RESEARCH Open Access

On properties of geodesic semilocal E-preinvex functions

Adem Kılıçman^{1*} and Wedad Saleh²

*Correspondence:

¹Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, Serdang, Malaysia

Full list of author information is available at the end of the article

Abstract

The authors define a class of functions on Riemannian manifolds, which are called geodesic semilocal E-preinvex functions, as a generalization of geodesic semilocal E-convex and geodesic semi E-preinvex functions, and some of its properties are established. Furthermore, a nonlinear fractional multiobjective programming is considered, where the functions involved are geodesic E- η -semidifferentiability, sufficient optimality conditions are obtained. A dual is formulated and duality results are proved by using concepts of geodesic semilocal E-preinvex functions, geodesic pseudo-semilocal E-preinvex functions, and geodesic quasi-semilocal E-preinvex functions.

Keywords: Generalized convexity; Riemannian geometry; Duality

1 Introduction

Convexity and generalized convexity play a significant role in many fields, for example, in biological system, economy, optimization, and so on [1-5].

Generalized convex functions, labeled as semilocal convex functions, were introduced by Ewing [6] by using more general semilocal preinvexity and η -semidifferentiability. After that optimality conditions for weak vector minima were given [7]. Also, optimality conditions and duality results for a nonlinear fractional involving η -semidifferentiability were established [8].

Furthermore, some optimality conditions and duality results for semilocal E-convex programming were established [9]. E-convexity was extended to E-preinvexity [10]. Recently, semilocal E-preinvexity (SLEP) and some of its applications were introduced [11–13].

Generalized convex functions in manifolds, such as Riemannian manifolds, were studied by many authors; see [14–17]. Udrist [18] and Rapcsak [19] considered a generalization of convexity called geodesic convexity. In this setting, the linear space is replaced by a Riemannian manifold and the line segment by a geodesic one. In 2012, geodesic E-convex (GEC) sets and geodesic E-convex (GEC) functions on Riemannian manifolds were studied [20]. Moreover, geodesic semi E-convex (GSEC) functions were introduced [21]. Recently, geodesic strongly E-convex (GSEC) functions were introduced and some of their properties were discussed [22].

2 Geodesic semilocal E-preinvexity

Assume that \aleph is a complete n-dimensional Riemannian manifold with Riemannian connection ∇ . Let $\kappa_1, \kappa_2 \in \aleph$ and $\gamma : [0,1] \longrightarrow \aleph$ be a geodesic joining the points κ_1 and κ_2 , which means that $\gamma_{\kappa_1,\kappa_2}(0) = \kappa_2$ and $\gamma_{\kappa_1,\kappa_2}(1) = \kappa_1$.

Definition 2.1 A nonempty set $B \subset \aleph$ is said to be

1. a geodesic E-invex (GEI) with respect to η if there is exactly one geodesic $\gamma_{E(\kappa_1),E(\kappa_2)}:[0,1] \longrightarrow \aleph$ such that

$$\gamma_{E(\kappa_1),E(\kappa_2)}(0) = E(\kappa_2), \qquad \dot{\gamma}_{E(\kappa_1),E(\kappa_2)} = \eta(E(\kappa_1),E(\kappa_2)), \qquad \gamma_{E(\kappa_1),E(\kappa_2)}(t) \in B,$$

 $\forall \kappa_1, \kappa_2 \in B \text{ and } t \in [0, 1].$

2. a geodesic local E-invex (GLEI) with respect to η if there is $u(\kappa_1, \kappa_2) \in (0, 1]$ such that $\forall t \in [0, u(\kappa_1, \kappa_2)]$,

$$\gamma_{E(\kappa_1),E(\kappa_2)}(t) \in B \quad \forall \kappa_1, \kappa_2 \in B.$$
(1)

3. a geodesic local starshaped E-convex if there is a map E such that, corresponding to each pair of points $\kappa_1, \kappa_2 \in A$, there is a maximal positive number $u(\kappa_1, \kappa_2) \leq 1$ such as

$$\gamma_{E(\kappa_1),E(\kappa_2)} \in A, \quad \forall t \in [0, u(\kappa_1, \kappa_2)].$$
(2)

Definition 2.2 A function $f : A \subset \aleph \longrightarrow \mathbb{R}$ is said to be

1. a geodesic E-preinvex (GEP) on $A \subset \aleph$ with respect to η if A is a GEI set and

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le tf(E(\kappa_1)) + (1-t)f(E(\kappa_2)), \quad \forall \kappa_1,\kappa_2 \in A, t \in [0,1];$$

2. a geodesic semi E-preinvex (GSEP) on A with respect to η if A is a GEI set and

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le tf(\kappa_1) + (1-t)f(\kappa_2), \quad \forall \kappa_1, \kappa_2 \in A, t \in [0,1].$$

3. a geodesic local E-preinvex (GLEP) on $A \subset \aleph$ with respect to η if, for any $\kappa_1, \kappa_2 \in A$, there exists $0 < \nu(\kappa_1, \kappa_2) \le u(\kappa_1, \kappa_2)$ such that A is a GLEI set and

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \leq tf(E(\kappa_1)) + (1-t)f(E(\kappa_2)), \quad \forall t \in [0,\nu(\kappa_1,\kappa_2)].$$

Definition 2.3 A function $f : \aleph \longrightarrow \mathbb{R}$ is a geodesic semilocal E-convex (GSLEC) on a geodesic local starshaped E-convex set $B \subset \aleph$ if, for each pair of $\kappa_1, \kappa_2 \in B$ (with a maximal positive number $u(\kappa_1, \kappa_2) \le 1$ satisfying 2), there exists a positive number $v(\kappa_1, \kappa_2) \le u(\kappa_1, \kappa_2)$ satisfying

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le tf(\kappa_1) + (1-t)f(\kappa_2), \quad \forall t \in [0,\nu(\kappa_1,\kappa_2)].$$

Remark 2.1 Every GEI set with respect to η is a GLEI set with respect to η , where $u(\kappa_1, \kappa_2) = 1$, $\forall \kappa_1, \kappa_2 \in \aleph$. On the other hand, their converses are not necessarily true, and we can see that in the next example.

Example 2.1 Put $A = [-4, -1) \cup [1, 4]$,

$$E(\kappa) = \begin{cases} \kappa^2 & \text{if } |\kappa| \le 2, \\ -1 & \text{if } |\kappa| > 2; \end{cases}$$

$$\eta(\kappa, \iota) = \begin{cases} \kappa - \iota & \text{if } \kappa \ge 0, \iota \ge 0 \text{ or } \kappa \le 0, \iota \le 0, \\ -1 - \iota & \text{if } \kappa > 0, \iota \le 0 \text{ or } \kappa \ge 0, \iota < 0, \\ 1 - \iota & \text{if } \kappa < 0, \iota \ge 0 \text{ or } \kappa \ge 0, \iota > 0; \end{cases}$$

$$\gamma_{\kappa, \iota}(t) = \begin{cases} \iota + t(\kappa - l) & \text{if } \kappa \ge 0, \iota \ge 0 \text{ or } \kappa \le 0, \iota \le 0, \iota \le 0, \iota \le 0, \iota < 0, \\ \iota + t(-1 - \iota) & \text{if } \kappa > 0, \iota \ge 0 \text{ or } \kappa \ge 0, \iota < 0, \iota \le 0, \iota < 0, \iota \ge 0, \iota < 0, \iota \ge 0, \iota < 0, \iota \ge 0, \iota \ge 0, \iota > 0. \end{cases}$$

Hence *A* is a GLEI set with respect to η . However, when $\kappa = 3$, $\iota = 0$, there is $t_1 \in [0, 1]$ such that $\gamma_{E(\kappa),E(\iota)}(t_1) = -t_1$, then if $t_1 = 1$, we obtain $\gamma_{E(\kappa),E(\iota)}(t_1) \notin A$.

Definition 2.4 A function $f : \aleph \longrightarrow \mathbb{R}$ is GSLEP on $B \subset \aleph$ with respect to η if, for any $\kappa_1, \kappa_2 \in B$, there is $0 < \nu(\kappa_1, \kappa_2) \le u(\kappa_1, \kappa_2) \le 1$ such that B is a GLEI set and

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le tf(\kappa_1) + (1-t)f(\kappa_2), \quad \forall t \in [0,\nu(\kappa_1,\kappa_2)]. \tag{3}$$

If

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \ge tf(\kappa_1) + (1-t)f(\kappa_2), \quad \forall t \in [0, \nu(\kappa_1,\kappa_2)],$$

then f is GSLEP on B.

Remark 2.2 Any GSLEC function is a GSLEP function. Also, any GSEP function with respect to η is a GSLEP function. On the other hand, their converses are not necessarily true. The next example shows SLGEP, which is neither a GSLEC function nor a GSEP function.

Example 2.2 Assume that $E: \mathbb{R} \longrightarrow \mathbb{R}$ is given as

$$E(m) = \begin{cases} 0 & \text{if } m < 0, \\ 1 & \text{if } 1 < m \le 2, \\ m & \text{if } 0 \le m \le 1 \text{ or } m > 2; \end{cases}$$

and the map $\eta: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ is defined as

$$\eta(m,n) = \begin{cases} 0 & \text{if } m = n, \\ 1 - m & \text{if } m \neq n; \end{cases}$$

also,

$$\gamma_{m,n}(t) = \begin{cases} n & \text{if } m = n, \\ n + t(1-m) & \text{if } m \neq n. \end{cases}$$

Assume that $h: \mathbb{R} \longrightarrow \mathbb{R}$, where

$$h(m) = \begin{cases} 0 & \text{if } 1 < m \le 2, \\ 1 & \text{if } m > 2, \\ -m+1 & \text{if } 0 \le m \le 1, \\ -m+2 & \text{if } m < 0; \end{cases}$$

and since \mathbb{R} is a geodesic local starshaped E-convex set and a geodesic local E-invex set with respect to η . Then h is a GSLEP on \mathbb{R} with respect to η . However, when $m_0 = 2$, $n_0 = 3$ and for any $v \in (0, 1]$, there is a sufficiently small $t_0 \in (0, v]$ such that

$$h(\gamma_{E(m_0),E(n_0)}(t_0)) = 1 > (1-t_0) = t_0h(m_0) + (1-t_0)h(n_0).$$

Then h(m) is not a GSLEC function on \mathbb{R} . Similarly, taking $m_1 = 1$, $n_1 = 4$, we have

$$h(\gamma_{E(m_1),E(n_1)}(t_1)) = 1 > (1-t_1) = t_1h(m_1) + (1-t_1)h(n_1)$$

for some $t_1 \in [0, 1]$.

Hence, h(m) is not a GSEP function on \mathbb{R} with respect to η .

Definition 2.5 A function $h: S \subset \aleph \longrightarrow \mathbb{R}$, where S is a GLEI set, is said to be a geodesic quasi-semilocal E-preinvex (GqSLEP) (with respect to η) if, for all $\kappa_1, \kappa_2 \in S$ satisfying $h(\kappa_1) \leq h(\kappa_2)$, there is a positive number $\nu(\kappa_1, \kappa_2) \leq \nu(\kappa_1, \kappa_2)$ such that

$$h(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le h(\kappa_2), \quad \forall t \in [0, \nu(\kappa_1,\kappa_2)].$$

Definition 2.6 A function $h: S \subset \aleph \longrightarrow \mathbb{R}$, where S is a GLEI set, is said to be a geodesic pseudo-semilocal E-preinvex (GpSLEP) (with respect to η) if, for all $\kappa_1, \kappa_2 \in S$ satisfying $h(\kappa_1) < h(\kappa_2)$, there are positive numbers $v(\kappa_1, \kappa_2) \le u(\kappa_1, \kappa_2)$ and $w(\kappa_1, \kappa_2)$ such that

$$h(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le h(\kappa_2) - tw(\kappa_1,\kappa_2), \quad \forall t \in [0,v(\kappa_1,\kappa_2)].$$

Remark 2.3 Every GSLEP on a GLEI set with respect to η is both a GqELEP function and a GpSLEP function.

Definition 2.7 A function $h: S \longrightarrow \mathbb{R}$ is called a geodesic E- η - semidifferentiable at $\kappa^* \in S$, where $S \subset \aleph$ is a GLEI set with respect to η , if $E(\kappa^*) = \kappa^*$ and

$$h'_{+}(\gamma_{\kappa^*,E(\kappa)}(t)) = \lim_{t \to 0^+} \frac{1}{t} \left[h(\gamma_{\kappa^*,E(\kappa)}(t)) - h(\kappa^*) \right]$$

exist for every $\kappa \in S$.

Remark 2.4

1. If $\aleph = \mathbb{R}^n$, then the geodesic E- η - semidifferentiable is E- η -semidifferentiable [11].

- 2. If $\aleph = \mathbb{R}^n$ and E = I, then the geodesic E- η -semidifferentiable is the η -semidifferentiability [23].
- 3. If $\aleph = \mathbb{R}^n$, E = I, and $\eta(\kappa, \kappa^*) = \kappa \kappa^*$, then the geodesic E- η -semidifferentiable is the semidifferentiability [11].

Lemma 2.1

1. Assume that h is a GSLEP (E-preconcave) and a geodesic E- η -semidifferentiable at $\kappa^* \in S \subset \aleph$, where S is a GLEI set with respect to η . Then

$$h(\kappa) - h(\kappa^*) \ge (\le) h'_+(\gamma_{\kappa^*, E(\kappa)}(t)), \quad \forall \kappa \in S.$$

2. Let h be a GqSLEP (GpSLEP) and a geodesic E- η -semidifferentiable at $\kappa^* \in S \subset \aleph$, where S is a LGEI set with respect to η . Hence

$$h(\kappa) \le (<)h(\kappa^*) \implies h'_+(\gamma_{\kappa^*,E(\kappa)}(t)) \le (<)0, \quad \forall \kappa \in S.$$

The above lemma is proved directly by using definitions (Definition 2.4, Definition 2.5, Definition 2.6, and Definition 2.4).

Theorem 2.1 Let $f: S \subset \aleph \longrightarrow \mathbb{R}$ be a GLEP function on a GLEI set S with respect to η , then f is a GSLEP function iff $f(E(\kappa)) \leq f(\kappa)$, $\forall \kappa \in S$.

Proof Assume that f is a GSLEP function on set S with respect to η , then $\forall \kappa_1, \kappa_2 \in S$, there is a positive number $\nu(\kappa_1, \kappa_2) \leq u(\kappa_1, \kappa_2)$ where

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \leq tf(\kappa_2) + (1-t)f(\kappa_1), \quad t \in [0,\nu(\kappa_1,\kappa_2)].$$

By letting t = 0, then $f(E(\kappa_1)) \le f(\kappa_1)$, $\forall \kappa_1 \in S$.

Conversely, consider that f is a GLEP function on a GLEI set S, then for any $\kappa_1, \kappa_2 \in S$, there exist $u(\kappa_1, \kappa_2) \in (0, 1]$ (1) and $v(\kappa_1, \kappa_2) \in (0, u(\kappa_1, \kappa_2)]$ such that

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le tf(E(\kappa_1)) + (1-t)f(E(\kappa_2)), \quad t \in [0,\nu(\kappa_1,\kappa_2)].$$

Since $f(E(\kappa_1)) \le f(\kappa_1)$, $\forall \kappa_1 \in S$, then

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le tf(\kappa_1) + (1-t)f(\kappa_2), \quad t \in [0,\nu(\kappa_1,\kappa_2)].$$

Definition 2.8 The set $\omega = \{(\kappa, \alpha) : \kappa \in B \subset \aleph, \alpha \in \mathbb{R}\}$ is said to be a GLEI set with respect to η corresponding to \aleph if there are two maps η , E and a maximal positive number $u((\kappa_1, \alpha_1), (\kappa_2, \alpha_2)) \leq 1$ for each $(\kappa_1, \alpha_1), (\kappa_2, \alpha_2) \in \omega$ such that

$$(\gamma_{E(\kappa_1),E(\kappa_2)}(t),t\alpha_1+(1-t)\alpha_2)\in\omega, \quad \forall t\in [0,u((\kappa_1,\alpha_1),(\kappa_2,\alpha_2))].$$

Theorem 2.2 Let $B \subset \aleph$ be a GLEI set with respect to η . Then f is a GSLEP function on B with respect to η iff its epigraph

$$\omega_f = \{ (\kappa_1, \alpha) : \kappa_1 \in B, f(\kappa_1) \le \alpha, \alpha \in \mathbb{R} \}$$

is a GLEI set with respect to η corresponding to \aleph .

Proof Suppose that f is a GSLEP on B with respect to η and $(\kappa_1, \alpha_1), (\kappa_2, \alpha_2) \in \omega_f$, then $\kappa_1, \kappa_2 \in B, f(\kappa_1) \leq \alpha_1, f(\kappa_2) \leq \alpha_2$. By applying Definition 2.1, we obtain $\gamma_{E(\kappa_1), E(\kappa_2)}(t) \in B$, $\forall t \in [0, u(\kappa_1, \kappa_2)]$.

Moreover, there is a positive number $v(\kappa_1, \kappa_2) \le u(\kappa_1, \kappa_2)$ such that

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t),t\alpha_1+(1-t)\alpha_2)\in\omega_f, \quad \forall t\in[0,\nu(\kappa_1,\kappa_2)].$$

Conversely, if ω_f is a GLEI set with respect to η corresponding to \aleph , then for any points $(\kappa_1, f(\kappa_1)), (\kappa_2, f(\kappa_2)) \in \omega_f$, there is a maximal positive number $u((\kappa_1, f(\kappa_1)), (\kappa_2, f(\kappa_2)) \leq 1$ such that

$$\left(\gamma_{E(\kappa_1),E(\kappa_2)}(t),tf(\kappa_1)+(1-t)f(\kappa_2)\right)\in\omega_f,\quad\forall t\in\left[0,u\left(\left(\kappa_1,f(\kappa_1)\right),\left(\kappa_2,f(\kappa_2)\right)\right)\right].$$

That is, $\gamma_{E(\kappa_1),E(\kappa_2)}(t) \in B$,

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le tf(\kappa_1) + (1-t)f(\kappa_2), \quad t \in [0,u((\kappa_1,f(\kappa_1)),(\kappa_2,f(\kappa_2)))].$$

Thus, B is a GLEI set and f is a GSLEP function on B.

Theorem 2.3 *If f is a GSLEP function on a GLEI set B* $\subset \aleph$ *with respect to* η , *then the level* $K_{\alpha} = \{\kappa_1 \in B : f(\kappa_1) \leq \alpha\}$ *is a GLEI set for any* $\alpha \in \mathbb{R}$.

Proof For any $\alpha \in \mathbb{R}$ and $\kappa_1, \kappa_2 \in K_\alpha$, then $\kappa_1, \kappa_2 \in B$ and $f(\kappa_1) \leq \alpha, f(\kappa_2) \leq \alpha$. Since B is a GLEI set, then there is a maximal positive number $u(\kappa_1, \kappa_2) < 1$ such that

$$\gamma_{E(\kappa_1),E(\kappa_2)}(t) \in B$$
, $\forall t \in [0, u(\kappa_1, \kappa_2)]$.

In addition, since f is GSLEP, there is a positive number $v(\kappa_1, \kappa_2) \le u(\gamma_1, \gamma_2)$ such that

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le tf(\kappa_1) + (1-t)f(\kappa_2)$$

$$\le t\alpha + (1-t)\alpha$$

$$= \alpha, \quad \forall t \in [0, \nu(\kappa_1, \kappa_2)].$$

That is, $\gamma_{E(\kappa_1),E(\kappa_2)}(t) \in K_{\alpha}$, $\forall t \in [0, \nu(\kappa_1, \kappa_2)]$. Therefore, K_{α} is a GLEI set with respect to η for any $\alpha \in \mathbb{R}$.

Theorem 2.4 Let $f: B \subset \aleph \longrightarrow \mathbb{R}$, where B is a GLEI. Then f is a GSLEP function with respect to η if f for each pair of points $\kappa_1, \kappa_2 \in B$, there is a positive number $v(\kappa_1, \kappa_2) \leq u(\kappa_1, \kappa_2) \leq 1$ such that

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le t\alpha + (1-t)\beta, \quad \forall t \in [0,\nu(\kappa_1,\kappa_2)].$$

Proof Let $\kappa_1, \kappa_2 \in B$ and $\alpha, \beta \in \mathbb{R}$ such that $f(\kappa_1) < \alpha$ and $f(\kappa_2) < \beta$. Since B is GLEI, there is a maximal positive number $u(\kappa_1, \kappa_2) \le 1$ such that

$$\gamma_{E(\kappa_1),E(\kappa_2)}(t) \in B$$
, $\forall t \in [0, u(\kappa_1, \kappa_2)].$

In addition, there is a positive number $v(\kappa_1, \kappa_2) \le u(\kappa_1, \kappa_2)$, where

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le t\alpha + (1-t)\beta, \quad \forall t \in [0,\nu(\kappa_1,\kappa_2)].$$

Conversely, let $(\kappa_1, \alpha) \in \omega_f$ and $(\kappa_2, \beta) \in \omega_f$, then $\kappa_1, \kappa_2 \in B$, $f(\kappa_1) < \alpha$, and $f(\kappa_2) < \beta$. Hence, $f(\kappa_1) < \alpha + \varepsilon$ and $f(\kappa_2) < \beta + \varepsilon$ hold for any $\varepsilon > 0$. According to the hypothesis for $\kappa_1, \kappa_2 \in B$, there is a positive number $v(\kappa_1, \kappa_2) \le u(\kappa_1, \kappa_2) \le 1$ such that

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le t\alpha + (1-t)\beta + \varepsilon, \quad \forall t \in [0,\nu(\kappa_1,\kappa_2)].$$

Let $\varepsilon \longrightarrow 0^+$, then

$$f(\gamma_{E(\kappa_1),E(\kappa_2)}(t)) \le t\alpha + (1-t)\beta, \quad \forall t \in [0,\nu(\kappa_1,\kappa_2)].$$

That is, $(\gamma_{E(\kappa_1),E(\kappa_2)}(t), t\alpha + (1-t)\beta) \in \omega_f$, $\forall t \in [0, \nu(\kappa_1, \kappa_2)]$.

Therefore, ω_f is a GLEI set corresponding to \aleph . From Theorem 2.2 it follows that f is a GSLEP on B with respect to η .

3 Optimality criteria

In this section, let us consider the nonlinear fractional multiobjective programming problem

(VFP)
$$\begin{cases} \text{minimize } \frac{f(\kappa)}{g(\kappa)} = (\frac{f_1(\kappa)}{g_1(\kappa)}, \dots, \frac{f_p(\kappa)}{g_p(\kappa)}), \\ \text{subject to } h_j(\kappa) \le 0, \quad j \in Q = 1, 2, \dots, q \\ \kappa \in K_0; \end{cases}$$

where $K_0 \subset \mathbb{N}$ is a GLEI set and $g_i(\kappa) > 0$, $\forall \kappa \in K_0$, $i \in P = 1, 2, ..., p$. Let $f = (f_1, f_2, ..., f_p)$, $g = (g_1, g_2, ..., g_p)$, and $h = (h_1, h_2, ..., h_q)$ and denote that $K = {\kappa : h_j(\kappa) \le 0, j \in Q, \kappa \in K_0}$, the feasible set of problem (VFP). For $\kappa^* \in K$, we put

$$Q(\kappa^*) = \{j : h_j(\kappa^*) = 0, j \in Q\}, \qquad L(\kappa^*) = \frac{Q}{O(\kappa^*)}.$$

We also formulate the nonlinear multiobjective programming problem as follows:

$$(\text{VFP}_{\lambda}) \begin{cases} \text{minimize } (f_1(\kappa) - \lambda_1 g_1(\kappa), \dots f_p(\kappa) - \lambda_p g_p(\kappa)), \\ \text{subject to } h_j(\kappa) \leq 0, \quad j \in Q = 1, 2, \dots, q \\ \kappa \in K_0; \end{cases}$$

where $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_p) \in \mathbb{R}^p$.

The following lemma connects the weak efficient solutions for (VFP) and (VFP $_{\lambda}$).

Lemma 3.1 A point κ^* is a weak efficient solution for (VFP_{λ}) iff κ^* is a weak efficient solution for (VFP_{λ}^*) , where $\lambda^* = (\lambda_1^*, \dots, \lambda_p^*) = (\frac{f_1(\kappa^*)}{g_1(\kappa^*)}, \dots, \frac{f_p(\kappa^*)}{g_p(\kappa^*)})$.

Proof Assume that there is a feasible point $\kappa \in K$, where

$$f_i(\kappa) - \lambda_i^* g_i(\kappa) < f_i(\kappa^*) - \lambda_i^* g_i(\kappa^*), \quad \forall i \in Q$$

 \Longrightarrow

$$f_i(\kappa) < \frac{f_i(\kappa^*)}{g_i(\kappa^*)g_i(\kappa)}$$

 \Longrightarrow

$$\frac{f_i(\kappa)}{g_i(\kappa)} < \frac{f_i(\kappa^*)}{g_i(\kappa^*)},$$

which is a contradiction to the weak efficiency of κ^* for (VFP).

Presently, let us take $\kappa \in K$ as a feasible point such that

$$\frac{f_i(\kappa)}{g_i(\kappa)} < \frac{f_i(\kappa^*)}{g_i(\kappa^*)} = \lambda_i^*,$$

then $f_i(\kappa) - \lambda_i^* g_i(\kappa) < 0 = f_i(\kappa^*) - \lambda_i^* g_i(\kappa^*)$, $\forall i \in Q$, which is again a contradiction to the weak efficiency of κ^* for (VFP_{λ}^*) .

Next, some sufficient optimality conditions for the problem (VFP) are established.

Theorem 3.1 Let $\bar{\kappa} \in K$, $E(\bar{\kappa}) = \bar{\kappa}$ and f, h be GSLEP and g be a geodesic semilocal E-preincave, and they are all geodesic E- η - semidifferentiable at $\bar{\kappa}$. Further, assume that there are $\xi^o = (\xi^o_i, i = 1, ..., p) \in \mathbb{R}^p$ and $\xi^o = (\xi^o_i, j = 1, ..., m) \in \mathbb{R}^m$ such that

$$\zeta_{i}^{o} f_{i+}' \left(\gamma_{\bar{\kappa}, E(\widehat{\kappa})}(t) \right) + \xi_{i}^{o} h_{i+}' \left(\gamma_{\bar{\kappa}, E(\widehat{\kappa})}(t) \right) \ge 0 \quad \forall \kappa \in K, t \in [0, 1], \tag{4}$$

$$g'_{i+}(\gamma_{\bar{\kappa},E(\kappa)}(t)) \le 0, \quad \forall \kappa \in K, i \in P,$$
 (5)

$$\xi^{o}h(\bar{\kappa}) = 0 \tag{6}$$

$$\zeta^o \ge 0, \qquad \xi^o \ge 0.$$
(7)

Then $\bar{\kappa}$ *is a weak efficient solution for* (VFP).

Proof By contradiction, let \bar{k} be not a weak efficient solution for (VFP), then there exists a point $\hat{k} \in K$ such that

$$\frac{f_i(\widehat{\kappa})}{g_i(\widehat{\kappa})} < \frac{f_i(\bar{\kappa})}{g_i(\bar{\kappa})}, \quad i \in P.$$
(8)

By the above hypotheses and Lemma 3.1, we have

$$f_i(\widehat{\kappa}) - f_i(\widehat{\kappa}) \ge f'_{i+} \left(\gamma_{\widehat{\kappa}, E(\widehat{\kappa})}(t) \right), \quad i \in P$$
(9)

$$g_i(\widehat{\kappa}) - g_i(\bar{\kappa}) \le g'_{i+} (\gamma_{\bar{\kappa}, E(\widehat{\kappa})}(t)), \quad i \in P$$
 (10)

$$h_i(\widehat{\kappa}) - h_i(\widehat{\kappa}) \ge h'_{i+}(\gamma_{\widehat{\kappa}, E(\widehat{\kappa})}(t)), \quad j \in Q.$$
 (11)

Multiplying (9) by ξ_i^o and (11) by ξ_i^o , we get

$$\sum_{i=1}^{p} \zeta_{i}^{o} \left(f_{i}(\widehat{\kappa}) - f_{i}(\bar{\kappa}) \right) + \sum_{j=1}^{m} \xi_{j}^{o} \left(h_{j}(\widehat{\kappa}) - h_{j}(\bar{\kappa}) \right)$$

$$\geq \zeta_{i}^{o} f_{i+}^{\prime} \left(\gamma_{\bar{\kappa}, E(\widehat{\kappa})}(t) \right) + \xi_{i}^{o} h_{i+}^{\prime} \left(\gamma_{\bar{\kappa}, E(\widehat{\kappa})}(t) \right) \geq 0. \tag{12}$$

Since $\widehat{\kappa} \in K$, $\xi^o \ge 0$ by (6) and (12), we have

$$\sum_{i=1}^{p} \zeta_{i}^{o} \left(f_{i}(\widehat{\kappa}) - f_{i}(\bar{\kappa}) \right) \ge 0. \tag{13}$$

Utilizing (7) and (13), there is at least i_0 ($1 \le i_0 \le p$) such that

$$f_{i_0}(\widehat{\kappa}) \ge f_{i_0}(\bar{\kappa}).$$
 (14)

On the other hand, (5) and (10) imply

$$g_i(\widehat{\kappa}) \le g_i(\bar{\kappa}), \quad i \in P.$$
 (15)

By using (14), (15), and g > 0, we have

$$\frac{f_{i_0}(\widehat{\kappa})}{g_{i_0}(\widehat{\kappa})} \ge \frac{f_{i_0}(\bar{\kappa})}{g_{i_0}(\bar{\kappa})},\tag{16}$$

which is a contradiction to 8, then the proof of the theorem is completed.

Similarly we can prove the next theorem.

Theorem 3.2 Consider that $\bar{\kappa} \in B$, $E(\bar{\kappa}) = \bar{\kappa}$ and f, h are geodesic E- η -semidifferentiable at $\bar{\kappa}$. If there exist $\zeta^o \in \mathbb{R}^n$ and $\xi^o \in \mathbb{R}^m$ such that conditions (4)–(7) hold and $\zeta^o f(x) + \xi^o h(x)$ is a GSLEP function, then $\bar{\kappa}$ is a weak efficient solution for (VFP).

Theorem 3.3 Consider that $\bar{\kappa} \in B$, $E(\bar{\kappa}) = \bar{\kappa}$ and $\lambda_i^o = \frac{f_i(\bar{\kappa})}{g_i(\bar{\kappa})}$ $(i \in P)$ are all pSLGEP functions and $h_j(\kappa)$ $(j \in \aleph(\bar{\kappa}))$ are all GqSLEP functions and f, g, h are all geodesic E- η -semidifferentiable at $\bar{\kappa}$. If there are $\zeta^o \in \mathbb{R}^p$ and $\xi^o \in \mathbb{R}^m$ such that

$$\sum_{i=1}^{p} \zeta_{i}^{o} \left(f_{i+}' \left(\gamma_{\bar{\kappa}, E(\kappa)}(t) \right) - \lambda_{i}^{o} g_{i+}' \left(\gamma_{\bar{\kappa}, E(\kappa)}(t) \right) \right) + \xi^{o} h_{i+}' \left(\gamma_{\bar{\kappa}, E(\kappa)}(t) \right) \ge 0 \tag{17}$$

$$\xi^{o}h(\bar{\kappa}) = 0, \tag{18}$$

$$\zeta^o \ge 0, \qquad \xi^o \ge 0, \tag{19}$$

then $\bar{\kappa}$ is a weak efficient solution for (VFP).

Proof Assume that $\bar{\kappa}$ is not a weak efficient solution for (VFP). Therefore, there exists $\kappa^* \in B$, which yields

$$\frac{f_i(\kappa^*)}{g_i(\kappa^*)} < \frac{f_i(\bar{\kappa})}{g_i(\bar{\kappa})}.$$

Then

$$f_i(\kappa^*) - \lambda_i^o g_i(\kappa^*) < 0, \quad i \in P,$$

which means that

$$f_i(\kappa^*) - \lambda_i^o g_i(\kappa^*) < f_i(\bar{\kappa}) - \lambda_i^o g_i(\bar{\kappa}) < 0, \quad i \in P.$$

By the pSLGEP of $(f_i(\kappa) - \lambda_i^o g_i(\kappa))$ $(i \in P)$ and Lemma 2.1, we have

$$f'_{i+}(\gamma_{\bar{\kappa},E(\kappa)}(t)) - \lambda_i^o g'_{i+}(\gamma_{\bar{\kappa},E(\kappa)}(t)), \quad i \in P.$$

Utilizing $\zeta^o \ge 0$, then

$$\sum_{i=1}^{p} \zeta_{i}^{o} \left(f_{i+}^{\prime} \left(\gamma_{\bar{\kappa}, E(\kappa)}(t) \right) - \lambda_{i}^{o} g_{i+}^{\prime} \left(\gamma_{\bar{\kappa}, E(\kappa)}(t) \right) \right) < 0. \tag{20}$$

For $h(\kappa^*) \le 0$ and $h_j(\bar{\kappa}) = 0$, $j \in \aleph(\bar{\kappa})$, we have $h_j(\kappa^*) \le h_j(\bar{\kappa})$, $\forall j \in \aleph(\bar{\kappa})$. By the GqSLEP of h_j and Lemma 2.1, we have

$$h_{j+}(\gamma_{\bar{\kappa},E(\kappa)}(t)) \leq 0, \quad \forall j \in \aleph(\bar{\kappa}).$$

Considering $\xi^o \ge 0$ and $\xi_i^o = 0$, $j \in \aleph(\bar{\kappa})$, then

$$\sum_{j=1}^{m} \xi_j^{\circ} h'_{j+} \left(\gamma_{\bar{\kappa}, E(\kappa^*)}(t) \right) \le 0. \tag{21}$$

Hence, by (20) and (21), we have

$$\sum_{i=1}^{p} \zeta_{i}^{o} \left(f_{i+}' \left(\gamma_{\bar{\kappa}, E(\kappa^{*})}(t) \right) - \lambda_{i}^{o} g_{i+}' \left(\gamma_{\bar{\kappa}, E(\kappa^{*})}(t) \right) \right) + \xi^{o} h_{i+}' \left(\gamma_{\bar{\kappa}, E(\kappa^{*})}(t) \right) < 0, \tag{22}$$

which is a contradiction to relation (17) at $\kappa^* \in B$. Therefore, $\bar{\kappa}$ is a weak efficient solution for (VFP).

Theorem 3.4 Consider $\bar{\kappa} \in B$, $E(\bar{\kappa}) = \bar{\kappa}$ and $\lambda_i^o = \frac{f_i(\bar{\kappa})}{g_i(\bar{\kappa})} (i \in P)$. Also, assume that f, g, h are geodesic E- η -semidifferentiable at $\bar{\kappa}$. If there are $\zeta^o \in \mathbb{R}^p$ and $\xi^o \in \mathbb{R}^m$ such that conditions (17)–(19) hold and $\sum_{i=1}^p \zeta_i^o(f_i(\kappa) - \lambda_i^o g_i(\kappa)) + \xi_{\aleph(\bar{\kappa})}^o h_{\aleph(\bar{\kappa})}(\kappa)$ is a GpSLEP function, then $\bar{\kappa}$ is a weak efficient solution for (VFP).

Corollary 3.1 Let $\bar{\kappa} \in B$, $E(\bar{\kappa}) = \bar{\kappa}$ and $\lambda_i^o = \frac{f_i(\bar{\kappa})}{g_i(\bar{\kappa})} (i \in P)$. Further, let f, $h_{\aleph(\bar{\kappa})}$ be all GSLEP functions, g be a geodesic semilocal E-preincave function, and f, g, h be all geodesic E-g-semidifferentiable at $\bar{\kappa}$. If there exist $\zeta^o \in \mathbb{R}^p$ and $\xi^o \in \mathbb{R}^m$ such that conditions (17)–(19) hold, then $\bar{\kappa}$ is a weak efficient solution for (VFP).

The dual problem for (VFP) is formulated as follows:

$$(\text{VFD}) \begin{cases} \text{minimize } (\zeta_{i}, i = 1, 2, \dots, p), \\ \text{subject to } \sum_{i=1}^{p} \alpha_{i} (f'_{i+}(\gamma_{\lambda, E(\kappa)}(t)) - \zeta_{i} g'_{i+}(\gamma_{\lambda, E(\kappa)}(t))) + \sum_{j=1}^{m} \beta_{j} h'_{j+}(\gamma_{\lambda, E(\kappa)}(t)) \geq 0 \\ \kappa \in K_{0}, t \in [0, 1], \\ f_{i}(\lambda) - \zeta_{i} g_{i}(\lambda) \geq 0, \quad i \in P, \qquad \beta_{j} h_{j}(\lambda) \geq 0, \quad j \in \aleph; \end{cases}$$

where $\zeta = (\zeta_i, i = 1, 2, ..., p) \ge 0$, $\alpha = (\alpha_i, i = 1, 2, ..., p) > 0$, $\beta = (\beta_i, i = 1, 2, ..., m) \ge 0$, $\lambda \in K_0$.

Denote the feasible set problem (VFD) by K'.

Theorem 3.5 (General weak duality) Let $\kappa \in K$, $(\alpha, \beta, \lambda, \zeta) \in K'$, and $E(\lambda) = \lambda$. If $\sum_{i=1}^{p} \alpha_i (f_i - \zeta_i g_i)$ is a GpSLEP function and $\sum_{j=1}^{m} \beta_j h_j$ is a GqSLEP function and they are all geodesic E- η -semidifferentiable at λ , then $\frac{f(\kappa)}{g(\kappa)} \nleq \zeta$.

Proof From $\alpha > 0$ and $(\alpha, \beta, \lambda, \zeta) \in K'$, we have

$$\sum_{i=1}^{p} \alpha_i (f_i(\kappa) - \zeta_i g_i(\kappa)) < 0 \le \sum_{i=1}^{p} \alpha_i (f_i(\lambda) - \zeta_i g_i(\lambda)).$$

By the GpSLEP of $\sum_{i=1}^{p} \alpha_i (f_i - \zeta_i g_i)$ and Lemma 2.1, we obtain

$$\left(\sum_{i=1}^{p} \alpha_{i}(f_{i}-\zeta_{i}g_{i})\right)'\left(\gamma_{\lambda,E(\kappa)}(t)\right)<0,$$

that is,

$$\sum_{i=1}^{p} \alpha_{i} (f'_{i+} (\gamma_{\lambda,E(\kappa)}(t)) - \zeta_{i} g'_{i+} (\gamma_{\lambda,E(\kappa)}(t))) < 0.$$

Also, from $\beta \geq 0$ and $\kappa \in K$, then

$$\sum_{j=1}^{m} \beta_j h_j(\kappa) \le 0 \le \sum_{j=1}^{m} \beta_j h_j(\lambda).$$

Using the GqSLEP of $\sum_{j=1}^{m} \beta_j h_j$ and Lemma 2.1, one has

$$\left(\sum_{j=1}^m \beta_j h_j\right)_+' \left(\gamma_{\lambda, E(\kappa)}(t)\right) \leq 0.$$

Then

$$\sum_{j=1}^m \beta_j h'_{j+} \big(\gamma_{\lambda, E(\kappa)}(t) \big) \leq 0.$$

Therefore,

$$\sum_{i=1}^{p}\alpha_{i}\big(f_{i+}'\big(\gamma_{\lambda,E(\kappa)}(t)\big)-\zeta_{i}g_{i+}'\big(\gamma_{\lambda,E(\kappa)}(t)\big)\big)+\sum_{j=1}^{m}\beta_{j}h_{j+}'\big(\gamma_{\lambda,E(\kappa)}(t)\big)<0.$$

This is a contradiction to $(\alpha, \beta, \lambda, \zeta) \in K'$.

Theorem 3.6 Consider that $\kappa \in K$, $(\alpha, \beta, \lambda, \zeta) \in K'$ and $E(\lambda) = \lambda$. If $\sum_{i=1}^{p} \alpha_i (f_i - \zeta_i g_i) + \sum_{j=1}^{m} \beta_j h_j$ is a GpSLEP function and a geodesic E- η -semidifferentiable at λ , then $\frac{f(\kappa)}{g(\kappa)} \nleq \zeta$.

Theorem 3.7 (General converse duality) Let $\bar{\kappa} \in K$ and $(\kappa^*, \alpha^*, \beta^*, \zeta^*) \in K'$, $E(\kappa^*) = \kappa^*$, where $\zeta^* = \frac{f(\kappa^*)}{g(\kappa^*)} = \frac{f(\bar{\kappa})}{g(\bar{\kappa})} = (\zeta_i^*, i = 1, 2, ..., p)$. If $f_i - \zeta_i^* g_i(i \in P)$, $h_j(j \in \aleph)$ are all GSLEP functions and all geodesic E- η -semidifferentiable at κ^* , then $\bar{\kappa}$ is a weak efficient solution for (VFP).

Proof By using the hypotheses and Lemma 2.1, for any $\kappa \in K$, we obtain

$$(f_i(\kappa) - \zeta_i^* g_i(\kappa)) - (f_i(\kappa^*) - \zeta_i^* g_i(\kappa^*)) \ge f'_{i+} (\gamma_{\kappa^*, E(\kappa)}(t)) - \zeta_i g'_{i+} (\gamma_{\kappa^*, E(\kappa)}(t))$$

$$h_j(y) - h_j(\kappa^*) \ge h'_{j+} (\gamma_{\kappa^*, E(\kappa)}(t)).$$

Utilizing the first constraint condition for (VFD), $\alpha^* > 0$, $\beta^* \ge 0$, $\zeta^* \ge 0$, and the two inequalities above, we have

$$\sum_{i=1}^{p} \alpha_{i}^{*} \left(\left(f_{i}(\kappa) - \zeta_{i}^{*} g_{i}(\kappa) \right) - \left(f_{i}(\kappa^{*}) - \zeta_{i}^{*} g_{i}(\kappa^{*}) \right) \right) + \sum_{j=1}^{m} \beta_{j}^{*} \left(h_{j}(\kappa) - h_{j}(\kappa^{*}) \right)$$

$$\geq \sum_{i=1}^{p} \left(f_{i+}' \left(\gamma_{\kappa^{*}, E(\kappa)}(t) \right) - \zeta_{i} g_{i+}' \left(\gamma_{\kappa^{*}, E(\kappa)}(t) \right) \right)$$

$$+ \sum_{j=1}^{m} \beta_{j}^{*} h_{j+}' \left(\gamma_{\kappa^{*}, E(\kappa)}(t) \right)$$

$$\geq 0. \tag{23}$$

In view of $h_j(\kappa) \leq 0$, $\beta_j^* \geq 0$, $\beta_j^* h_j(\kappa^*) \geq (j \in \aleph)$, and $\zeta_i^* = \frac{f_i(\kappa^*)}{g_i(\kappa^*)}$ $(i \in P)$, then

$$\sum_{i=1}^{p} \alpha_i^* (f_i(\kappa) - \zeta_i^* g_i(\kappa)) \ge 0 \quad \forall y \in Y.$$
 (24)

Consider that $\bar{\kappa}$ is not a weak efficient solution for (VFP). From $\zeta_i^* = \frac{f_i(\bar{\kappa})}{g_i(\bar{\kappa})}$ ($i \in P$) and Lemma 3.1, it follows that $\bar{\kappa}$ is not a weak efficient solution for (VFP $_{\zeta^*}$). Hence, $\tilde{\kappa} \in K$ such that

$$f_i(\tilde{\kappa}) - \zeta_i^* g_i(\tilde{\kappa}) < f_i(\bar{\kappa}) - \zeta_i^* g_i(\bar{\kappa}) = 0, \quad i \in P.$$

Therefore $\sum_{i=1}^{p} \alpha_i^*(f_i(\tilde{\kappa}) - \zeta_i^* g_i(\tilde{\kappa})) < 0$. This is a contradiction to inequality (24). The proof of the theorem is completed.

Acknowledgements

The authors would like to thank the referees for valuable suggestions and comments, which helped the authors to improve this article substantially.

Funding

Authors declare that no funding was received for this article.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors conceived of the study, participated in its design and coordination, drafted the manuscript and participated in the sequence alignment. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, Serdang, Malaysia. ²Department of Mathematics, Taibah University, Al-Medina, Saudi Arabia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 September 2018 Accepted: 10 December 2018 Published online: 20 December 2018

References

- 1. Grinalatt, M., Linnainmaa, J.T.: Jensen's inquality, parameter uncertainty, and multiperiod investment. Rev. Asset Pricing Stud. 1(1), 1–34 (2011)
- 2. Kılıçman, A., Saleh, W.: Some inequalities for generalized s-convex functions. JP J. Geom. Topol. 17, 63–82 (2015)
- 3. Kılıçman, A., Saleh, W.: Generalized convex functions and their applications. In: Mathematical Analysis and Applications, Selected Topics, pp. 77–99 (2018)
- 4. Kılıçman, A., Saleh, W.: Preinvex functions and their applications. Symmetry 10(10), 493 (2018)
- 5. Ruel, J.J., Ayres, M.P.: Jensen's inequality predicts effects of environmental variation. Trends Ecol. Evol. 14(9), 361–366 (1999)
- Ewing, G.M.: Sufficient conditions for global minima of suitably convex functions from variational and control theory. SIAM Rev. 19, 202–220 (1977). https://doi.org/10.1137/1019037
- Preda, V., Stancu-Minasian, I.M.: Duality in multiple objective programming involving semilocally preinvex and related functions. Glas. Mat. 32, 153–165 (1997)
- 8. Preda, V.: Optimality and duality in fractional multiple objective programming involving semilocally preinvex and related functions. J. Math. Anal. Appl. 288, 365–382 (2003). https://doi.org/10.1016/S0022-247X(02)00460-2
- Hu, Q.J., Jian, J.B., Zheng, H.Y., Tang, C.M.: Semilocal E-convexity and semilocal E-convex programming. Bull. Aust. Math. Soc. 75, 59–74 (2007). https://doi.org/10.1017/S0004972700038983
- Fulga, C., Preda, V.: Nonlinear programming with E-preinvex and local E-preinvex functions. Eur. J. Oper. Res. 192(3), 737–743 (2009)
- Jiao, H., Liu, S.: Semilocal E-preinvexity and its applications in nonlinear multiple objective fractional programming. J. Inequal. Appl. 2011, 116 (2011)
- 12. Jiao, H., Liu, S., Pai, X.: A class of semilocal E-preinvex functions and its applications in nonlinear programming. J. Appl. Math. 2012, Article ID 629194 (2012)
- 13. Jiao, H.: A class of semilocal E-preinvex maps in Banach spaces with applications to nondifferentiable vector optimization. Int. J. Optim. Control Theor. Appl. 4(1), 1–10 (2013)
- Agarwal, R.P., Ahmad, I., Iqbal, A., Ali, S.: Generalized invex sets and preinvex functions on Riemannian manifolds. Taiwan. J. Math. 16(5), 1719–1732 (2012)
- 15. Bartolo, R., Germinario, A., Sánchez, M.: Convexity of domains of Riemannian manifolds. Ann. Glob. Anal. Geom. 21(1), 63–83 (2002)
- Ferrara, M., Mittielu, S.: Mond–Weir duality in vector programming with generalized invex functions on differentiable manifolds. Balk. J. Geom. Appl. 11(2), 80–87 (2006)
- Li, C., Mordukhovich, B.S., Wang, J., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21(4), 1523–1560 (2011)
- 18. Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Springer, Boston (1994)
- 19. Rapcsák, T.: Smooth Nonlinear Optimization in \mathbb{R}^n . Kluwer Academic, Dordrecht (1997)
- 20. Iqbal, A., Ali, S., Ahmad, I.: On geodesic E-convex sets, geodesic E-convex functions and E-epigraphs. J. Optim. Theory Appl. 55(1), 239–251 (2012)
- 21. Iqbal, A., Ahmad, I., Ali, S.: Some properties of geodesic semi-E-convex functions. Nonlinear Anal., Theory Methods Appl. **74**(17), 6805–6813 (2011)
- Kılıçman, A., Saleh, W.: On geodesic strongly E-convex sets and geodesic strongly E-convex functions. J. Inequal. Appl. 2015, 297 (2015)
- 23. Niculescu, C.: Optimality and duality in multiobjective fractional programming involving ρ -semilocally type I-preinvex and related functions. J. Math. Anal. Appl. **335**(1), 7–19 (2007)