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1 Introduction
Convexity is one the most important, natural, and fundamental concepts in mathematics
[1–18]. Convex functions were proposed by Jensen over 100 years ago. Over the past few
years, many generalizations and extensions have been made for the convexity, for exam-
ple, quasi-convexity [19], strong convexity [20, 21], approximate convexity [22], logarith-
mical convexity [23], midconvexity [24], pseudo-convexity [25], h-convexity [26], delta-
convexity [27], s-convexity [28], preinvexity [29], GA-convexity [30], GG-convexity [31],
coordinate strong convexity [32], and Schur convexity [33–44]. In particular, many re-
markable inequalities can be found in the literature [45–79] via the convexity theory.

In the article, we deal with the strongly convex function [20, 21].

Definition 1.1 Let Ψ be a real-valued function defined on an interval I ⊆ R and c be a
positive real number. Then Ψ is said to be strongly convex with modulus c on I if the
inequality

Ψ
(
ηu + (1 – η)v

) ≤ ηΨ (u) + (1 – η)Ψ (v) – cη(1 – η)(u – v)2 (1.1)

holds for all u, v ∈ I and η ∈ [0, 1].

If Ψ is strongly convex, then we clearly see that

Ψ (v) + Ψ ′
+(v)(u – v) + c(u – v)2 ≤ Ψ (u). (1.2)

Next we recall some basic concepts in the theory of majorization.
There are definite natural applications to the indefinite notion that the entries of n-tuple

δ are more nearly equal, or less spread out, than the entries of n-tuple ζ . The concept arises
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in a variety of contexts, and it can be made precise in a number of ways. But in remarkably
many cases, the applicable statement is that δ majorizes ζ means that the sum of k largest
entries of ζ does not exceed the sum of k largest entries of δ for all k = 1, 2, . . . , n – 1 with
equality for k = n. That is, let δ = (δ1, δ2, . . . , δn) and ζ = (ζ1, ζ2, . . . , ζn) be two n-tuples of
real numbers, and

δ
↓
1 ≥ δ

↓
2 ≥ · · · ≥ δ↓

n , ζ
↓
1 ≥ ζ

↓
2 ≥ · · · ≥ ζ ↓

n

be their ordered arrangement. Then the n-tuple δ is said to majorize ζ (or ζ is to be ma-
jorized by δ), in symbols we write δ � ζ if

k∑

j=1

δ
↓
j ≥

k∑

j=1

ζ
↓
j

holds for k = 1, 2, . . . , n – 1, and

n∑

j=1

δj =
n∑

j=1

ζj.

Recently, many articles that were published in an extensive variety of fields have been
dedicated to the theory of majorization. Undeniably, many concepts of majorization have
been reinvented and used in different fields of research such as dominance ordering or
Lorenz in economics, graph theory, and optimization. Here we mention useful contexts
of majorization in physical science. In physics and chemistry, the terms “δ is more chaotic
than ζ ,” “δ is more mixed than ζ ,” and “δ is more disordered than ζ ” are related to in-
equality ordering and the concept of majorization δ ≺ ζ . To explain “mixing” term, we
assume undistinguishable cylindrical beakers which contain liquid of different amounts.
Since some beakers contain a large amount of liquid “mixed” to the lesser amounts of
liquid from another beaker, such process is known as majorization. The “chaotic” term
is used in physical laws. Let us consider one vector which is more chaotic than another
vector, it means that one vector majorizes the other vector. The origin of this term is basi-
cally related to entropy. In an angulus manner, one vector is said to be more random than
another; so, here it means one majorizes the other.

The following distinguished majorization theorem can be found in the literature [80].

Theorem 1.2 Let [λ1, ξ1] ⊆ R be an interval, and δ = (δ1, δ2, . . . , δn) and ζ = (ζ1, ζ2, . . . , ζn)
be two n-tuples such that δj, ζj ∈ [λ1, ξ1] for j = 1, 2, . . . , n. Then the inequality

n∑

j=1

Ψ (δj) ≥
n∑

j=1

Ψ (ζj) (1.3)

holds for every continuous convex function Ψ : [λ1, ξ1] →R if and only if δ � ζ .

A weighted version of Theorem 1.2 was proved by Fuchs [81].
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Theorem 1.3 Let δ = (δ1, δ2, . . . , δn), ζ = (ζ1, ζ2, . . . , ζn) be two decreasing n-tuples and p =
(p1, p2, . . . , pn) be a real n-tuple such that

k∑

j=1

pjδj ≥
k∑

j=1

pjζj for k = 1, 2, . . . , n – 1 and (1.4)

n∑

j=1

pjδj =
n∑

j=1

pjζj. (1.5)

Then, for every continuous convex function Ψ : [λ1, ξ1] →R, we have

n∑

j=1

pjΨ (δj) ≥
n∑

j=1

pjΨ (ζj). (1.6)

The following theorem [82] is a weighted majorization theorem for certain n-tuples and
positive weights.

Theorem 1.4 Let Ψ : [λ1, ξ1] →R be a continuous convex function on an interval [λ1, ξ1],
p be a positive n-tuple, and δ, ζ ∈ [λ1, ξ1]n satisfying (1.4) and (1.5).

(a) If the n-tuple ζ is decreasing, then inequality (1.6) holds.
(b) If the n-tuple δ is increasing, then the reverse inequality in (1.6) holds.

Dragomir [83] proved the majorization theorem without using condition (1.4).

Theorem 1.5 Let Ψ : [λ1, ξ1] →R be a continuous convex function on an interval [λ1, ξ1].
Suppose that δ, ζ ∈ [λ1, ξ1]n and pj ≥ 0 for j = 1, 2, . . . , n. If (δj – ζj)(j=1,n) and (ζj)(j=1,n) are
nondecreasing (nonincreasing) and satisfying (1.5), then inequality (1.6) holds.

The main purpose of the article is to establish the majorization theorem for majorized
n-tuples by using a strongly convex function and give their applications in the theory of
majorization.

2 Main results
We start with establishing some inequalities which will be used to prove majorization
theorem for strongly convex functions.

Proposition 2.1 Let Ψ : I → R be a strongly convex function with modulus c and
u1, v1, x1, y1 ∈ I such that u1 < v1 ≤ y1 < x1, then the following inequalities hold:

(a)
Ψ (v1) – Ψ (u1)

v1 – u1
– c(v1 – u1) ≤ Ψ (x1) – Ψ (u1)

x1 – u1
– c(x1 – u1),

(b)
Ψ (v1) – Ψ (u1)

v1 – u1
– c(v1 – u1) ≤ Ψ (x1) – Ψ (v1)

x1 – v1
– c(x1 – v1),

(c)
Ψ (x1) – Ψ (u1)

x1 – u1
– c(x1 – u1) ≤ Ψ (x1) – Ψ (v1)

x1 – v1
– c(x1 – v1),

(d)
Ψ (v1) – Ψ (u1)

v1 – u1
– c(v1 – u1) ≤ Ψ (x1) – Ψ (y1)

x1 – y1
– c(x1 – y1).
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Proof (a) Since u1 < v1 < x1, we obtain

v1 =
(

x1 – v1

x1 – u1

)
u1 +

(
v1 – u1

x1 – u1

)
x1,

Ψ (v1) = Ψ

[(
x1 – v1

x1 – u1

)
u1 +

(
v1 – u1

x1 – u1

)
x1

]
.

By using strong convexity, we have

Ψ (v1) ≤ x1 – v1

x1 – u1
Ψ (u1) +

v1 – u1

x1 – u1
Ψ (x1) – c

x1 – v1

x1 – u1

v1 – u1

x1 – u1
(u1 – x1)2

=
(

1 –
v1 – u1

x1 – u1

)
Ψ (u1) +

v1 – u1

x1 – u1
Ψ (x1) – c(x1 – v1)(v1 – u1),

Ψ (v1) – Ψ (u1) ≤ v1 – u1

x1 – u1
Ψ (x1) –

v1 – u1

x1 – u1
Ψ (u1) – c(x1 – v1)(v1 – u1),

Ψ (v1) – Ψ (u1)
v1 – u1

≤ Ψ (x1) – Ψ (u1)
x1 – u1

– c(x1 – v1),

Ψ (v1) – Ψ (u1)
v1 – u1

≤ Ψ (x1) – Ψ (u1)
x1 – u1

– c
(

1 –
v1 – u1

x1 – u1

)
(x1 – u1).

Rearranging the above inequalities, we deduce (a).
(b) From (a) we can write

Ψ (v1) – Ψ (u1) – c(v1 – u1)2

≤
(

v1 – u1

x1 – u1

)
{
Ψ (x1) – Ψ (u1) – c(x1 – u1)2}

=
(

v1 – u1

x1 – u1

){
Ψ (x1) – Ψ (v1) + Ψ (v1) – Ψ (u1) – c(x1 – u1)2},

{
Ψ (v1) – Ψ (u1)

}(
1 –

v1 – u1

x1 – u1

)
– c(v1 – u1)2

≤
(

v1 – u1

x1 – u1

)
{
Ψ (x1) – Ψ (v1) – c(x1 – u1)2},

{
Ψ (v1) – Ψ (u1)

}
(x1 – v1) – c(v1 – u1)2(x1 – u1)

≤ (v1 – u1)
{
Ψ (x1) – Ψ (v1) – c(x1 – u1)2},

(x1 – v1)
[
Ψ (v1) – Ψ (u1) – c(v1 – u1)2

(
1 –

u1 – v1

x1 – v1

)]

≤ (v1 – u1)
{
Ψ (x1) – Ψ (v1) – c(x1 – u1)2},

(x1 – v1)
[
Ψ (v1) – Ψ (u1) – c(v1 – u1)2]

≤ (v1 – u1)
{
Ψ (x1) – Ψ (v1)

}
– c(v1 – u1)

[
(x1 – u1)2 – (v1 – u1)2]

= (v1 – u1)
[(

Ψ (x1) – Ψ (v1)
)

– c(x1 – v1)(x1 – 2u1 + v1)
]

≤ (v1 – u1)
[(

Ψ (x1) – Ψ (v1)
)

– c(x1 – v1)2].

Rearranging the above inequalities, we deduce (b).
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(c) Now, we can write

Ψ (x1) – Ψ (u1) – c(x1 – u1)2

x1 – u1

=
{Ψ (x1) – Ψ (v1)}(x1 – v1)

(x1 – u1)(x1 – v1)
+

{Ψ (v1) – Ψ (u1)}(v1 – u1)
(x1 – u1)(v1 – u1)

– c(x1 – u1).

Using inequality (a), we obtain

Ψ (x1) – Ψ (u1) – c(x1 – u1)2

x1 – u1

≤ x1 – v1

x1 – u1

(
Ψ (x1) – Ψ (v1)

x1 – v1

)
+

(
Ψ (x1) – Ψ (u1)

x1 – u1
– c(x1 – u1) + c(v1 – u1)

)

×
(

v1 – u1

x1 – u1

)
– c(x1 – u1),

Ψ (x1) – Ψ (u1) – c(x1 – u1)2

x1 – u1

(
x1 – v1

x1 – u1

)

≤ x1 – v1

x1 – u1

(
Ψ (x1) – Ψ (v1)

x1 – v1

)
– c(x1 – u1)

(
1 –

(v1 – u1)2

(x1 – u1)2

)

=
x1 – v1

x1 – u1

(
Ψ (x1) – Ψ (v1)

x1 – v1

)
–

c
(x1 – u1)

{
(x1 – u1)2 – (v1 – u1)2}

=
x1 – v1

x1 – u1

(
Ψ (x1) – Ψ (v1)

x1 – v1

)
–

c(x1 – v1)
(x1 – u1)

{
(x1 – 2u1 + v1)

}

≤ x1 – v1

x1 – u1

(
Ψ (x1) – Ψ (v1)

x1 – v1

)
–

c(x1 – v1)
(x1 – u1)

(x1 – v1)

≤ Ψ (x1) – Ψ (v1) – c(x1 – v1)2

x1 – v1

(
x1 – v1

x1 – u1

)
.

Rearranging the above inequality, we deduce (c).
(d) Similarly, to prove the last inequality using inequality (b) and if u1 < v1 < y1, then we

obtain

Ψ (v1) – Ψ (u1)
v1 – u1

– c(v1 – u1) ≤ Ψ (y1) – Ψ (v1)
y1 – v1

– c(y1 – v1), (2.1)

also, if v1 < y1 < x1, then we obtain

Ψ (y1) – Ψ (v1)
y1 – v1

– c(y1 – v1) ≤ Ψ (x1) – Ψ (y1)
x1 – y1

– c(x1 – y1), (2.2)

from (2.1) and (2.2), we deduce (d). �

Remark 2.2 If Ψ is a strongly convex function with modulus c, then, by using inequalities
in Proposition 2.1, we clearly see that the function �(x, y) = Ψ (x)–Ψ (y)–c(x–y)2

x–y is increasing in
both variables.

Now we are in the position to prove majorization theorem for strongly convex functions.
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Theorem 2.3 Let Ψ : [λ1, ξ1] → R be a strongly convex function with modulus c. Suppose
that δ = (δ1, δ2, . . . , δn) and ζ = (ζ1, ζ2, . . . , ζn) are n-tuples, δj, ζj ∈ [λ1, ξ1], j = 1, 2, . . . , n, and
the n-tuple δ majorizes ζ . Then the following inequality holds:

n∑

j=1

Ψ (δj) ≥
n∑

j=1

Ψ (ζj) + c
n∑

j=1

(δj – ζj)2. (2.3)

Proof Without loss of generality, we consider that

δ1 ≥ δ2 ≥ · · · ≥ δn, ζ1 ≥ ζ2 ≥ · · · ≥ ζn and δj �= ζj for j = 1, 2, . . . , n.

Assume that dj = �(δj, ζj) = Ψ (δj)–Ψ (ζj)–c(δj–ζj)2

δj–ζj
. Since Ψ is strongly convex, so by Remark 2.2,

it implies that the sequence {dj}n
j=1 is decreasing. Suppose that

Ej =
j∑

k=1

δk and Fj =
j∑

k=1

ζk , j = 1, 2, . . . , n, E0 = F0 = 0.

Since δ � ζ , therefore

En = Fn and Ej ≥ Fj, for j = 1, 2, . . . , n – 1.

Now, we can write

n∑

j=1

Ψ (δj) –
n∑

j=1

Ψ (ζj) =
n∑

j=1

{
Ψ (δj) – Ψ (ζj) – c(δj – ζj)2 + c(δj – ζj)2}

=
n∑

j=1

[{
Ψ (δj) – Ψ (ζj) – c(δj – ζj)2

δj – ζj

}
(δj – ζj) + c(δj – ζj)2

]
,

which can be written as

n∑

j=1

Ψ (δj) –
n∑

j=1

Ψ (ζj) – c
n∑

j=1

(δj – ζj)2 =
n∑

j=1

dj(δj – ζj). (2.4)

Clearly,

Ej – Ej–1 = δj and Fj – Fj–1 = ζj for j = 1, 2, . . . , n. (2.5)

Using (2.5) in (2.4), we get

n∑

j=1

Ψ (δj) –
n∑

j=1

Ψ (ζj) – c
n∑

j=1

(δj – ζj)2

=
n∑

j=1

dj
{

(Ej – Ej–1) – (Fj – Fj–1)
}

=
n∑

j=1

dj(Ej – Fj) –
n∑

j=1

dj(Ej–1 – Fj–1)
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=
n∑

j=1

dj(Ej – Fj) –
n–1∑

j=0

dj+1(Ej – Fj)

=
n–1∑

j=1

dj(Ej – Fj) –
n–1∑

j=1

dj+1(Ej – Fj)

=
n–1∑

j=1

(dj – dj+1)(Ej – Fj). (2.6)

Since dj ≥ dj+1 and Ej ≥ Fj, so
∑n–1

j=1 (dj – dj+1)(Ej – Fj) ≥ 0, hence from (2.6) we obtain
(2.3). �

Example 2.4 Let λ1, ξ1 ∈ R
+ with λ1 < ξ1 and α,κ ,γ ∈ [λ1, ξ1] such that 2α, 2κ , 2γ ,α +

κ ,κ + γ ,γ + α ∈ [λ1, ξ1]. Then, for any c ≤ 1
ξ3

1
, we have the inequality

1
2α

+
1

2κ
+

1
2γ

≥ 1
α + κ

+
1

κ + γ
+

1
γ + α

+ c
{

(α – κ)2 + (κ – γ )2 + (γ – α)2}. (2.7)

Solution 2.5 Let δ = (2α, 2κ , 2γ ), ζ = (α+κ ,κ +γ ,γ +α), clearly δ � ζ (for details see [84]).
Since the function Ψ (x) = 1

x , x ∈ [λ1, ξ1] is strongly convex with modulus c ≤ 1
ξ3

1
. Therefore

using inequality (2.3) we obtain (2.7).

Example 2.6 Let λ1, ξ1 ∈ R
+ with λ1 < ξ1 and α,κ ,γ ∈ [λ1, ξ1] such that α + κ – γ ,κ + γ –

α,γ + α – κ ,ακγ ∈ [λ1, ξ1]. Then, for any c ≤ 1
2ξ2

1
, we have the inequality

(α + κ – γ )(κ + γ – α)(γ + α – κ)

≤ ακγ + exp
[
–c

{
(κ – γ )2 + (γ – α)2 + (α – κ)2}]. (2.8)

Solution 2.7 Let δ = (α + κ – γ ,κ + γ – α,γ + α – κ), ζ = (α,κ ,γ ), clearly δ � ζ . As
Ψ (x) = log x, x ∈ [λ1, ξ1] is a strongly concave function with modulus c ≤ 1

2ξ2
1

. Therefore
using inequality (2.3) we obtain (2.8).

Example 2.8 Let [– π
6 , π

6 ] be an interval and αj ∈ [– π
6 , π

6 ] such that 2αj – αj+1 ∈ [– π
6 , π

6 ] for
j = 1, 2, . . . , n, with αn+1 = α1. Then, for any c ≤

√
3

4 , one has

cos(2α1 – α2) + cos(2α2 – α3) + · · · + cos(2αn – α1)

≤ cosα1 + cosα2 + · · · + cosαn – c
{

(α1 – α2)2 + · · · + (αn – α1)2}. (2.9)

Solution 2.9 Let δ = (2α1 –α2, 2α2 –α3, 2αn –α1), ζ = (α1,α2, . . . ,αn), clearly δ � ζ (for de-
tails see [84]). Since the function Ψ (x) = cos x, x ∈ [– π

6 , π
6 ] is strongly concave with modulus

c ≤
√

3
4 . Therefore using inequality (2.3) we obtain (2.9).

Remark 2.10 We clearly see that inequalities (2.7), (2.8), and (2.9) are the improvements
of the corresponding inequalities given in [84].

The weighted version of Theorem 2.3 is given in the following theorem. It can be viewed
as a generalization of the majorization theorem.
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Theorem 2.11 Let δ = (δ1, δ2, . . . , δn), ζ = (ζ1, ζ2, . . . , ζn) be two decreasing n-tuples and p =
(p1, p2, . . . , pn) be a real n-tuple such that

k∑

j=1

pjδj ≥
k∑

j=1

pjζj for k = 1, 2, . . . , n – 1, and (2.10)

n∑

j=1

pjδj =
n∑

j=1

pjζj. (2.11)

Then, for every strongly convex function Ψ : [λ1, ξ1] →R, we have

n∑

j=1

pjΨ (δj) ≥
n∑

j=1

pjΨ (ζj) + c
n∑

j=1

pj(δj – ζj)2. (2.12)

Proof The idea of the proof is similar to the idea of the proof of Theorem 2.3. �

In the following theorem we shall establish a more general inequality for strongly convex
functions.

Theorem 2.12 Let Ψ : [λ1, ξ1] → R be a strongly convex function with modulus c. Sup-
pose that δ = (δ1, δ2, . . . , δn), ζ = (ζ1, ζ2, . . . , ζn) and p = (p1, p2, . . . , pn) are n-tuples such that
δi, ζi ∈ [λ1, ξ1], pi ≥ 0, j = 1, 2, . . . , n. Then the following inequality holds:

n∑

j=1

pjΨ (δj) ≥
n∑

j=1

pjΨ (ζj) +
n∑

j=1

pjΨ
′

+(ζj)(δj – ζj) + c
n∑

j=1

pj(δj – ζj)2. (2.13)

Proof Since Ψ is a strongly convex function, therefore we have

Ψ (δ) ≥ Ψ (ζ ) + Ψ ′
+(ζ )(δ – ζ ) + c(δ – ζ )2. (2.14)

Let ζ → ζj and δ → δj, for j = 1, 2, . . . , n in (2.14), we get

Ψ (δj) ≥ Ψ (ζj) + Ψ ′
+(ζj)(δj – ζj) + c(δj – ζj)2. (2.15)

Multiplying (2.15) by pj ≥ 0 and summing over j = 1, 2, . . . , n, we get

n∑

j=1

pjΨ (δj) ≥
n∑

j=1

pjΨ (ζj) +
n∑

j=1

pjΨ
′

+(ζj)(δj – ζj) + c
n∑

j=1

pj(δj – ζj)2. (2.16)
�

Remark 2.13 By setting ζj = δ =
∑n

j=1 pjδj for j = 1, 2, . . . , n in (2.13), we obtain Jensen’s
inequality for strongly convex functions which has already been proved by Merentes
and Nikodem in [20]. Moreover, by rearranging (2.13) and replacing ζj by δj and setting

δj = � =
∑n

j=1 pjδjΨ ′
+(δj)

∑n
j=1 pjΨ ′

+(δj)
∈ [λ1, ξ1] for j = 1, 2, . . . , n, where

∑n
j=1 pjΨ

′
+(δj) �= 0, we obtain Slater’s

inequality for strongly convex functions.

Next, we prove majorization theorem for positive weight and monotonic condition on
a single tuple.
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Theorem 2.14 Let Ψ : [λ1, ξ1] → R be a strongly convex function with modulus c. Sup-
pose that δ = (δ1, δ2, . . . , δn), ζ = (ζ1, ζ2, . . . , ζn) and p = (p1, p2, . . . , pn) are n-tuples such that
δj, ζj ∈ [λ1, ξ1], pj ≥ 0 for j = 1, 2, . . . , n and they satisfy

k∑

j=1

pjδj ≥
k∑

j=1

pjζj for k = 1, 2, . . . , n – 1 and (2.17)

n∑

j=1

pjδj =
n∑

j=1

pjζj. (2.18)

(a) If the n-tuple ζ is decreasing, then the following inequality holds:

n∑

j=1

pjΨ (δj) ≥
n∑

j=1

pjΨ (ζj) + c
n∑

j=1

pj(δj – ζj)2. (2.19)

(b) If the n-tuple δ is increasing, then the following inequality holds:

n∑

j=1

pjΨ (ζj) ≥
n∑

j=1

pjΨ (δj) + c
n∑

j=1

pj(ζj – δj)2. (2.20)

Proof (a) By using (2.13) and if ζ is a decreasing n-tuple, then we use (2.17) and (2.18),
and since Ψ is strongly convex, so Ψ is convex. Therefore using the idea of [82, p. 32], we
have

∑n
j=1 pjΨ

′
+(ζj)(δj – ζj) ≥ 0. Hence (2.13) can be written as

n∑

j=1

pjΨ (δj) –
n∑

j=1

pjΨ (ζj) – c
n∑

j=1

pj(δj – ζj)2 ≥
n∑

j=1

pjΨ
′

+(ζj)(δj – ζj) ≥ 0. (2.21)

From (2.21), we deduce (2.19).
Similarly we can prove part (b). �

The following theorem is in fact the generalization of Theorem 1.5 for a strongly convex
function.

Theorem 2.15 Let Ψ : [λ1, ξ1] → R be a strongly convex function with modulus c. Sup-
pose that δ = (δ1, δ2, . . . , δn), ζ = (ζ1, ζ2, . . . , ζn) and p = (p1, p2, . . . , pn) are n-tuples such that
δj, ζj ∈ [λ1, ξ1], pj ≥ 0 for j = 1, 2, . . . , n. If (δj – ζj)(j=1,n) and (ζj)(j=1,n) are decreasing (increas-
ing) n-tuples and satisfy (2.18), then the following inequality holds:

n∑

j=1

pjΨ (δj) ≥
n∑

j=1

pjΨ (ζj) + c
n∑

j=1

pj(δj – ζj)2. (2.22)

Proof The idea of the proof is similar to the idea of the proof of Theorem 2.14. �

Remark 2.16 Let all the assumptions of Theorem 2.15 hold. Furthermore, if Ψ is increas-
ing and satisfying (2.17), then (2.22) holds.
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The following theorem is in fact the generalization of [85, Theorem 1] for a strongly
convex function.

Theorem 2.17 Let θ be a strictly increasing function from (λ1, ξ1) onto (λ2, ξ2), Ψ ◦θ–1 be a
strongly convex function on [λ2, ξ2], and δ = (δ1, δ2, . . . , δn) and ζ = (ζ1, ζ2, . . . , ζn) be n-tuples
such that δj, ζj ∈ (λ1, ξ1) (j = 1, 2, . . . , n) and they satisfy

k∑

j=1

piθ (δj) ≥
k∑

j=1

pjθ (ζj) for k = 1, 2, . . . , n – 1 and (2.23)

n∑

j=1

pjθ (δj) =
n∑

j=1

pjθ (ζj). (2.24)

Then the following statements are true:
(a) If the n-tuple ζ is decreasing and Ψ is a decreasing function, then

n∑

j=1

pjΨ (δj) ≥
n∑

j=1

pjΨ (ζj) + c
n∑

j=1

pj
(
θ (δj) – θ (ζj)

)2. (2.25)

(b) If the n-tuple δ is increasing and Ψ is an increasing function, then

n∑

j=1

pjΨ (ζj) ≥
n∑

j=1

pjΨ (δj) + c
n∑

j=1

pj
(
θ (δj) – θ (ζj)

)2. (2.26)

Proof (a) Let θ (δj) = aj, θ (ζj) = bj,Ψ ◦θ–1(aj) = Ψ (aj), then by using (1.2), we have

k∑

j=1

pjΨ (aj) –
k∑

j=1

pjΨ (bj) + c
k∑

j=1

pj(aj – bj)2 ≥
k∑

j=1

pjΨ
′
+(bj)(aj – bj). (2.27)

Since Ψ is decreasing, by using (2.23) and (2.24) and the idea of Theorem 2.3, we have
∑k

j=1 pjΨ
′
+(bj)(aj – bj) ≤ 0. Therefore, from (2.27) we can obtain (2.25).

Similarly we can prove part (b). �

3 Results and discussion
In the article, we establish a monotonicity property for the function involving the strongly
convex function, prove the classical majorization theorem for majorized n-tuples by using
strongly convex functions, give some applications of majorization theorem, provide a gen-
eral inequality for a strongly convex function which gives the well-known inequalities such
as Jensen’s inequality and Slater’s inequality for strongly convex functions. Furthermore,
we also give some weighted versions of majorization theorem for certain n-tuples.

4 Conclusion
We find several majorization results for strongly convex functions and provide their ap-
plications. The given results improve the previous results. Our approach may have further
applications in the theory of majorization.
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