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Abstract
We study the minimum Skorohod distance estimation θ ∗

ε and minimum L1-norm
estimation ˜θε of the drift parameter θ of a stochastic differential equation
dXt = θXt dt + ε dLdt , X0 = x0, where {Ldt , 0≤ t ≤ T} is a fractional Lévy process, ε ∈ (0, 1].
We obtain their consistency and limit distribution for fixed T, when ε → 0. Moreover,
we also study the asymptotic laws of their limit distributions for T → ∞.

MSC: 60G18; 65C30; 93E24

Keywords: Fractional Lévy process; Minimum Skorohod distance estimation;
Minimum L1-norm estimation; Consistency; Limit distribution; Asymptotic law

1 Introduction
Statistical inference for stochastic equations is a main research direction in probability
theory and its applications. The asymptotic theory of parametric estimation for diffusion
processes with small noise is well developed. Genon-Catalot [8] and Laredo [17] consid-
ered the efficient estimation for drift parameters of small diffusions from discrete observa-
tions as ε → 0 and n → ∞. Using martingale estimating function, Sørensen [27] obtained
consistency and asymptotic normality of the estimators of drift and diffusion coefficient
parameters as ε → 0 and n is fixed. Using a contrast function under suitable conditions on
ε and n, Sørensen and Uchida [28] and Gloter and Sørensen [9] considered the efficient
estimation for unknown parameters in both drift and diffusion coefficient functions. Long
[20], Ma [21] studied parameter estimation for Ornstein–Uhlenbeck processes driven by
small Lévy noises for discrete observations when ε → 0 and n → ∞ simultaneously. Shen
and Yu [26] obtained consistency and the asymptotic distribution of the estimator for
Ornstein–Uhlenbeck processes with small fractional Lévy noises.

Recently, Diop and Yode [4] obtained the minimum Skorohod distance estimate for the
parameter θ of a stochastic differential equation with a centered Lévy processes {Zt , 0 ≤
t ≤ T}, ε ∈ (0, 1],

dXt = θXt dt + ε dZt , X0 = x0.

When {Zt , 0 ≤ t ≤ T} is a Brownian motion, Millar [24] obtained the asymptotic behavior
of the estimator of the parameter θ . The minimum uniform metric estimate of parameters
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of diffusion-type processes was considered in Kutoyants and Pilibossian [14, 15]. Hénaff
[10] considered the asymptotics of a minimum distance estimator of the parameter of the
Ornstein–Uhlenbeck process. Prakasa Rao [25] studied the minimum L1-norm estimates
of the drift parameter of Ornstein–Uhlenbeck process driven by fractional Brownian mo-
tion and investigated the asymptotic properties following Kutoyants and Pilibossian [14,
15]. Some surveys on the parameter estimates of fractional Ornstein–Uhlenbeck process
can be found in Hu and Nualart [11], El Onsy, Es-Sebaiy and Ndiaye [5], Xiao, Zhang and
Xu [29], Jiang and Dong [12], Liu and Song [19].

Motivated by the above results, in this paper we consider the minimum Skorohod dis-
tance estimation θ∗

ε and minimum L1-norm estimation ˜θε of the drift parameter θ for
Ornstein–Uhlenbeck processes driven by the fractional Lévy process {Ld

t , 0 ≤ t ≤ T}
which satisfies the following stochastic differential equation:

dXt = θXt dt + ε dLd
t , X0 = x0, (1)

where the shift parameter θ ∈ Θ = (θ1, θ2) ⊆ R is unknown, ε ∈ (0, 1]. Denote by θ0 the true
value of the unknown parameter θ . Note that

Xt(θ ) = xt(θ ) + εeθ t
∫ t

0
e–θs dLd

s ,

where xt(θ ) = x0eθ t is a solution of (1) with ε = 0.
Recall that fractional Lévy processes is a natural generalization of the integral represen-

tation of fractional Brownian motion. Analogously to Mandelbrot and Van Ness [22] for
fractional Brownian motion we introduce the following definition.

Definition 1.1 (Marquardt [23]) Let L = (L(t), t ∈ R) be a zero-mean two-sided Lévy pro-
cess with E[L(1)2] < ∞ and without a Brownian component. For d ∈ (0, 1

2 ), a stochastic
process

Ld
t :=

1
Γ (d + 1)

∫ ∞

–∞

[

(t – s)d
+ – (–s)d

+
]

L(ds), t ∈ R, (2)

is called a fractional Lévy process (fLp), where

L(t) = L1(t), t ≥ 0, L(t) = –L2(–t–), t < 0. (3)

{L1(t), t ≥ 0} and {L2(t), t ≥ 0} are two independent copies of a one-side Lévy process.

Lemma 1.1 (Marquardt [23]) Let g ∈ H , H is the completion of L1(R) ∩ L2(R) with respect
to the norm ‖g‖2

H = E[L(1)2]
∫

R(Id
–g)2(u) du, then

∫

R
g(s) dLd

s =
∫

R

(

Id
–g

)

(u) dL(u), (4)

where the equality holds in the L2 sense and Id
–g denotes the Riemann–Liouville fractional

integral defined by

(

Id
–g

)

(x) =
1

Γ (d)

∫ ∞

x
g(t)(t – x)d–1 dt.
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Lemma 1.2 (Marquardt [23]) Let |f |, |g| ∈ H . Then

E
[∫

R
f (s) dLd

s

∫

R
g(s) dLd

s

]

=
Γ (1 – 2d)E[L(1)2]

Γ (d)Γ (1 – d)

∫

R

∫

R
f (t)g(s)|t – s|2d–1 ds dt. (5)

Lemma 1.3 (Bender et al. [2]) Let Ld
t be a fLp. Then for every p ≥ 2 and δ > 0 such that

d + δ < 1
2 there exists a constant Cp,δ,d independent of the driving Lévy process L such that

for every T ≥ 1

E
(

sup
0≤t≤T

∣

∣Ld
t
∣

∣

p
)

≤ Cp,δ,dE
(∣

∣L(1)
∣

∣

p)Tp(d+1/2+δ).

For the study of fLp see Bender et al. [3], Fink and Klüppelberg [7], Lin and Cheng [18],
Benassi et al. [1], Lacaux [16], Engelke [6] and the references therein.

The rest of this paper is organized as follows. In Sect. 2, we consider the minimum Skoro-
hod distance estimation θ∗

ε of the drift parameter θ , its consistency and limit distribution
are studied for fixed T, when ε → 0. Moreover, the asymptotic law of its limit distribution
are also studied for T → ∞. The similar problems for minimum L1-norm estimation ˜θε

of the drift parameter θ were studied in Sect. 3.

2 Minimum Skorohod distance estimation
In this section, we consider the minimum Skorohod distance estimation which defined by

θ∗
ε = arg min

θ∈Θ
ρ
(

X, x(θ )
)

, (6)

where

ρ(x, y) = inf
μ∈Λ([0,T])

(

H(μ) + sup
∣

∣x
(

μ(t)
)

– y(t)
∣

∣

)

(7)

on the Skorohod space D([0, T], R) consists of càdlàg functions on [0, T], Λ([0, T]) is the
set of functions μ defined on [0, T] with values in [0, T], continuous, strictly increasing
such that μ(0) = 0 and μ(T) = T , and

H(μ) = sup
s,t∈[0,T],s �=t

∣

∣

∣

∣

log

(

μ(s) – μ(t)
s – t

)∣

∣

∣

∣

< ∞.

Let

ηT = arg min
u∈R

ρ
(

Y (θ0), uẋ(θ0)
)

, (8)

where ẋ(θ0) = x0teθ0t is the derivative of xt(θ0) with respect to θ0 and

Yt(θ0) = eθ0t
∫ t

0
eθ0s dLd

s . (9)

Let

f (κ) = inf|θ–θ0|>κ

∣

∣Xt – x(θ0)
∣

∣∞ = inf|θ–θ0|>κ
sup

0≤t≤T

∣

∣Xt – x(θ0)
∣

∣, κ > 0 (10)

and P(ε)
θ0

denotes the probability measure induced by the process Xt for fixed ε.
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Theorem 2.1 (Consistency) For every p ≥ 2 and κ > 0 such that, for every T ≥ 1, we have

P(ε)
θ0

(∣

∣θ∗
ε – θ0

∣

∣ > κ
) ≤ Cp,κ ,dE

(∣

∣L(1)
∣

∣

p)Tp(d+1/2+κ)
(

2εe|θ0|T

f (κ)

)p

= O
((

f (κ)
)–p

εp), (11)

where constant Cp,κ ,d is only dependent on p, κ , d.

Proof Fixed κ > 0 and let

I0 =
{

ω : inf|θ–θ0|<κ
ρ
(

X, x(θ )
)

> inf|θ–θ0|>κ
ρ
(

X, x(θ )
)

}

.

Then we can obtain I0 = {|θ∗
ε – θ0| > κ}. In fact, for ω ∈ I0, we have

inf|θ–θ0|<κ
ρ
(

X(ω), x(θ )
) ≥ inf

θ∈Θ
ρ
(

X(ω), x(θ )
)

= ρ
(

X(ω), x
(

θ∗
ε

))

,

thus, |θ∗
ε (ω) – θ0| > κ . On the other hand, assume that |θ∗

ε (ω) – θ0| > κ ,

ρ
(

X(ω), x
(

θ∗
ε

))

= inf|θ–θ0|>κ
ρ
(

X(ω), x(θ )
)

< inf|θ–θ0|<κ
ρ
(

X(ω), x(θ )
)

.

For any κ > 0, we have

P(ε)
θ0

(I0) = P(ε)
θ0

(

inf|θ–θ0|<κ
ρ
(

X, x(θ )
)

> inf|θ–θ0|>κ
ρ
(

X, x(θ )
)

)

≤ P(ε)
θ0

(

inf|θ–θ0|<κ
ρ
(

X, x(θ )
)

> inf|θ–θ0|>κ

∣

∣ρ
(

X, x(θ )
)

– ρ
(

x(θ0), x(θ )
)∣

∣

)

≤ P(ε)
θ0

(

inf|θ–θ0|<κ
ρ
(

X, x(θ )
)

> inf|θ–θ0|>κ
ρ
(

x(θ0), x(θ )
)

– ρ
(

X, x(θ0)
)

)

≤ P(ε)
θ0

(

inf|θ–θ0|<κ
ρ
(

x(θ ), x(θ0)
)

+ 2ρ
(

X, x(θ0)
)

> inf|θ–θ0|>κ
ρ
(

x(θ0), x(θ )
)

)

≤ P(ε)
θ0

(

∥

∥X – x(θ0)
∥

∥∞ >
f (κ)

2

)

.

Besides, since the process Xt satisfies the stochastic differential Eqs. (1), it follows that

Xt – xt(θ0) = x0 + θ0

∫ t

0
Xs ds + εLd

t – xt(θ0) = θ0

∫ t

0

(

Xs – xs(θ0)
)

ds + εLd
t . (12)

Then

∣

∣Xt – xt(θ0)
∣

∣ =
∣

∣

∣

∣

θ0

∫ t

0

(

Xs – xs(θ0)
)

ds + εLd
t

∣

∣

∣

∣

≤ |θ0|
∫ t

0

∣

∣Xs – xs(θ0)
∣

∣ds + ε
∣

∣Ld
t
∣

∣. (13)

Hence, we have

∥

∥X – x(θ0)
∥

∥∞ = sup
0≤t≤T

∣

∣Xt – xt(θ0)
∣

∣ ≤ εe|θ0T | sup
0≤t≤T

∣

∣Ld
t
∣

∣ (14)

because of the Gronwall–Bellman lemma. Thus,

P(ε)
θ0

(

∥

∥X – x(θ0)
∥

∥∞ >
f (κ)

2

)

≤ P
(

sup
0≤t≤T

∣

∣Ld
t
∣

∣ ≥ f (κ)
2εe|θ0T |

)

. (15)
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According to Lemma 1.3 and Chebyshev’s inequality, for all p ≥ 2, we get

P(ε)
θ0

(∣

∣θ∗
ε – θ0

∣

∣ > κ
) ≤ E

(

sup
0≤t≤T

∣

∣Ld
t
∣

∣

)p
(

2εe|θ0T |

f (κ)

)p

≤ Cp,κ ,dE
(∣

∣L(1)
∣

∣

p)Tp(d+1/2+κ)2pe|θ0T |p(f (κ)
)–p

εp

= O
((

f (κ)
)–p

εp). (16)

This completes the proof. �

Remark 2.1 As a consequence of the above theorem, we obtain the result that θ∗
ε converges

in probability to θ0 under P(ε)
θ0

-measure as ε → 0. Furthermore, the rate of convergence is
of order O(εp) for every p ≥ 2.

Theorem 2.2 (Limit distribution) For any h ∈ D([0, T], R) satisfying h(0) = 0, φα
h = ρ(h, u ·

a), a(t) = teαt , α ∈ R, u ∈ R admits a unique minimum at u. Then we have, as ε → 0,
ε–1(θ∗

ε – θ0) d→ ζT , where the notation “ d→” denotes “convergence in distribution”.

Remark 2.2 φα
h is a convex function and φα

h → +∞ when |u| → +∞, so φα
h admits a min-

imum.

The following lemma due to Diop and Yode [4] which is vital for our proof of Theo-
rem 2.2.

Lemma 2.1 Let {Kε}ε>0 be a sequence of continuous functions on R and K0 be a convex
function which admits a unique minimum η on R. Let {Lε}ε>0 be a sequence of positive
numbers such that Lε → +∞ as ε → 0. We suppose that

lim
ε→0

sup
|u|≤Lε

∣

∣Kε(u) – K0(u)
∣

∣ = 0.

Then

lim
ε→0

arg min|u|≤Lε

Kε(u) = η,

where if there are several minima of Kε , we choose one of them arbitrarily.

Proof of Theorem 2.2 We introduce the following notations:

Kε(u) = ρ

(

Y ,
1
ε

(

x(θ0 + εu) – x(θ0)
)

)

,

K0(u) = ρ
(

Y , uẋ(θ0)
)

.

Since

∣

∣Kε(u) – K0(u)
∣

∣ =
∣

∣

∣

∣

inf
μ∈Λ([0,T])

(

H(μ) +
∥

∥

∥

∥

Yμ –
1
ε

(

x(θ0 + εu) – x(θ0)
)

∥

∥

∥

∥∞

)

– inf
μ∈Λ([0,T])

(

H(μ) +
∥

∥Yμ – uẋ(θ0)
∥

∥∞
)

∣

∣

∣

∣
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=
∣

∣

∣

∣

inf
μ∈Λ([0,T])

(

H(μ) +
∥

∥

∥

∥

Yμ – uẋ(θ0) –
1
2
εu2ẍ(˜θ )

)∥

∥

∥

∥∞
)

– inf
μ∈Λ([0,T])

(

H(μ) +
∥

∥Yμ – uẋ(θ0)
∥

∥∞
)

∣

∣

∣

∣

with ˜θ = ˜θε,u,t ∈ (θ0, θ0 + εu), where the second equality is because of the Taylor expansion.
If we take Lε = εδ–1 with δ ∈ (1/2, 1), we get

sup
|u|≤Lε

∣

∣Kε(u) – K0(u)
∣

∣ =
∣

∣

∣

∣

inf
μ∈Λ([0,T])

(

H(μ) +
∥

∥

∥

∥

Yμ – uẋ(θ0) –
1
2
εu2ẍ(˜θ )

∥

∥

∥

∥∞

)

– inf
μ∈Λ([0,T])

(

H(μ) +
∥

∥Yμ – uẋ(θ0)
∥

∥∞
)

∣

∣

∣

∣

≤ sup
|u|≤Lε

[

1
2
εu2 sup

0≤t≤T
ẍ(˜θ )

]

≤ εL2
ε

2
|x0|T2e(|θ0|+εLε )T

=
ε2δ–1

2
|x0|T2e(|θ0|+εLε)T → 0 (ε → 0).

Therefore, we get the desired results by Lemma 2.1. �

In the following, we will consider the limiting behavior of ηT for T → +∞. Let us intro-
duce the following notations:

At =
∫ +∞

t
e–θ0s dLd

s ,

Bt =
∫ t

0
e–θ0s dLd

s .

From Theorem 3.6.6 of Jurek and Mason [13] and Lemma 4 of Diop and Yode [4], we
can get the logarithmic moment condition is necessary and sufficient for the existence of
the improper integral A0.

Lemma 2.2 Suppose that E(log(1 + |L1|)) < +∞. Then

At
d= e–θ0sA0 (17)

where “ d=” denotes “identical distribution”.

Proof It is not hard to see,

At =
∫ +∞

t
e–θ0s dLd

s =
∫ +∞

t

(

Id
–e–θ0u)(s) dL(s)

=
∫ +∞

t

(

1
Γ (d)

∫ ∞

s
e–θ0u(u – s)d–1 du

)

dL(s)

=
∫ +∞

t

(

1
Γ (d)

∫ ∞

0
e–θ0(s+x)xd–1 dx

)

dL(s)

=
∫ +∞

t

(

1
Γ (d)

e–θ0sθ–d
0

∫ ∞

s
e–θ0x(θ0x)d–1d(θ0x)

)

dL(s)

= θ–d
0

∫ +∞

t
e–θ0s dL(s).
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In a similar way,

A0 = θ–d
0

∫ +∞

0
e–θ0s dL(s).

From Lemma 4 of Diop and Yode [4], we have immediately

At
d= e–θ0sA0. �

The next theorem gives the asymptotic behavior of the limit distribution ηT for large T .

Theorem 2.3 Suppose that θ0 > 0 and E(log(1 + |L1|)) < +∞. Then ξT = x0TηT converges
in distribution to A0 as T → +∞.

Proof Recall that

ηT = arg min
u∈R

ρ
(

Y (θ0), uẋ(θ0)
)

.

By changing variable, we have

ξT = arg min
ω∈R

ρ
(

Y (θ0), Mt(ω)
)

:= arg min
ω∈R

N(ω), (18)

where Mt(ω) = ωteθ0t

T and N(·) = ρ(Y (θ0), M(·)).
We want to show that, for every � > 0,

lim
T→+∞ Pθ0

{|ξT – A0| > �
}

= 0. (19)

Therefore, let us consider the set

V� =
{

ω : |ω – A0| > �
}

,

where Pθ0 is the probability measure induced by the process Xt when θ0 is the true param-
eter and ε → 0. We can get

N(A0) = ρ
(

Y (θ0), M(A0)
) ≤ ∥

∥Y (θ0) – M(A0)
∥

∥∞

=
∥

∥

∥

∥

eθ0t
(∫ t

0
e–θ0s dLd

s –
A0t
T

– A0 + A0

)∥

∥

∥

∥∞

=
∥

∥

∥

∥

eθ0t
(∫ t

0
e–θ0s dLd

s – A0 +
(

1 –
t
T

)

A0

)∥

∥

∥

∥∞

=
∥

∥

∥

∥

eθ0t
(∫ t

0
e–θ0s dLd

s – A0

)∥

∥

∥

∥∞
+ |A0t|

∥

∥

∥

∥

(

1 –
t
T

)

eθ0t
∥

∥

∥

∥∞
.

On the other hand, for ω ∈ V�, we have

N(ω) = ρ
(

Y (θ0), M(ω)
)

≥ ρ
(

M(A0), M(ω)
)

– ρ
(

Y (θ0), M(A0)
)
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=
∥

∥M(ω) – M(A0)
∥

∥∞ – N(A0)

= |ω – A0|
∥

∥

∥

∥

teθ0t

T

∥

∥

∥

∥∞
– N(A0)

≥ �

∥

∥

∥

∥

teθ0t

T

∥

∥

∥

∥∞
– N(A0).

Hence, we have

N(ω)
N(A0)

≥ �‖ teθ0t

T ‖∞
N(A0)

– 1,

infω∈V�
N(ω)

N(A0)
≥ �

[T‖eθ0t(
∫ t

0 e–θ0s dLd
s – A0)‖∞

‖teθ0t‖∞
+

|A0|‖(T – t)eθ0t‖∞
‖teθ0t‖∞

]–1

– 1

= �

[

T‖eθ0t(Bt – A0)‖∞
‖teθ0t‖∞

+
|R0|‖(T – t)eθ0t‖∞

‖teθ0t‖∞

]–1

– 1

=
[

e–θ0T∥

∥eθ0tAt
∥

∥∞ +
|A0|
Tθ0e

]–1

– 1,

where we get the maximum value of the function (T – t)eθ0t by taking the derivative.
We obtain

|A0|
Tθ0e

→ 0 a.s. as T → +∞. (20)

Using Lemma 2.2 we have

Pθ0

(

e–θ0T∥

∥eθ0tAt
∥

∥∞ > �
)

= Pθ0

(|A0| > eθ0T�
) ≤ e–θ0T Eθ0 (|A0|)

�
→ 0, T → +∞. (21)

By (20) and (21), we obtain

infω∈V�
N(ω)

N(A0)
P−→ +∞, T → +∞. (22)

In addition, using (18), ξT ∈ V�, we have

N(ξT ) = inf
ω∈V�

N(ω) ≤ N(A0). (23)

We can get the desired result (19) by Eqs. (22) and (23). �

3 Minimum L1-norm estimation
In this section, we will study the minimum L1-norm estimation ˜θε of the drift parameter θ .
Let

DT (θ ) =
∫ T

0

∣

∣Xt – xt(θ )
∣

∣dt. (24)

It is well known that ˜θε is the minimum L1-norm estimator if there exists a measurable
selection ˜θε such that

DT (˜θε) = inf
θ∈Θ

DT (θ ). (25)
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Suppose that there exists a measurable selection ˜θε satisfying the above equation. We can
also define the estimator ˜θε by the relation

˜θε = arg inf
θ∈Θ

∫ T

0

∣

∣Xt – xt(θ )
∣

∣dt. (26)

For any κ > 0, we define

˜f (κ) = inf|θ–θ0|>κ

∫ T

0

∣

∣Xt(θ ) – xt(θ0)
∣

∣dt > 0, for any κ > 0. (27)

Theorem 3.1 (Consistency) For any p ≥ 2, there exists a constant Cp,κ ,d (only depending
the p, κ , d), such that, for every κ > 0, we have

P(ε)
θ0

(|˜θε – θ0| > κ
) ≤ Cp,κ ,dE

(∣

∣L(1)
∣

∣

p)Tp(d+1/2+κ)
(

2εe|θ0|T

f (κ)

)p

= O
((

˜f (κ)
)–p

εp). (28)

Proof Set ‖ · ‖ denotes the L1-norm, then we have

P(ε)
θ0

(|˜θε – θ0| > κ
)

= P(ε)
θ0

{

inf|θ–θ0|≤κ

∥

∥X – x(θ )
∥

∥ > inf|θ–θ0|>κ

∥

∥X – x(θ )
∥

∥

}

≤ P(ε)
θ0

{

inf|θ–θ0|≤κ

(∥

∥X – x(θ0)
∥

∥ +
∥

∥x(θ ) – x(θ0)
∥

∥

)

> inf|θ–θ0|>κ

(∥

∥x(θ ) – x(θ0)
∥

∥ –
∥

∥X – x(θ0)
∥

∥

)

}

= P(ε)
θ0

{

2
∥

∥X – x(θ )
∥

∥ > inf|θ–θ0|>κ

∥

∥x(θ ) – x(θ0)
∥

∥

}

= P(ε)
θ0

{

∥

∥X – x(θ )
∥

∥ >
1
2
˜f (κ)

}

.

Since the process Xt satisfies the stochastic differential equation (1), it follows that

Xt – xt(θ0) = x0 + θ0

∫ t

0
Xs ds + εLd

t – xt(θ0) = θ0

∫ t

0

(

Xs – xs(θ0)
)

ds + εLd
t , (29)

where xt(θ ) = x0eθ t .
Similar to the proof of Theorem 2.1, we have

sup
0≤t≤T

∣

∣Xt – xt(θ0)
∣

∣ ≤ εe|θ0T | sup
0≤t≤T

∣

∣Ld
t
∣

∣. (30)

Thus,

P(ε)
θ0

{

∥

∥X – x(θ )
∥

∥ >
1
2
˜f (κ)

}

≤ P
(

sup
0≤t≤T

∣

∣Ld
t
∣

∣ ≥
˜f (κ)

2εe|θ0T |

)

. (31)

Applying Lemma 1.3 to the estimate obtained above, we have

P(ε)
θ0

(|˜θε – θ0| > κ
) ≤ E

(

sup
0≤t≤T

∣

∣Ld
t
∣

∣

)p
(

2εe|θ0T |

˜f (κ)

)p
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≤ Cp,κ ,dE
(∣

∣L(1)
∣

∣

p)Tp(d+1/2+κ)2pe|θ0T |p(
˜f (κ)

)–p
εp

= O
((

˜f (κ)
)–p

εp).

This completes the proof. �

Remark 3.1 It follows from Theorem 3.1 that we have ˜θε converges in probability to θ0

under P(ε)
θ0

-measure as ε → 0. Furthermore, the rate of convergence is of order O(εp) for
every p ≥ 2.

Theorem 3.2 (Limit distribution) As ε → 0, ε–1(˜θε – θ0) d→ ξ , ξ has the same probability
distribution as η̃ under P(ε)

θ0

η̃ = arg inf
–∞<u<+∞

∫ T

0

∣

∣Yt(θ ) – utx0eθ0t∣
∣dt. (32)

Proof Let

Zε(u) =
∥

∥Y – ε–1(x(θ0 + εu) – x(θ0)
)∥

∥ (33)

and

Z0(u) =
∥

∥Y – uẋ(θ0)
∥

∥. (34)

Furthermore, let

Aε =
{

ω : |˜θε – θ0| < δε

}

, δε = ετ τ , τ ∈
(

1
2

, 1
)

, Lε = ετ–1. (35)

It is easy to see that the random variable ũε = ε–1(˜θε – θ0) satisfies the equation

Zε (̃uε) = inf|u|<Lε

Zε(u), ω ∈ Aε . (36)

Define

η̃ε = arg inf|u|<Lε

Z0(u). (37)

Observe that, with probability one,

sup
|u|<Lε

∣

∣Zε(u) – Z0(u)
∣

∣ =
∣

∣

∥

∥Y – uẋ(θ0) – 1/2εu2ẍ(˜θ )
∥

∥ –
∥

∥Y – uẋ(θ0)
∥

∥

∣

∣

≤ ε

2
L2

ε sup
|θ–θ0|<δε

∫ T

0

∣

∣ẍ(θ )
∣

∣dt ≤ Cε2τ–1 → 0, ε → 0, (38)

where ˜θ = θ0 + α(θ – θ0) for some α ∈ (0, 1]. Note that the last term in the above inequality
tends to zero as ε → 0. This follows from the arguments given in Theorem 2 of Kutoyants
and Pilibossian [14, 15]. In addition, we can choose the interval [–L, L] such that

P(ε)
θ0

{

u∗
ε ∈ (–L, L)

} ≥ 1 – β˜f (L)–p (39)
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and

P
{

u∗ ∈ (–L, L)
} ≥ 1 – β˜f (L)–p, β > 0. (40)

Note that ˜f (L) increases as L increases. The process {Zε(u), u ∈ [–L, L]} and {Z0(u), u ∈
[–L, L]} satisfy the Lipschitz conditions and Zε(u) converges uniformly to Z0(u) over u ∈
[–L, L]. Hence the minimizer of Zε(·) converges to the minimizer of Z0(u). This completes
the proof. �

Although the distribution of η̃ is not clear, we can consider its limiting behaviors as
T → +∞.

Theorem 3.3 (Asymptotic law) Suppose that θ0 > 0 and E(log(1 + |L1|)) < +∞. Then

˜ξT = x0T η̃T
d→ A0, T → +∞,

where L1, A0 and other notations in the following are the same as Theorem 2.3.

Proof Recall that

η̃T = arg inf
u∈R

∫ T

0

∣

∣Yt(θ0) – utx0eθ0t∣
∣dt.

Let ‖ · ‖ denote the L1-norm. By changing variable, we have the following:

˜ξT = arg inf
ω∈R

∥

∥Y – ˜M(ω)
∥

∥ := arg inf
ω∈R

˜N(ω), (41)

where ˜Mt(ω) = ωteθ0t

T and ˜N(·) = ‖Y – ˜M(·)‖.
We want to show that, for every � > 0,

lim
T→+∞ Pθ0

{|˜ξT – A0| > �
}

= 0. (42)

Therefore, we consider the set

V� =
{

ω : |ω – A0| > �
}

,

where Pθ0 is the probability measure induced by the process Xt when θ0 is the true param-
eter and ε → 0.

Besides, we have

˜N(A0) =
∥

∥Y – ˜N(A0)
∥

∥

=
∥

∥

∥

∥

eθ0t
(∫ t

0
e–θ0s dLd

s –
A0t
T

– A0 + A0

)∥

∥

∥

∥

=
∥

∥

∥

∥

eθ0t
(∫ t

0
e–θ0s dLd

s – A0 +
(

1 –
t
T

)

A0

)∥

∥

∥

∥

=
∥

∥

∥

∥

eθ0t
(∫ t

0
e–θ0s dLd

s – A0

)∥

∥

∥

∥

+ |A0t|
∥

∥

∥

∥

(

1 –
t
T

)

eθ0t
∥

∥

∥

∥

.
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On the other hand, for ω ∈ V�, we can get

˜N(ω) =
∥

∥Y – ˜M(ω)
∥

∥

≥ ∥

∥˜M(A0) – ˜M(ω)
∥

∥ –
∥

∥Y – ˜M(A0)
∥

∥

=
∥

∥˜M(ω) – ˜M(A0)
∥

∥ – ˜N(A0)

= |ω – R0|
∥

∥

∥

∥

teθ0t

T

∥

∥

∥

∥

– ˜N(A0)

≥ �

∥

∥

∥

∥

teθ0t

T

∥

∥

∥

∥

– ˜N(A0).

Obviously, we have

˜N(ω)
˜N(A0)

≥ �‖ teθ0t

T ‖
˜N(A0)

– 1,

infω∈V�
˜N(ω)

˜N(A0)
≥ �

[T‖eθ0t(
∫ t

0 e–θ0s dMd
s – A0)‖

‖teθ0t‖ +
|A0|‖(T – t)eθ0t‖

‖teθ0t‖
]–1

– 1

= �

[

T‖eθ0t(Bt – A0)‖
‖teθ0t‖ +

|A0|‖(T – t)eθ0t‖
‖teθ0t‖

]–1

– 1

= �(I1 + I2)–1 – 1,

with

I1 =
T‖eθ0t(Bt – A0)‖

‖teθ0t‖ =
T‖eθ0tAt‖
∫ T

0 teθ0t dt
=

T‖eθ0tAt‖
θ–1

0 Teθ0T – θ–2
0 eθ0T + θ–2

0
,

I2 =
|A0|‖(T – t)eθ0t‖

‖teθ0t‖ =
|A0|

∫ T
0 eθ0t dt

∫ T
0 teθ0t dt

=
|A0|(θ–2

0 eθ0T – θ0T – θ–2
0 )

θ–1
0 Teθ0T – θ–2

0 eθ0T + θ–2
0

.

We obtain with probability one

lim
T→+∞ I2 = lim

T→+∞
|A0|(θ–2

0 eθ0T – θ0T – θ–2
0 )

θ–1
0 Teθ0T – θ–2

0 eθ0T + θ–2
0

= lim
T→+∞

|A0|θ–2
0 eθ0T

θ–1
0 Teθ0T = lim

T→+∞
|A0|
θ0T

= 0. (43)

Moreover, using Lemma 2.2 we obtain

lim
T→+∞ Pθ0 (I1 > �) = lim

T→+∞ Pθ0

(

T‖eθ0tRt‖
θ–1

0 Teθ0T – θ–2
0 eθ0T + θ–2

0
> �

)

= lim
T→+∞ Pθ0

(

T‖eθ0tRt‖
θ–1

0 Teθ0T > �

)

= lim
T→+∞ Pθ0

(|R0| > θ0eθ0T�
) ≤ lim

T→+∞ θ–1
0 e–θ0T Eθ0 (|R0|)

�
= 0. (44)
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By (43) and (44), we obtain as T → +∞

infω∈V�
˜N(ω)

˜N(A0)
P→ +∞. (45)

Using (41), ˜ξT ∈ V� implies

˜N(ξT ) = inf
ω∈V�

˜N(ω) ≤ ˜N(A0). (46)

Therefore, from Eqs. (45) and (46), we have the result (42). �

Remark 3.2 If Ld
t is a Brownian motion, then˜ξT is asymptotically Gaussian, this is treated

by Kutoyants and Pilibossian [14, 15].
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