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Abstract
We describe a new two-step iterative method for solving the absolute value
equations Ax – |x| = b, which is an NP-hard problem. This method is globally
convergent under suitable assumptions. Numerical examples are given to
demonstrate the effectiveness of the method.
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1 Introduction
We consider a kind of important absolute value equations (AVEs):

Ax – |x| = b, (1)

where A ∈ Rn×n, b ∈ Rn, and | · | indicates absolute value. Another general form of the
AVEs (1):

Ax + B|x| = b, (2)

where B ∈ Rn×n was introduced and investigated in [1]. The unique solvability of AVEs (2)
was given in [2]. The algorithm which can compute all solutions of AVEs (2) (A, B square)
with several steps, was proposed in [3]. Using the relationship between the absolute value
equations and second order cone, a generalized Newton algorithm was introduced in [4]
for solving AVEs (2). When the matrix B is reversible, AVEs (2) can be converted into
AVEs (1), so some scholars have begun to study AVEs (1) instead of AVEs (2). AVEs (1)
was investigated in theoretical detail in [5], when the smallest singular value of A is not less
than 1, AVEs (1) is equivalent to the generalized LCP, the standard LCP and the bilinear
program, based on the LCP, Mangasarian introduced the sufficient conditions of the exis-
tence of unique solution, 2n solutions and nonnegative solutions and the nonexistence of
solutions. Rohn [6] proposed a new sufficient condition for unique solvability which is su-
perior to that presented by Mangasarian and Meyer in [5], conflating these two sufficient
conditions to a new one, and using it. An iterative method based on minimization tech-
nique for solving AVEs (1) was proposed in [7]; compared with the linear complementary
problem, this method is simple in structure and easy to implement. Iqbal et al. [8] showed
the Levenberg–Marquardt method which combines the advantages of both steepest de-
scent method and Gauss–Newton method for solving AVEs (1). When the AVEs (1) has
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multiple solutions, Hossein el at. [9] shown that the AVEs (1) is equivalent to a bilinear
programming problem, they solved AVEs (1) via the principle of simulated annealing, and
then found the minimum norm solution of the AVEs (1). The sparse solution of the AVEs
(1) with multiple solutions was found in [10] by an optimization problem. Yong proposed
a hybrid evolutionary algorithm which integrates biogeography and differential evolution
for solving AVEs (1) in [11]. Abdallah et al. [12] converted AVEs (1) into a horizontal lin-
ear complementarity problem, and solved it by a smoothing technique, meanwhile, this
paper can provide some error estimation for the solutions of AVEs (1). A modified gener-
alized Newton method was proposed in [13], this method has second order convergence
and the convergence conditions are better than existing methods, but only as regards lo-
cal convergence. Mangasarian proposed some new sufficient solvability and unsolvability
conditions for AVEs (1) in [14], and focused on theoretical research.

According to the advantages and disadvantages of the above algorithms, we will present
a two-step iterative method for effectively solving AVEs (1). Firstly, we present a new iter-
ative formula, which absorbs the advantages of both the classic Newton and the two-step
Traub iterative formulas, it has the characteristics of fast iteration and good convergence.
In addition, we incorporate the good idea of solving 1-dimensional nonlinear equations
to our iterative formula. Then a new algorithm for solving AVEs (1) is designed, we can
prove that this method can converge to the global optimal solution of AVEs (1). Finally,
numerical results and comparison with the classic Newton and two-step Traub iterative
formulas show that our method converges faster and the solution accuracy is higher.

This article is arranged as follows. Section 2 is the preliminary about AVEs (1). We give a
new two-step iterative method and prove the global convergence of the proposed method
in Sect. 3. In Sect. 4 we present the numerical experiments. Some concluding remarks to
end the paper in Sect. 5.

2 Preliminaries
We now describe our notations and some background materials. Let I and e be a unit
matrix and a unit vector, respectively. 〈x, y〉 denotes the inner product of vectors x and y
(x, y ∈ Rn). ‖x‖ is the two-norm (xT x) 1

2 , while |x| denotes the vector whose ith component
is |xi|. sign(x) also can be seen as a vector with components equal to –1, 0 or 1 depending
on whether the corresponding component of x is negative, zero or positive. In addition,
diag(sign(x)) is a diagonal matrix whose diagonal elements are sign(x). A generalized Ja-
cobian ∂|x| is given by the following diagonal matrix D(x) in [11, 15]:

D(x) = ∂|x| = diag
(
sign(x)

)
. (3)

We define a function f (x) as follows:

f (x) = Ax – |x| – b.

A generalized Jacobian of f (x) at x is

∂f (x) = A – D(x),

where D(x) is defined by Eq. (3).
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For solving AVEs (1), Mangasarian [16] presented a new Newton iteration formula
which is given by

xk+1 =
(
A – D

(
xk))–1b, k = 0, 1, 2, . . . . (4)

By calculating 100 randomly generated 1000-dimensional AVEs (1), Mangasarian
proved that this Newton iteration is an effective method, when the singular values of
A are not less than 1. The vector iterations {xk} linearly converge to the true solution of
AVEs (1),

Haghani [17] extended the well-known two-step Traub method and solved AVEs (1),
the iterative formula is given in Eq. (5):

yk =
(
A – D

(
xk))–1b,

xk+1 = yk –
(
A – D

(
xk))–1((A – D

(
yk))yk – b

)
, k = 0, 1, 2, . . . .

(5)

Although the computation time of the iterative formula (4) is greater than that of (5),
the experiment’s results obtained by the iterative formula (4) are better than that of (5).

Some iterative methods with higher order convergence and high precision for solving
nonlinear equations g(x) = 0, where g : D ⊂ R → R, are in [18], which give us some inspira-
tion and motivate us to extend those methods to the n-dimensional problem, especially the
high-dimensional absolute value equations. Combining with the above-mentioned meth-
ods, we designed the following effective methods.

3 Algorithm and convergence
In this section, we introduce a new two-step iterative method for solving AVEs (1), the
iterative formula is given as follows:

yk = xk +
(
A – D

(
xk))–1f

(
xk),

xk+1 = xk –
(
A – D

(
xk))–1(f

(
yk) – f

(
xk)), k = 0, 1, 2, . . . .

(6)

Based on the iterative formula (6), we design Algorithm 3.1 for solving AVEs (1).

Algorithm 3.1
Step 1. Randomly generated an initial vector xk ∈ Rn to AVEs (1), set k = 0.
Step 2. Compute xk+1 by (6).
Step 3. If ‖Axk+1 – |xk+1| – b‖ = 0, stop, otherwise go to Step 4.
Step 4. Set k := k + 1, go to Step 2.

Next, we prove the global convergence of Algorithm 3.1.

Lemma 3.1 The singular values of the matrix A ∈ Rn×n exceed 1 if and only if the minimum
eigenvalue of A′A exceeds 1.

Proof See [5]. �

Lemma 3.2 If all the singular values of A ∈ Rn×n exceed 1 for the method (6), then, for any
diagonal matrix D, whose diagonal elements Dii = +1, 0, –1, i = 1, 2, . . . , n. (A – D)–1 exists.
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Proof If (A – D) is singular, then (A – D)x = 0, for some x 	= 0. Now, according to this and
Lemma 3.1, we have the following contradiction:

x′x < x′A′Ax = (Ax)′Ax = (Dx)′Dx = x′D′Dx ≤ x′x. (7)

Hence, (A – D) is nonsingular, and the sequence {xk} produced by (6) is well defined for
any initial vector x0 ∈ Rn. This proof is similar to [16]. �

Lemma 3.3 (Lipschitz continuity of the absolute value) Let the vectors x, y ∈ Rn, then

∥
∥|x| – |y|∥∥ ≤ 2‖x – y‖. (8)

Proof The proof follows the lines of [16].
Let dk

1 = (A – D(xk))–1f (xk), dk
2 = –(A – D(xk))–1(f (yk) – f (xk)), then the new two-step

iteration (6) can be written in a simple form:

yk = xk + dk
1,

xk+1 = xk + dk
2, k = 0, 1, 2, . . . .

(9)
�

Lemma 3.4 If the singular values of symmetric matrix A ∈ Rn×n exceed 1, then the direc-
tion dk

2 of (9) is a descent direction for the objective function F(x), where F(x) = 1
2‖f (x)‖2.

Proof Since f (x) = Ax – |x| – b, f ′(x) = ∂f (x) = A – D(x), (A – D(x))–1 exists for any diagonal
matrix D, whose diagonal elements Dii = +1, 0, –1, i = 1, 2, . . . , n, and (f ′(x))T = f ′(x), F(x) =
1
2‖f (x)‖2, F ′(x) = f ′(x)f (x).

So, for ∀k ∈ Z,

〈
F ′(xk), dk

1
〉

=
〈
f ′(xk)f

(
xk),

(
A – D

(
xk))–1f

(
xk)〉

=
〈
f ′(xk)f

(
xk),

(
f ′(xk))–1f

(
xk)〉

=
(
f
(
xk))T(

f ′(xk))T(
f ′(xk))–1f

(
xk)

= f
(
xk))T f

(
xk)

> 0. (10)

Thus, dk
1 is not a descent direction of F(x), we have ‖f (yk)‖ > ‖f (xk)‖.

Also,

〈
F ′(xk), dk

2
〉

=
〈
f ′(xk)f

(
xk), –

(
A – D

(
xk))–1(f

(
yk) – f

(
xk))〉

=
〈
f ′(xk)f

(
xk), –

(
f ′(xk))–1(f

(
yk) – f

(
xk))〉

= –
(
f
(
xk))T(

f ′(xk))T(
f ′(xk))–1(f

(
yk) – f

(
xk))

= –
(
f
(
xk))T(

f
(
yk) – f

(
xk))

= –
(
f
(
xk))T f

(
yk) +

(
f
(
xk))T f

(
xk)

< 0, (11)
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where the last inequality holds according to ‖f (yk)‖ > ‖f (xk)‖, k = 0, 1, 2, . . . . Hence dk
2 is a

descent direction of F(x), then ‖f (xk)‖ → 0, as k → ∞. �

Theorem 3.1 (Global convergence) If the norm of the symmetric matrix A exists, then
the norm of A – D is existent for any diagonal matrix D whose diagonal elements are ±1
or o. Consequently, the sequence {xk} is a Cauchy series, thus {xk} converges to the unique
solution x̄ of AVEs (1).

Proof For ∀k ∈ Z, f (xk) = Axk – |xk| – b, f (yk) = Ayk – |yk| – b.
So

∥∥xk+1 – xk∥∥ =
∥∥(

A – D
(
xk))–1(f

(
xk) – f

(
yk))∥∥,

=
∥
∥(

A – D
(
xk))–1(A

(
xk – yk) –

(∣∣xk∣∣ –
∣
∣yk∣∣))

∥
∥,

≤ ∥
∥(

A – D
(
xk))–1∥∥(‖A‖∥∥xk – yk∥∥ +

∥
∥
∣
∣xk∣∣ –

∣
∣yk∣∣

∥
∥)

,

≤ ∥
∥(

A – D
(
xk))–1∥∥(‖A‖∥∥xk – yk∥∥ + 2

∥
∥xk – yk∥∥)

,

=
∥
∥(

A – D
(
xk))–1∥∥(‖A‖ + 2

)∥∥xk – yk∥∥,

=
∥
∥(

A – D
(
xk))–1∥∥(‖A‖ + 2

)∥∥–
(
A – D

(
xk))–1f

(
xk)∥∥,

≤ ∥∥(
A – D

(
xk))–1∥∥2(‖A‖ + 2

)∥∥f
(
xk)∥∥. (12)

Then, for ∀m ∈ Z,

∥∥xk+m – xk∥∥ =
∥∥xk+m – xk+m–1 + xk+m–1 – xk+m–2 + · · · + xk+1 – xk∥∥,

≤ ∥
∥xk+m – xk+m–1∥∥ +

∥
∥xk+m+1 – xk+m–2∥∥ + · · · +

∥
∥xk+1 – xk∥∥,

≤ (‖A‖ + 2
){∥∥(

A – D
(
xk+m–1)–1)∥∥2∥∥f

(
xk+m–1)∥∥ +

∥
∥(

A – D
(
xk+m–2)–1)∥∥2

× ∥∥f
(
xk+m–2)∥∥ + · · · +

∥∥(
A – D

(
xk)–1)∥∥2∥∥f

(
xk)∥∥}

.

So, ‖f (xk)‖ → 0, as k → ∞, we get ‖xk+m – xk‖ → 0, as k → ∞. Consequently, {xk} is a
Cauchy series, and it converges to the unique solution of AVEs (1). �

4 Numerical results
In this section we consider some examples to illustrate the feasibility and effectiveness of
Algorithm 3.1. All the experiments are performed by Matlab R2010a. We compare the pro-
posed method (TSI) with the generalized Newton method (4) (GNM) and the generalized
Traub method (5) (GTM).

Example 1 Let A = (aij)n×n, each element in A is given as follows:

aii = 4n, ai,i+1 = ai+1,i, aij = 0.5 (i = 1, 2, . . . , n).

Let b = (A – I)e, the minimum singular value of each A exceeds 1.
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Example 2 We choose a random matrix A from a uniform distribution on [–10, 10] and a
random vector x from a uniform distribution on [–2, 2]. All the information are generated
by the following MATLAB procedure:

A = –10 + rand(n, n) ∗ 20; x = –2 + rand(n, 1) ∗ 4; b = A ∗ x – abs(x).

In order to guarantee that the minimum singular value of A is greater than 1, we first
calculate the minimum singular value: σmin(A), then adjust A by σmin(A) multiplied by a
random number γ ∈ [1, 2].

Algorithm 3.1 is used to solve Example 1 and 2; Tables 1 and 2 record the experiment
results.

In Tables 1 and 2, Dim, K, ACC and T denote the dimension of the problem, the number
of iterations, ‖Axk – |xk| – b‖2 and time(s), respectively. It is clear from Tables 1 and 2 that
the new two-step iterative method is very effective in solving absolute value equations,
especially the high dimension problem.

Figures 1 and 2 show the convergence curves of three algorithms for solving Examples 1
and 2. For Example 1, We find that the convergence of the TSI is the best among three
methods, obviously. For Example 2, the convergence of the TSI is litter better than GTM,
they are both better than GNM. So Algorithm 3.1 is superior in convergence and the qual-
ity of solution for solving AVEs (1).

Table 1 The comparison of GNM, GTM and TSI in Example 1

Dim GNM GTM TSI

K ACC T K ACC T K ACC T

100 3 6.6601× 10–12 0.0036 3 7.3677× 10–13 0.0069 3 4.4030× 10–13 0.0122
200 3 1.0395× 10–10 0.0145 3 2.2623× 10–12 0.0121 3 1.0761× 10–12 0.0313
300 3 2.9896× 10–10 0.0432 3 2.8670× 10–12 0.0611 3 1.2862× 10–12 0.0943
400 3 6.1301× 10–10 0.8682 3 5.8058× 10–12 0.0075 3 1.4559× 10–12 0.1137
500 3 1.3574× 10–10 0.1498 3 6.1348× 10–12 0.1355 3 1.6708× 10–12 0.1850
600 3 4.3000× 10–9 0.2231 3 7.8633× 10–12 0.2702 3 3.6379× 10–12 0.2897
700 3 1.2489× 10–9 0.5052 3 7.8369× 10–12 0.2932 3 4.2171× 10–12 0.4356
800 3 3.9699× 10–9 0.8166 4 1.6596× 10–11 0.4496 3 4.3618× 10–12 0.6221
900 3 5.7449× 10–9 1.1213 4 1.7759× 10–11 0.7850 3 4.5474× 10–12 0.8392
1000 3 6.5951× 10–9 1.5295 4 1.7845× 10–11 0.9808 3 5.4310× 10–12 1.0813

Table 2 The comparison of GNM, GTM and TSI in Example 2

Dim GNM GTM TSI

K ACC T K ACC T K ACC T

100 3 5.8699× 10–12 0.0052 3 3.0920× 10–13 0.0080 3 3.0515× 10–13 0.0064
200 3 8.7417× 10–11 0.0171 3 8.5750× 10–13 0.0175 3 8.3127× 10–13 0.0204
300 3 2.0700× 10–10 0.0508 3 1.5518× 10–12 0.0578 3 1.6336× 10–12 0.0467
400 3 4.2251× 10–10 0.1011 3 2.5566× 10–12 0.1143 3 2.5549× 10–12 0.1314
500 4 5.2788× 10–10 0.1959 4 3.5830× 10–12 0.2092 4 3.5426× 10–12 0.2462
600 4 3.0194× 10–10 0.3553 4 4.7330× 10–12 0.3736 4 4.7270× 10–12 0.5042
700 4 7.0378× 10–10 0.5615 4 6.0018× 10–12 0.5323 4 5.8574× 10–12 0.7583
800 4 1.0602× 10–10 0.8279 5 7.6437× 10–12 0.8035 5 6.7769× 10–12 0.8134
900 5 2.8031× 10–9 1.6159 5 8.8566× 10–12 1.4304 5 8.4667× 10–12 1.4072
1000 5 3.5603× 10–9 2.3006 5 1.0776× 10–11 1.9268 5 9.9720× 10–12 1.8344
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Figure 1 Comparison of GNM, GTM and TSI for Example 1 with n = 1000

Figure 2 Comparison of GNM, GTM and TSI for Example 2 with n = 1000

5 Conclusions
In this paper, we propose a new two-step iterative method for solving non-differentiable
and NP-hard absolute value equations Ax – |x| = b, when the minimum singular value of A
is greater than 1. Compared with the existing methods GNM and GTM, our new method
has some nice convergence properties and better calculation consequences. In the future,
we have the confidence to continue an in-depth study.

Acknowledgements
The authors are very grateful to the editors and referees for their constructive advice.

Funding
The research are supported by the National Natural Science Foundation of China (Grant No. 61877046); the second batch
of young outstanding talents support plan of Shaanxi universities.



Feng and Liu Journal of Inequalities and Applications         (2019) 2019:39 Page 8 of 8

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript, and they read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 September 2018 Accepted: 15 January 2019

References
1. Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient

conditions for unique solvability. Optim. Lett. 8(1), 35–44 (2014)
2. Rohn, J.: On unique solvability of the absolute value equation. Optim. Lett. 3(4), 603–606 (2009)
3. Rohn, J.: An algorithm for computing all solutions of an absolute value equation. Optim. Lett. 6(5), 851–856 (2012)
4. Hu, S.L., Huang, Z.H., Zhang, Q.: A generalized Newton method for absolute value equations associated with second

order cones. J. Comput. Appl. Math. 235(5), 1490–1501 (2011)
5. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419(2), 359–367 (2006)
6. Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient

conditions for unique solvability. Optim. Lett. 8(1), 35–44 (2014)
7. Noor, M.A., Iqbal, J., Noor, K.I., et al.: On an iterative method for solving absolute value equations. Optim. Lett. 6(5),

1027–1033 (2012)
8. Iqbal, J., Iqbal, A., Arif, M.: Levenberg–Marquardt method for solving systems of absolute value equations. J. Comput.

Appl. Math. 282(10), 134–138 (2015)
9. Moosaei, H., Ketabchi, S., Jafari, H.: Minimum norm solution of the absolute value equations via simulated annealing

algorithm. Afr. Math. 26(7–8), 1221–1228 (2015)
10. Zhang, M., Huang, Z.H., Li, Y.F.: The sparsest solution to the system of absolute value equations. J. Oper. Res. Soc. China

3(1), 31–51 (2015)
11. Yong, L.Q.: Hybrid differential evolution with biogeography-based optimization for absolute value equation. J. Inf.

Comput. Sci. 10(8), 2417–2428 (2013)
12. Abdallah, L., Haddou, M., Migot, T.: Solving absolute value equation using complementarity and smoothing

functions. J. Comput. Appl. Math. 327(1), 196–207 (2018)
13. Zainali, N., Lotfi, T.: On developing a stable and quadratic convergent method for solving absolute value equation.

J. Comput. Appl. Math. 330(4), 742–747 (2018)
14. Mangasarian, O.L.: Sufficient conditions for the unsolvability and solvability of the absolute value equation. Optim.

Lett. 11(7), 1–7 (2017)
15. Polyak, B.T.: Introduction to Optimization. Optimization Software Inc., New York (1987)
16. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)
17. Haghani, F.K.: On generalized Traub’s method for absolute value equations. J. Optim. Theory Appl. 166(2), 619–625

(2015)
18. Singh, S., Gupta, D.K.: Iterative methods of higher order for nonlinear equations. Vietnam J. Math. 44(2), 387–398

(2016)


	A new two-step iterative method for solving absolute value equations
	Abstract
	Keywords

	Introduction
	Preliminaries
	Algorithm and convergence
	Numerical results
	Conclusions
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Publisher's Note
	References


