–8 (2007)
16. Mangasarian, O.L.: A generalized Newton method for absolute values. Optim. Lett. 3(1), 101–108 (2009)
17. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419(2), 359–367 (2006)
18. Murty, K.G.: On the number of solutions to the complementarity problem and spanning properties of

complementary cones. Linear Algebra Appl. 5, 65–108 (1972)
19. Noor, M.A., Iqbal, J., Noor, K.I., Al-Said, E.: On an iterative method for solving absolute value equations. Optim. Lett.

6(5), 1027–1033 (2012)
20. Polak, E., Ribière, G.: Note sur la convergence de methodes de directions conjuguees. Rev. Fr. Autom. Inform. Rech.

Opér. 16, 35–43 (1969)
21. Polyak, B.T.: The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9(4), 94–112

(1969)
22. Prokopyev, O.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44(3), 363–372

(2009)
23. Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126, 39–78 (1989)
24. Rohn, J.: Interval matrices: singularity and real eigenvalues. SIAM J. Matrix Anal. Appl. 14, 82–91 (1993)
25. Rohn, J.: A theorem of the alternatives for the equation Ax + B|x| = b. Linear Multilinear Algebra 52(6), 421–426 (2004)
26. Rohn, J.: On unique solvability of the absolute value equation. Optim. Lett. 3(4), 603–606 (2009)
27. Rohn, J.: An algorithm for solving the absolute value equation. Electron. J. Linear Algebra 18(1), 589–599 (2009)
28. Rohn, J.: An algorithm for computing all solutions of an absolute value equation. Optim. Lett. 6(5), 851–856 (2012)
29. Rohn, J.: A theorem of alternatives for equation |Ax| – |B||x| = b. Optim. Lett. 6(3), 585–591 (2012)
30. Rohn, J., Hooshyarbarkhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient

conditions for unique solvability. Optim. Lett. 8(1), 35–44 (2014)
31. Saheya, B., Yu, C.H., Chen, J.S.: Numerical comparisons based on four smoothing functions for absolute value

equations. J. Appl. Math. Comput. 56, 131–149 (2018)
32. Sun, Q.Y., Liu, Q.: Global convergence of modified HS conjugate gradient method. J. Appl. Math. Comput. 22, 289–297

(2006)
33. Yong, L.Q.: A smoothing Newton method for absolute value equation. Int. J. Control. Autom. Syst. 9(2), 119–132

(2016)



Li and Du Journal of Inequalities and Applications         (2019) 2019:68 Page 12 of 12

34. Zhang, C., Wei, Q.J.: Global and finite convergence of a generalized Newton method for absolute value equations.
J. Optim. Theory Appl. 143(2), 391–403 (2009)

35. Zhang, L., Zhou, W.J.: On the global convergence of the Hager–Zhang conjugate gradient method with Armijo line
search. Acta Math. Sci. 28, 840–845 (2008)

36. Zhang, L., Zhou, W.J., Li, D.H.: Global convergence of a modified Fletcher–Reeves conjugate gradient method with
Armijo-type line search. Numer. Math. 104(4), 561–572 (2006)


	Modiﬁed HS conjugate gradient method for solving generalized absolute value equations
	Abstract
	MSC
	Keywords

	Introduction
	General absolute value equation and unconstrained optimization problem
	Modiﬁed HS conjugate gradient method
	Numerical experiments
	Conclusions
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


