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Abstract
The authors define a class of functions on Riemannian manifolds, which are called
geodesic semilocal E-preinvex functions, as a generalization of geodesic semilocal
E-convex and geodesic semi E-preinvex functions, and some of its properties are
established. Furthermore, a nonlinear fractional multiobjective programming is
considered, where the functions involved are geodesic E-η-semidifferentiability,
sufficient optimality conditions are obtained. A dual is formulated and duality results
are proved by using concepts of geodesic semilocal E-preinvex functions, geodesic
pseudo-semilocal E-preinvex functions, and geodesic quasi-semilocal E-preinvex
functions.
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1 Introduction
Convexity and generalized convexity play a significant role in many fields, for example, in
biological system, economy, optimization, and so on [1–5].

Generalized convex functions, labeled as semilocal convex functions, were introduced
by Ewing [6] by using more general semilocal preinvexity and η-semidifferentiability. After
that optimality conditions for weak vector minima were given [7]. Also, optimality condi-
tions and duality results for a nonlinear fractional involving η-semidifferentiability were
established [8].

Furthermore, some optimality conditions and duality results for semilocal E-convex pro-
gramming were established [9]. E-convexity was extended to E-preinvexity [10]. Recently,
semilocal E-preinvexity (SLEP) and some of its applications were introduced [11–13].

Generalized convex functions in manifolds, such as Riemannian manifolds, were stud-
ied by many authors; see [14–17]. Udrist [18] and Rapcsak [19] considered a generalization
of convexity called geodesic convexity. In this setting, the linear space is replaced by a Rie-
mannian manifold and the line segment by a geodesic one. In 2012, geodesic E-convex
(GEC) sets and geodesic E-convex (GEC) functions on Riemannian manifolds were stud-
ied [20]. Moreover, geodesic semi E-convex (GsEC) functions were introduced [21]. Re-
cently, geodesic strongly E-convex (GSEC) functions were introduced and some of their
properties were discussed [22].
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2 Geodesic semilocal E-preinvexity
Assume that ℵ is a complete n-dimensional Riemannian manifold with Riemannian con-
nection �. Let κ1,κ2 ∈ ℵ and γ : [0, 1] −→ ℵ be a geodesic joining the points κ1 and κ2,
which means that γκ1,κ2 (0) = κ2 and γκ1,κ2 (1) = κ1.

Definition 2.1 A nonempty set B ⊂ ℵ is said to be
1. a geodesic E-invex (GEI) with respect to η if there is exactly one geodesic

γE(κ1),E(κ2) : [0, 1] −→ ℵ such that

γE(κ1),E(κ2)(0) = E(κ2), γ́E(κ1),E(κ2) = η
(
E(κ1), E(κ2)

)
, γE(κ1),E(κ2)(t) ∈ B,

∀κ1,κ2 ∈ B and t ∈ [0, 1].
2. a geodesic local E-invex (GLEI) with respect to η if there is u(κ1,κ2) ∈ (0, 1] such

that ∀t ∈ [0, u(κ1,κ2)],

γE(κ1),E(κ2)(t) ∈ B ∀κ1,κ2 ∈ B. (1)

3. a geodesic local starshaped E-convex if there is a map E such that, corresponding to
each pair of points κ1,κ2 ∈ A, there is a maximal positive number u(κ1,κ2) ≤ 1 such
as

γE(κ1),E(κ2) ∈ A, ∀t ∈ [
0, u(κ1,κ2)

]
. (2)

Definition 2.2 A function f : A ⊂ ℵ −→R is said to be
1. a geodesic E-preinvex (GEP) on A ⊂ ℵ with respect to η if A is a GEI set and

f
(
γE(κ1),E(κ2)(t)

) ≤ tf
(
E(κ1)

)
+ (1 – t)f

(
E(κ2)

)
, ∀κ1,κ2 ∈ A, t ∈ [0, 1];

2. a geodesic semi E-preinvex (GSEP) on A with respect to η if A is a GEI set and

f
(
γE(κ1),E(κ2)(t)

) ≤ tf (κ1) + (1 – t)f (κ2), ∀κ1,κ2 ∈ A, t ∈ [0, 1].

3. a geodesic local E-preinvex (GLEP) on A ⊂ ℵ with respect to η if, for any κ1,κ2 ∈ A,
there exists 0 < v(κ1,κ2) ≤ u(κ1,κ2) such that A is a GLEI set and

f
(
γE(κ1),E(κ2)(t)

) ≤ tf
(
E(κ1)

)
+ (1 – t)f

(
E(κ2)

)
, ∀t ∈ [

0, v(κ1,κ2)
]
.

Definition 2.3 A function f : ℵ −→ R is a geodesic semilocal E-convex (GSLEC) on a
geodesic local starshaped E-convex set B ⊂ ℵ if, for each pair of κ1,κ2 ∈ B (with a maxi-
mal positive number u(κ1,κ2) ≤ 1 satisfying 2), there exists a positive number v(κ1,κ2) ≤
u(κ1,κ2) satisfying

f
(
γE(κ1),E(κ2)(t)

) ≤ tf (κ1) + (1 – t)f (κ2), ∀t ∈ [
0, v(κ1,κ2)

]
.

Remark 2.1 Every GEI set with respect to η is a GLEI set with respect to η, where
u(κ1,κ2) = 1, ∀κ1,κ2 ∈ ℵ. On the other hand, their converses are not necessarily true, and
we can see that in the next example.
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Example 2.1 Put A = [ –4, –1) ∪ [1, 4],

E(κ) =

⎧
⎨

⎩
κ2 if |κ| ≤ 2,

–1 if |κ| > 2;

η(κ , ι) =

⎧
⎪⎪⎨

⎪⎪⎩

κ – ι if κ ≥ 0, ι ≥ 0 or κ ≤ 0, ι ≤ 0,

–1 – ι if κ > 0, ι ≤ 0 or κ ≥ 0, ι < 0,

1 – ι if κ < 0, ι ≥ 0 or κ ≤ 0, ι > 0;

γκ ,ι(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ι + t(κ – l) if κ ≥ 0, ι ≥ 0 or κ ≤ 0, ι ≤ 0,

ι + t(–1 – ι) if κ > 0, ι ≤ 0 or κ ≥ 0, ι < 0,

ι + t(1 – ι) if κ < 0, ι ≥ 0 or κ ≤ 0, ι > 0.

Hence A is a GLEI set with respect to η. However, when κ = 3, ι = 0, there is t1 ∈ [0, 1] such
that γE(κ),E(ι)(t1) = –t1, then if t1 = 1, we obtain γE(κ),E(ι)(t1) /∈ A.

Definition 2.4 A function f : ℵ −→ R is GSLEP on B ⊂ ℵ with respect to η if, for any
κ1,κ2 ∈ B, there is 0 < v(κ1,κ2) ≤ u(κ1,κ2) ≤ 1 such that B is a GLEI set and

f
(
γE(κ1),E(κ2)(t)

) ≤ tf (κ1) + (1 – t)f (κ2), ∀t ∈ [
0, v(κ1,κ2)

]
. (3)

If

f
(
γE(κ1),E(κ2)(t)

) ≥ tf (κ1) + (1 – t)f (κ2), ∀t ∈ [
0, v(κ1,κ2)

]
,

then f is GSLEP on B.

Remark 2.2 Any GSLEC function is a GSLEP function. Also, any GSEP function with re-
spect to η is a GSLEP function. On the other hand, their converses are not necessarily true.
The next example shows SLGEP, which is neither a GSLEC function nor a GSEP function.

Example 2.2 Assume that E : R−→ R is given as

E(m) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if m < 0,

1 if 1 < m ≤ 2,

m if 0 ≤ m ≤ 1 or m > 2;

and the map η : R×R−→ R is defined as

η(m, n) =

⎧
⎨

⎩
0 if m = n,

1 – m if m �= n;

also,

γm,n(t) =

⎧
⎨

⎩
n if m = n,

n + t(1 – m) if m �= n.
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Assume that h : R −→ R, where

h(m) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if 1 < m ≤ 2,

1 if m > 2,

–m + 1 if 0 ≤ m ≤ 1,

–m + 2 if m < 0;

and since R is a geodesic local starshaped E-convex set and a geodesic local E-invex set
with respect to η. Then h is a GSLEP on R with respect to η. However, when m0 = 2, n0 = 3
and for any v ∈ (0, 1], there is a sufficiently small t0 ∈ (0, v] such that

h
(
γE(m0),E(n0)(t0)

)
= 1 > (1 – t0) = t0h(m0) + (1 – t0)h(n0).

Then h(m) is not a GSLEC function on R.
Similarly, taking m1 = 1, n1 = 4, we have

h
(
γE(m1),E(n1)(t1)

)
= 1 > (1 – t1) = t1h(m1) + (1 – t1)h(n1)

for some t1 ∈ [0, 1].

Hence, h(m) is not a GSEP function on R with respect to η.

Definition 2.5 A function h : S ⊂ ℵ −→ R, where S is a GLEI set, is said to be a geodesic
quasi-semilocal E-preinvex (GqSLEP) (with respect to η) if, for all κ1,κ2 ∈ S satisfying
h(κ1) ≤ h(κ2), there is a positive number v(κ1,κ2) ≤ u(κ1,κ2) such that

h
(
γE(κ1),E(κ2)(t)

) ≤ h(κ2), ∀t ∈ [
0, v(κ1,κ2)

]
.

Definition 2.6 A function h : S ⊂ ℵ −→ R, where S is a GLEI set, is said to be a geodesic
pseudo-semilocal E-preinvex (GpSLEP) (with respect to η) if, for all κ1,κ2 ∈ S satisfying
h(κ1) < h(κ2), there are positive numbers v(κ1,κ2) ≤ u(κ1,κ2) and w(κ1,κ2) such that

h
(
γE(κ1),E(κ2)(t)

) ≤ h(κ2) – tw(κ1,κ2), ∀t ∈ [
0, v(κ1,κ2)

]
.

Remark 2.3 Every GSLEP on a GLEI set with respect to η is both a GqELEP function and
a GpSLEP function.

Definition 2.7 A function h : S −→ R is called a geodesic E-η- semidifferentiable at κ∗ ∈
S, where S ⊂ ℵ is a GLEI set with respect to η, if E(κ∗) = κ∗ and

h′
+
(
γκ∗ ,E(κ)(t)

)
= lim

t−→0+

1
t
[
h
(
γκ∗ ,E(κ)(t)

)
– h

(
κ∗)]

exist for every κ ∈ S.

Remark 2.4
1. If ℵ = R

n, then the geodesic E-η- semidifferentiable is E-η-semidifferentiable [11].
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2. If ℵ = R
n and E = I , then the geodesic E-η-semidifferentiable is the

η-semidifferentiability [23].
3. If ℵ = R

n, E = I , and η(κ ,κ∗) = κ – κ∗, then the geodesic E-η-semidifferentiable is
the semidifferentiability [11].

Lemma 2.1
1. Assume that h is a GSLEP (E-preconcave) and a geodesic E-η-semidifferentiable at

κ∗ ∈ S ⊂ ℵ, where S is a GLEI set with respect to η. Then

h(κ) – h
(
κ∗) ≥ (≤)h′

+
(
γκ∗ ,E(κ)(t)

)
, ∀κ ∈ S.

2. Let h be a GqSLEP (GpSLEP) and a geodesic E-η-semidifferentiable at κ∗ ∈ S ⊂ ℵ,
where S is a LGEI set with respect to η. Hence

h(κ) ≤ (<)h
(
κ∗) ⇒ h′

+
(
γκ∗ ,E(κ)(t)

) ≤ (<)0, ∀κ ∈ S.

The above lemma is proved directly by using definitions (Definition 2.4, Definition 2.5,
Definition 2.6, and Definition 2.4).

Theorem 2.1 Let f : S ⊂ ℵ −→ R be a GLEP function on a GLEI set S with respect to η,
then f is a GSLEP function iff f (E(κ)) ≤ f (κ), ∀κ ∈ S.

Proof Assume that f is a GSLEP function on set S with respect to η, then ∀κ1,κ2 ∈ S, there
is a positive number v(κ1,κ2) ≤ u(κ1,κ2) where

f
(
γE(κ1),E(κ2)(t)

) ≤ tf (κ2) + (1 – t)f (κ1), t ∈ [
0, v(κ1,κ2)

]
.

By letting t = 0, then f (E(κ1)) ≤ f (κ1), ∀κ1 ∈ S.
Conversely, consider that f is a GLEP function on a GLEI set S, then for any κ1,κ2 ∈ S,

there exist u(κ1,κ2) ∈ (0, 1] (1) and v(κ1,κ2) ∈ (0, u(κ1,κ2)] such that

f
(
γE(κ1),E(κ2)(t)

) ≤ tf
(
E(κ1)

)
+ (1 – t)f

(
E(κ2)

)
, t ∈ [

0, v(κ1,κ2)
]
.

Since f (E(κ1)) ≤ f (κ1), ∀κ1 ∈ S, then

f
(
γE(κ1),E(κ2)(t)

) ≤ tf (κ1) + (1 – t)f (κ2), t ∈ [
0, v(κ1,κ2)

]
. �

Definition 2.8 The set ω = {(κ ,α) : κ ∈ B ⊂ ℵ,α ∈ R} is said to be a GLEI set with re-
spect to η corresponding to ℵ if there are two maps η, E and a maximal positive number
u((κ1,α1), (κ2,α2)) ≤ 1 for each (κ1,α1), (κ2,α2) ∈ ω such that

(
γE(κ1),E(κ2)(t), tα1 + (1 – t)α2

) ∈ ω, ∀t ∈ [
0, u

(
(κ1,α1), (κ2,α2)

)]
.

Theorem 2.2 Let B ⊂ ℵ be a GLEI set with respect to η. Then f is a GSLEP function on B
with respect to η iff its epigraph

ωf =
{

(κ1,α) : κ1 ∈ B, f (κ1) ≤ α,α ∈R
}

is a GLEI set with respect to η corresponding to ℵ.
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Proof Suppose that f is a GSLEP on B with respect to η and (κ1,α1), (κ2,α2) ∈ ωf , then
κ1,κ2 ∈ B, f (κ1) ≤ α1, f (κ2) ≤ α2. By applying Definition 2.1, we obtain γE(κ1),E(κ2)(t) ∈ B,
∀t ∈ [0, u(κ1,κ2)].

Moreover, there is a positive number v(κ1,κ2) ≤ u(κ1,κ2) such that

f
(
γE(κ1),E(κ2)(t), tα1 + (1 – t)α2

) ∈ ωf , ∀t ∈ [
0, v(κ1,κ2)

]
.

Conversely, if ωf is a GLEI set with respect to η corresponding to ℵ, then for any points
(κ1, f (κ1)), (κ2, f (κ2)) ∈ ωf , there is a maximal positive number u((κ1, f (κ1)), (κ2, f (κ2)) ≤ 1
such that

(
γE(κ1),E(κ2)(t), tf (κ1) + (1 – t)f (κ2)

) ∈ ωf , ∀t ∈ [
0, u

((
κ1, f (κ1)

)
,
(
κ2, f (κ2)

))]
.

That is, γE(κ1),E(κ2)(t) ∈ B,

f
(
γE(κ1),E(κ2)(t)

) ≤ tf (κ1) + (1 – t)f (κ2), t ∈ [
0, u

((
κ1, f (κ1)

)
,
(
κ2, f (κ2)

))]
.

Thus, B is a GLEI set and f is a GSLEP function on B. �

Theorem 2.3 If f is a GSLEP function on a GLEI set B ⊂ ℵ with respect to η, then the level
Kα = {κ1 ∈ B : f (κ1) ≤ α} is a GLEI set for any α ∈R.

Proof For any α ∈ R and κ1,κ2 ∈ Kα , then κ1,κ2 ∈ B and f (κ1) ≤ α, f (κ2) ≤ α. Since B is a
GLEI set, then there is a maximal positive number u(κ1,κ2) ≤ 1 such that

γE(κ1),E(κ2)(t) ∈ B, ∀t ∈ [
0, u(κ1,κ2)

]
.

In addition, since f is GSLEP, there is a positive number v(κ1,κ2) ≤ u(y1, y2) such that

f
(
γE(κ1),E(κ2)(t)

) ≤ tf (κ1) + (1 – t)f (κ2)

≤ tα + (1 – t)α

= α, ∀t ∈ [
0, v(κ1,κ2)

]
.

That is, γE(κ1),E(κ2)(t) ∈ Kα , ∀t ∈ [0, v(κ1,κ2)]. Therefore, Kα is a GLEI set with respect to η

for any α ∈R. �

Theorem 2.4 Let f : B ⊂ ℵ −→ R, where B is a GLEI. Then f is a GSLEP function with
respect to η if,f for each pair of points κ1,κ2 ∈ B, there is a positive number v(κ1,κ2) ≤
u(κ1,κ2) ≤ 1 such that

f
(
γE(κ1),E(κ2)(t)

) ≤ tα + (1 – t)β , ∀t ∈ [
0, v(κ1,κ2)

]
.

Proof Let κ1,κ2 ∈ B and α,β ∈ R such that f (κ1) < α and f (κ2) < β . Since B is GLEI, there
is a maximal positive number u(κ1,κ2) ≤ 1 such that

γE(κ1),E(κ2)(t) ∈ B, ∀t ∈ [
0, u(κ1,κ2)

]
.
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In addition, there is a positive number v(κ1,κ2) ≤ u(κ1,κ2), where

f
(
γE(κ1),E(κ2)(t)

) ≤ tα + (1 – t)β , ∀t ∈ [
0, v(κ1,κ2)

]
.

Conversely, let (κ1,α) ∈ ωf and (κ2,β) ∈ ωf , then κ1,κ2 ∈ B, f (κ1) < α, and f (κ2) < β . Hence,
f (κ1) < α + ε and f (κ2) < β + ε hold for any ε > 0. According to the hypothesis for κ1,κ2 ∈ B,
there is a positive number v(κ1,κ2) ≤ u(κ1,κ2) ≤ 1 such that

f
(
γE(κ1),E(κ2)(t)

) ≤ tα + (1 – t)β + ε, ∀t ∈ [
0, v(κ1,κ2)

]
.

Let ε −→ 0+, then

f
(
γE(κ1),E(κ2)(t)

) ≤ tα + (1 – t)β , ∀t ∈ [
0, v(κ1,κ2)

]
.

That is, (γE(κ1),E(κ2)(t), tα + (1 – t)β) ∈ ωf , ∀t ∈ [0, v(κ1,κ2)].
Therefore, ωf is a GLEI set corresponding to ℵ. From Theorem 2.2 it follows that f is a

GSLEP on B with respect to η. �

3 Optimality criteria
In this section, let us consider the nonlinear fractional multiobjective programming prob-
lem

(VFP)

⎧
⎪⎪⎨

⎪⎪⎩

minimize f (κ)
g(κ) = ( f1(κ)

g1(κ) , . . . , fp(κ)
gp(κ) ),

subject to hj(κ) ≤ 0, j ∈ Q = 1, 2, . . . , q

κ ∈ K0;

where K0 ⊂ ℵ is a GLEI set and gi(κ) > 0, ∀κ ∈ K0, i ∈ P = 1, 2, . . . , p.
Let f = (f1, f2, . . . , fp), g = (g1, g2, . . . , gp), and h = (h1, h2, . . . , hq)
and denote that K = {κ : hj(κ) ≤ 0, j ∈ Q,κ ∈ K0}, the feasible set of problem (VFP).
For κ∗ ∈ K , we put

Q
(
κ∗) =

{
j : hj

(
κ∗) = 0, j ∈ Q

}
, L

(
κ∗) =

Q
Q(κ∗)

.

We also formulate the nonlinear multiobjective programming problem as follows:

(VFPλ)

⎧
⎪⎪⎨

⎪⎪⎩

minimize (f1(κ) – λ1g1(κ), . . . fp(κ) – λpgp(κ)),

subject to hj(κ) ≤ 0, j ∈ Q = 1, 2, . . . , q

κ ∈ K0;

where λ = (λ1,λ2, . . . ,λp) ∈R
p.

The following lemma connects the weak efficient solutions for (VFP) and (VFPλ).

Lemma 3.1 A point κ∗ is a weak efficient solution for (VFPλ) iff κ∗ is a weak efficient so-
lution for (VFP∗

λ), where λ∗ = (λ∗
1, . . . ,λ∗

p) = ( f1(κ∗)
g1(κ∗) , . . . , fp(κ∗)

gp(κ∗) ).
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Proof Assume that there is a feasible point κ ∈ K , where

fi(κ) – λ∗
i gi(κ) < fi

(
κ∗) – λ∗

i gi
(
κ∗), ∀i ∈ Q

�⇒

fi(κ) <
fi(κ∗)

gi(κ∗)gi(κ)

�⇒
fi(κ)
gi(κ)

<
fi(κ∗)
gi(κ∗)

,

which is a contradiction to the weak efficiency of κ∗ for (VFP).
Presently, let us take κ ∈ K as a feasible point such that

fi(κ)
gi(κ)

<
fi(κ∗)
gi(κ∗)

= λ∗
i ,

then fi(κ) –λ∗
i gi(κ) < 0 = fi(κ∗) –λ∗

i gi(κ∗), ∀i ∈ Q, which is again a contradiction to the weak
efficiency of κ∗ for (VFP∗

λ). �

Next, some sufficient optimality conditions for the problem (VFP) are established.

Theorem 3.1 Let κ̄ ∈ K , E(κ̄) = κ̄ and f , h be GSLEP and g be a geodesic semilocal E-
preincave, and they are all geodesic E-η- semidifferentiable at κ̄ . Further, assume that there
are ζ o = (ζ o

i , i = 1, . . . , p) ∈R
p and ξ o = (ξ o

j , j = 1, . . . , m) ∈R
m such that

ζ o
i f ′

i+
(
γκ̄ ,E(̂κ)(t)

)
+ ξ o

j h′
j+
(
γκ̄ ,E(̂κ)(t)

) ≥ 0 ∀κ ∈ K , t ∈ [0, 1], (4)

g ′
i+

(
γκ̄ ,E(κ)(t)

) ≤ 0, ∀κ ∈ K , i ∈ P, (5)

ξ oh(κ̄) = 0 (6)

ζ o ≥ 0, ξ o ≥ 0. (7)

Then κ̄ is a weak efficient solution for (VFP).

Proof By contradiction, let κ̄ be not a weak efficient solution for (VFP), then there exists
a point κ̂ ∈ K such that

fi (̂κ)
gi (̂κ)

<
fi(κ̄)
gi(κ̄)

, i ∈ P. (8)

By the above hypotheses and Lemma 3.1, we have

fi (̂κ) – fi(κ̄) ≥ f ′
i+

(
γκ̄ ,E(̂κ)(t)

)
, i ∈ P (9)

gi (̂κ) – gi(κ̄) ≤ g ′
i+

(
γκ̄ ,E(̂κ)(t)

)
, i ∈ P (10)

hi (̂κ) – hi(κ̄) ≥ h′
j+
(
γκ̄ ,E(̂κ)(t)

)
, j ∈ Q. (11)
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Multiplying (9) by ζ o
i and (11) by ξ o

j , we get

p∑

i=1

ζ o
i
(
fi (̂κ) – fi(κ̄)

)
+

m∑

j=1

ξ o
j
(
hj (̂κ) – hj(κ̄)

)

≥ ζ o
i f ′

i+
(
γκ̄ ,E(̂κ)(t)

)
+ ξ o

j h′
j+
(
γκ̄ ,E(̂κ)(t)

) ≥ 0. (12)

Since κ̂ ∈ K , ξ o ≥ 0 by (6) and (12), we have

p∑

i=1

ζ o
i
(
fi (̂κ) – fi(κ̄)

) ≥ 0. (13)

Utilizing (7) and (13), there is at least i0 (1 ≤ i0 ≤ p) such that

fi0 (̂κ) ≥ fi0 (κ̄). (14)

On the other hand, (5) and (10) imply

gi (̂κ) ≤ gi(κ̄), i ∈ P. (15)

By using (14), (15), and g > 0, we have

fi0 (̂κ)
gi0 (̂κ)

≥ fi0 (κ̄)
gi0 (κ̄)

, (16)

which is a contradiction to 8, then the proof of the theorem is completed. �

Similarly we can prove the next theorem.

Theorem 3.2 Consider that κ̄ ∈ B, E(κ̄) = κ̄ and f , h are geodesic E-η-semidifferentiable
at κ̄ . If there exist ζ o ∈R

n and ξ o ∈R
m such that conditions (4)–(7) hold and ζ of (x)+ξ oh(x)

is a GSLEP function, then κ̄ is a weak efficient solution for (VFP).

Theorem 3.3 Consider that κ̄ ∈ B, E(κ̄) = κ̄ and λo
i = fi(κ̄)

gi(κ̄) (i ∈ P) are all pSLGEP func-
tions and hj(κ) (j ∈ ℵ(κ̄)) are all GqSLEP functions and f , g , h are all geodesic E-η-
semidifferentiable at κ̄ . If there are ζ o ∈R

p and ξ o ∈R
m such that

p∑

i=1

ζ o
i
(
f ′
i+

(
γκ̄ ,E(κ)(t)

)
– λo

i g ′
i+

(
γκ̄ ,E(κ)(t)

))
+ ξ oh′

i+
(
γκ̄ ,E(κ)(t)

) ≥ 0 (17)

ξ oh(κ̄) = 0, (18)

ζ o ≥ 0, ξ o ≥ 0, (19)

then κ̄ is a weak efficient solution for (VFP).

Proof Assume that κ̄ is not a weak efficient solution for (VFP). Therefore, there exists
κ∗ ∈ B, which yields

fi(κ∗)
gi(κ∗)

<
fi(κ̄)
gi(κ̄)

.
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Then

fi
(
κ∗) – λo

i gi
(
κ∗) < 0, i ∈ P,

which means that

fi
(
κ∗) – λo

i gi
(
κ∗) < fi(κ̄) – λo

i gi(κ̄) < 0, i ∈ P.

By the pSLGEP of (fi(κ) – λo
i gi(κ)) (i ∈ P) and Lemma 2.1, we have

f ′
i+

(
γκ̄ ,E(κ)(t)

)
– λo

i g ′
i+

(
γκ̄ ,E(κ)(t)

)
, i ∈ P.

Utilizing ζ o ≥ 0, then

p∑

i=1

ζ o
i
(
f ′
i+

(
γκ̄ ,E(κ)(t)

)
– λo

i g ′
i+

(
γκ̄ ,E(κ)(t)

))
< 0. (20)

For h(κ∗) ≤ 0 and hj(κ̄) = 0, j ∈ ℵ(κ̄), we have hj(κ∗) ≤ hj(κ̄), ∀j ∈ ℵ(κ̄).
By the GqSLEP of hj and Lemma 2.1, we have

hj+
(
γκ̄ ,E(κ)(t)

) ≤ 0, ∀j ∈ ℵ(κ̄).

Considering ξ o ≥ 0 and ξ o
j = 0, j ∈ ℵ(κ̄), then

m∑

j=1

ξ o
j h′

j+
(
γκ̄ ,E(κ∗)(t)

) ≤ 0. (21)

Hence, by (20) and (21), we have

p∑

i=1

ζ o
i
(
f ′
i+

(
γκ̄ ,E(κ∗)(t)

)
– λo

i g ′
i+

(
γκ̄ ,E(κ∗)(t)

))
+ ξ oh′

i+
(
γκ̄ ,E(κ∗)(t)

)
< 0, (22)

which is a contradiction to relation (17) at κ∗ ∈ B. Therefore, κ̄ is a weak efficient solution
for (VFP). �

Theorem 3.4 Consider κ̄ ∈ B, E(κ̄) = κ̄ and λo
i = fi(κ̄)

gi(κ̄) (i ∈ P). Also, assume that f , g , h are
geodesic E-η-semidifferentiable at κ̄ . If there are ζ o ∈R

p and ξ o ∈R
m such that conditions

(17)–(19) hold and
∑p

i=1 ζ o
i (fi(κ) – λo

i gi(κ)) + ξ o
ℵ(κ̄)hℵ(κ̄)(κ) is a GpSLEP function, then κ̄ is a

weak efficient solution for (VFP).

Corollary 3.1 Let κ̄ ∈ B, E(κ̄) = κ̄ and λo
i = fi(κ̄)

gi(κ̄) (i ∈ P). Further, let f , hℵ(κ̄) be all GSLEP
functions, g be a geodesic semilocal E-preincave function, and f , g , h be all geodesic E-η-
semidifferentiable at κ̄ . If there exist ζ o ∈ R

p and ξ o ∈ R
m such that conditions (17)–(19)

hold, then κ̄ is a weak efficient solution for (VFP).
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The dual problem for (VFP) is formulated as follows:

(VFD)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize (ζi, i = 1, 2, . . . , p),

subject to
∑p

i=1 αi(f ′
i+(γλ,E(κ)(t)) – ζig ′

i+(γλ,E(κ)(t))) +
∑m

j=1 βjh′
j+(γλ,E(κ)(t)) ≥ 0

κ ∈ K0, t ∈ [0, 1],

fi(λ) – ζigi(λ) ≥ 0, i ∈ P, βjhj(λ) ≥ 0, j ∈ ℵ;

where ζ = (ζi, i = 1, 2, . . . , p) ≥ 0, α = (αi, i = 1, 2, . . . , p) > 0, β = (βi, i = 1, 2, . . . , m) ≥ 0, λ ∈
K0.

Denote the feasible set problem (VFD) by K ′.

Theorem 3.5 (General weak duality) Let κ ∈ K , (α,β ,λ, ζ ) ∈ K ′, and E(λ) = λ. If
∑p

i=1 αi(fi – ζigi) is a GpSLEP function and
∑m

j=1 βjhj is a GqSLEP function and they are
all geodesic E-η-semidifferentiable at λ, then f (κ)

g(κ) � ζ .

Proof From α > 0 and (α,β ,λ, ζ ) ∈ K ′, we have

p∑

i=1

αi
(
fi(κ) – ζigi(κ)

)
< 0 ≤

p∑

i=1

αi
(
fi(λ) – ζigi(λ)

)
.

By the GpSLEP of
∑p

i=1 αi(fi – ζigi) and Lemma 2.1, we obtain

( p∑

i=1

αi(fi – ζigi)

)′

+

(
γλ,E(κ)(t)

)
< 0,

that is,

p∑

i=1

αi(f ′
i+

(
γλ,E(κ)(t)

)
– ζig ′

i+
(
γλ,E(κ)(t)]

)
< 0.

Also, from β ≥ 0 and κ ∈ K , then

m∑

j=1

βjhj(κ) ≤ 0 ≤
m∑

j=1

βjhj(λ).

Using the GqSLEP of
∑m

j=1 βjhj and Lemma 2.1, one has

( m∑

j=1

βjhj

)′

+

(
γλ,E(κ)(t)

) ≤ 0.

Then

m∑

j=1

βjh′
j+
(
γλ,E(κ)(t)

) ≤ 0.
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Therefore,

p∑

i=1

αi
(
f ′
i+

(
γλ,E(κ)(t)

)
– ζig ′

i+
(
γλ,E(κ)(t)

))
+

m∑

j=1

βjh′
j+
(
γλ,E(κ)(t)

)
< 0.

This is a contradiction to (α,β ,λ, ζ ) ∈ K ′. �

Theorem 3.6 Consider that κ ∈ K , (α,β ,λ, ζ ) ∈ K ′ and E(λ) = λ. If
∑p

i=1 αi(fi – ζigi) +
∑m

j=1 βjhj is a GpSLEP function and a geodesic E-η-semidifferentiable at λ, then f (κ)
g(κ) � ζ .

Theorem 3.7 (General converse duality) Let κ̄ ∈ K and (κ∗,α∗,β∗, ζ ∗) ∈ K ′, E(κ∗) = κ∗,
where ζ ∗ = f (κ∗)

g(κ∗) = f (κ̄)
g(κ̄) = (ζ ∗

i , i = 1, 2, . . . , p). If fi – ζ ∗
i gi(i ∈ P), hj(j ∈ ℵ) are all GSLEP func-

tions and all geodesic E-η-semidifferentiable at κ∗, then κ̄ is a weak efficient solution for
(VFP).

Proof By using the hypotheses and Lemma 2.1, for any κ ∈ K , we obtain

(
fi(κ) – ζ ∗

i gi(κ)
)

–
(
fi
(
κ∗) – ζ ∗

i gi
(
κ∗)) ≥ f ′

i+
(
γκ∗ ,E(κ)(t)

)
– ζig ′

i+
(
γκ∗ ,E(κ)(t)

)

hj(y) – hj
(
κ∗) ≥ h′

j+
(
γκ∗ ,E(κ)(t)

)
.

Utilizing the first constraint condition for (VFD), α∗ > 0,β∗ ≥ 0, ζ ∗ ≥ 0, and the two
inequalities above, we have

p∑

i=1

α∗
i
((

fi(κ) – ζ ∗
i gi(κ)

)
–

(
fi
(
κ∗) – ζ ∗

i gi
(
κ∗))) +

m∑

j=1

β∗
j
(
hj(κ) – hj

(
κ∗))

≥
p∑

i=1

(
f ′
i+

(
γκ∗ ,E(κ)(t)

)
– ζig ′

i+
(
γκ∗ ,E(κ)(t)

))

+
m∑

j=1

β∗
j h′

j+
(
γκ∗ ,E(κ)(t)

)

≥ 0. (23)

In view of hj(κ) ≤ 0, β∗
j ≥ 0,β∗

j hj(κ∗) ≥ (j ∈ ℵ), and ζ ∗
i = fi(κ∗)

gi(κ∗) (i ∈ P), then

p∑

i=1

α∗
i
(
fi(κ) – ζ ∗

i gi(κ)
) ≥ 0 ∀y ∈ Y . (24)

Consider that κ̄ is not a weak efficient solution for (VFP). From ζ ∗
i = fi(κ̄)

gi(κ̄) (i ∈ P) and
Lemma 3.1, it follows that κ̄ is not a weak efficient solution for (VFPζ∗ ). Hence, κ̃ ∈ K
such that

fi(κ̃) – ζ ∗
i gi(κ̃) < fi(κ̄) – ζ ∗

i gi(κ̄) = 0, i ∈ P.

Therefore
∑p

i=1 α∗
i (fi(κ̃) – ζ ∗

i gi(κ̃)) < 0. This is a contradiction to inequality (24). The proof
of the theorem is completed. �
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