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Abstract
There are almost no results in mathematical literature on the exponential stability of
third-order delay differential equations. One of the main purposes of the paper is to
fill this gap. We propose an approach to the study of stability for third-order delay
differential equations.
On the basis of these results, new possibilities of stabilization by delay feedback

input control are proposed.
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1 Introduction
Stability of the first- and second-order functional differential equations were intensively
studied in last decade (see, for example, [1–4] and the bibliography cited therein). Essen-
tially less recent publications study third-order equations. The book by Seshadev Padhi
and Smita Pati [5] demonstrates a new wave of the interest in the theory of third-order
differential equations. Note that the previous book by Greguš [6] devoted to third-order
equations was published more than 30 years ago. Various physical models based on third-
order equations were presented in the recent book [5], let us start with them. Differential
equations of the form

x′′′ + a(t)x′′ + b(t)x′(t) + c(t)x(t) = f (t) (1.1)

arise in the analysis of entry-flow phenomenon. A problem of hydrodynamics was studied
in many branches of engineering [7]. In [8] an integro-differential equation of the third-
order modeling the steady flow of water in a long rectangular tank, oscillating horizontally
near a resonant frequency, was studied. Note also the results of [9] on this object. The
model describing the ionic mechanisms underlying the initiation and propagation of ac-
tion potentials in the squid giant axon was proposed by Nobel Prize laureates of 1963 Alan
Llyod Hodgkin and Andrew Huxley. A reduced version of this model was proposed by
Nagumo (see for example [10]), suggesting a third-order differential equation as a model
which presents many of the futures of the Hodgkin–Huxley equations.
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Various applications of the third-order equations are based on the use of the delay feed-
back control for stabilization and this leads to the analysis of the asymptotic properties
and stability of delay differential equations. We choose the control in the form

u(t) = –
2∑

i=0

m∑

j=1

pij(t)x(i)(t – τij(t)
)
,

where pij(t) and τij(t) are essentially bounded measurable functions for j = 1, . . . , m, i =
0, 1, 2, where τij(t) ≥ 0. In almost all real systems, we have τij(t) > 0 since delay appears in
receiving signal and in reactions on this signal.

Adding this control u(t) in the right-hand side of equation (1.1), we arrive at the equation

x′′′ + a(t)x′′ + b(t)x′(t) + c(t)x(t) +
2∑

i=0

m∑

j=1

pij(t)x(i)(t – τij(t)
)

= f (t).

Various results on stability of third-order delay differential equations were presented in
[11–20]. All noted results on stability were based on the method of Lyapunov’s functions.
Results on stability based on the analysis of the characteristic equations for nth-order de-
lay differential equations, which are quasipolynomials in the case of delay equations, were
obtained in the well known books [21, 22]. In this paper we propose an absolutely dif-
ferent approach to the study of the exponential stability of third-order delay differential
equations. Our approach is based on the idea of Azbelev’s W -transform presented in the
book [23] (see Chapter 5) and developed then in [13].

As an example, let us consider the simplest model of ship stabilization [24, 25]. The
equation

Ix′′(t) + hx′(t) = –Kψ(t), (1.2)

where I , K , h are corresponding constants, I > 0 and K > 0, can describe the ship dynamics.
Here x(t) is the ship deviation angle and ψ(t) is the turning angle of the rudder. Following
[22] (see p. 4), we can make the following steps. Assume that the change of rudder angle
ψ(t) is governed by the automatic helmsman rule

Tψ ′(t) + ψ(t) = αy(t) + βy′(t), T > 0, (1.3)

where y(t) is a measured value of the ship deviation angle, and α, β are the helmsman
parameters. In practice, we can assume that y(t) = x(t – τ ). Using the representation of the
general solution of Eq. (1.3)

ψ(t) =
1
T

∫ t

0
e– 1

T (t–s){αy(s) + βy′(s)
}

ds + e– 1
T tψ(0), (1.4)

substituting this representation into Eq. (1.2) and then differentiating, one arrives at the
stability analysis of the third-order delay equation

TIx′′′(t) + (Th – I)x′′(t) – hx′(t) + Kβx′(t – τ ) + Kαx(t – τ ) = 0. (1.5)
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We have to choose the helmsman parameters α and β to guarantee the exponential sta-
bility of Eq. (1.5).

The paper consists of the following sections. In Sect. 2, we formulated known results
which are used in the proofs. In Sect. 3, auxiliary results on the Cauchy function for or-
dinary differential equations of the third order are obtained. In Sect. 4, the main results
about stability of third-order delay differential equations are formulated. In Sect. 5, we
prove the main theorem about stability. Conclusion, discussion of results and open prob-
lems are presented in Sect. 6.

2 Preliminaries
Let us consider the following homogeneous equation:

x′′′(t) +
2∑

i=0

m∑

j=1

pij(t)x(i)(t – τij(t)
)

= 0, t ∈ [t0,∞), (2.1)

and the corresponding non-homogeneous equation

x′′′(t) +
2∑

i=0

m∑

j=1

pij(t)x(i)(t – τij(t)
)

= f (t), t ∈ [t0,∞), (2.2)

where

x(ξ ) = ϕ(ξ ), x′(ξ ) = ψ(ξ ), x′′(ξ ) = η(ξ ) for ξ < t0, (2.3)

and pij, τij,f : [0,∞) → R,ϕ,ψ ,η : (–∞, 0) → R are essentially bounded measurable func-
tions for j = 1, . . . , m, i = 0, 1, 2, where τij(t) are nonnegative measurable bounded functions,
without lost generality we assume that t0 ≥ 0.

Definition 2.1 We say that Eq. (2.1) is exponentially stable if there exist positive numbers
γ and N such that

max
t≥0

{∣∣x(t)
∣∣,

∣∣x′(t)
∣∣,

∣∣x′′(t)
∣∣} ≤ Ne–γ (t–t0) ess sup

ξ∈(–∞,0)

∣∣ϕ(ξ ),ψ(ξ ),η(ξ )
∣∣, (2.4)

where γ and N do not depend on t0 ≥ 0 and ϕ, ψ , η.

It was demonstrated in [13, 23], that the zero initial functions

x(ξ ) = 0, x′(ξ ) = 0 and x′′(ξ ) = 0 for ξ < 0, (2.5)

can be considered in stability studies instead of the initial functions (2.3). We consider the
following homogeneous equation:

x′′′(t) +
2∑

i=0

m∑

j=1

pij(t)x(i)(t – τij(t)
)

= 0, t ∈ [0,∞), (2.6)
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and the corresponding non-homogeneous equation

x′′′(t) +
2∑

i=0

m∑

j=1

pij(t)x(i)(t – τij(t)
)

= f (t), t ∈ [0,∞), (2.7)

with the initial functions (2.5). Equation (2.6) is homogeneous in the sense of the theory
of ordinary differential equations: its fundamental system is three-dimensional and the
known representations of solutions hold (see [23] or [1], p. 477).

Definition 2.2 The function c(t, s) satisfying as a function of t for every fixed s ∈ [0,∞)
the equation

x′′′(t) +
2∑

i=0

m∑

j=1

pij(t)x(i)(t – τij(t)
)

= 0, t ∈ [s,∞), (2.8)

where

x(i)(ξ ) = 0 for ξ < s, i = 0, 1, 2, (2.9)

and the initial conditions c(s, s) = 0, c′
t(s, s) = 0, c′′

tt(s, s) = 1, is called the Cauchy function of
Eq. (2.7).

The solution of non-homogeneous equation (2.7) with the initial conditions x(0) = 0,
x′(0) = 0, x′′(0) = 0 can be presented in the form (see [23] or [1], p. 478)

x(t) =
∫ t

0
c(t, s)f (s) ds. (2.10)

Note the classical Bohl–Perron theorem [1, 23].

Lemma 2.1 If a solution x(t) of Eq. (2.7) with the initial functions (2.5) and its derivatives
x′(t) and x′′(t) are bounded for every essentially bounded function f (t) for t ∈ [0,∞), then
Eq. (2.1) is exponentially stable.

3 Cauchy function of an autonomous third-order ordinary differential
equation

In this section we construct the Cauchy function of the equation

x′′′(t) + Ax′′(t) + Bx′(t) + Cx(t) = 0, (3.1)

where A, B and C are constants according to Definition 2.2. Its characteristic equation is

k3 + Ak2 + Bk + C = 0, (3.2)

and all real parts of all its roots are negative according to the classical Hurwitz theorem if
and only if

A > 0, B > 0, C > 0 and AB > C. (3.3)
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It will be assumed below that this condition is fulfilled. All possible cases for the roots are
the following:

(1) k1, k2, k3 are real and different k1 �= k2, k2 �= k3, k3 �= k1,

(2) k1, k2, k3 are real with a pair of equal ones k1 = k2 �= k3,

(3) three multiple real roots k1 = k2 = k3,

(4) a pair of complex roots k1,2 = α ± βi and a real root k3.

(3.4)

In every of these cases, the Cauchy function W (t, s) of Eq. (3.1) could be constructed
according to Definition 2.2. Actually, we can solve the third-order autonomous ordinary
differential Eq. (3.1) with the initial conditions x(s) = 0, x′(s) = 0, x′′(s) = 1. Taking this for
every one of the cases (1)–(4), we obtain Lemmas 3.1–3.4 below.

The Hurwitz theorem guarantees the exponential stability of system (3.1), and, accord-
ing to Definition 2.2 explaining the construction of the Cauchy function, the exponential
estimates of the Cauchy function W (t, s) and its derivatives W ′

t (t, s), W ′′
tt(t, s), W ′′′

ttt(t, s) [13,
23]. It is clear that in this case there exist the finite values

w0 = sup
t≥0

∫ t

0

∣∣W (t, s)
∣∣ds, w1 = sup

t≥0

∫ t

0

∣∣W ′
t (t, s)

∣∣ds,

w2 = sup
t≥0

∫ t

0

∣∣W ′′
tt(t, s)

∣∣ds, w3 = sup
t≥0

∫ t

0

∣∣W ′′′
ttt(t, s)

∣∣ds.
(3.5)

Let us start with the case (1) of three different real roots.

Lemma 3.1 Let condition (3.3) be fulfilled, then, in the case of (1) in (3.4), the Cauchy
function of Eq. (3.1) is of the form

W (t, s) = c1ek1(t–s) + c2ek2(t–s) + c3ek3(t–s), (3.6)

where

col{c1, c2, c3} = Q–1 col{0, 0, 1} and Q =

⎛

⎜⎝
1 1 1
k1 k2 k3

k2
1 k2

2 k2
3

⎞

⎟⎠ . (3.7)

Example 3.1 Consider the equation

x′′′(t) + 6x′′(t) + 11x′(t) + 6x(t) = 0. (3.8)

Solving the characteristic equation

k3 + 6k2 + 11k + 6 = 0, (3.9)

we obtain k1 = –1, k2 = –2, k3 = –3. The matrix Q is of the form

Q =

⎛

⎜⎝
1 1 1

–1 –2 –3
1 4 9

⎞

⎟⎠ , (3.10)
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and c1 = 1
2 , c2 = –1, c3 = 1

2 . The Cauchy function W (t, s) of Eq. (3.1) and its derivatives with
respect to the variable t are the following:

W (t, s) =
1
2

e–(t–s) – e–2(t–s) +
1
2

e–3(t–s),

W ′
t (t, s) = –

1
2

e–(t–s) – 2e–2(t–s) +
3
2

e–3(t–s),

W ′′
tt(t, s) =

1
2

e–(t–s) – 4e–2(t–s) +
9
2

e–3(t–s),

W ′′′
ttt(t, s) = –

1
2

e–(t–s) + 8e–2(t–s) –
27
2

e–3(t–s),

(3.11)

and after the integration with respect to s, we can obtain the inequalities

w0 ≤ 7
6

, w1 ≤ 2, w2 ≤ 4, w3 ≤ 9. (3.12)

Consider now the case (2) in (3.4) of two multiple roots.

Lemma 3.2 Let condition (3.3) be fulfilled, then, in the case of (2) in Eq. (3.4), the Cauchy
function of Eq. (3.1) is of the form

W (t, s) = c1ek1(t–s) + c2tek1(t–s) + c3ek3(t–s), (3.13)

where

col{c1, c2, c3} = Q–1 col{0, 0, 1} and Q =

⎛

⎜⎝
1 0 1
k1 1 k3

k2
1 2k1 k2

3

⎞

⎟⎠ . (3.14)

In this case we obtain

c1 = –
1

(k1 – k3)2 , c2 =
1

k1 – k3
, c3 =

1
(k1 – k3)2 , (3.15)

and

w0 ≤ 1
|k1|(k1 – k3)2 +

1
|k1 – k3|k2

1
+

1
|k3|(k1 – k3)2 , (3.16)

w1 ≤ 2
(k1 – k3)2 +

2
|k1 – k3||k1| , (3.17)

w2 ≤ |k1| + |k3|
(k1 – k3)2 +

3
|k1 – k3| , (3.18)

w3 ≤ |k1|2 + |k3|2
(k1 – k3)2 +

4|k1|
|k1 – k3| . (3.19)

Consider now the case (3) in (3.4) of three multiple roots k1 = k2 = k3.
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Lemma 3.3 Let condition (3.3) be fulfilled, then, in the case of (3) in (3.4), the Cauchy
function of Eq. (3.1) is of the form

W (t, s) =
(t – s)2

2
ek1(t–s), (3.20)

and

w0 ≤ 2
|k1|3 , w1 ≤ 3

k2
1

, w2 ≤ 3
|k1| +

1 + 2|k1|
k2

1
, (3.21)

w3 ≤ 1 + 3|k1|
|k1| +

2(|k1| + 4|k1|2)
|k1|2 + 2. (3.22)

Consider now the case (4) in (3.4) of one real root k1 and two complex roots k2 = α + iβ ,
k3 = α – iβ , where we suppose below that β > 0 without loss of generality.

Lemma 3.4 Let condition (3.3) be fulfilled, then, in the case of (4) in (3.4), the Cauchy
function of Eq. (3.1) is of the form

W (t, s) = c1ek1(t–s) + c2eα(t–s) cosβ(t – s) + c3eα(t–s) sinβ(t – s), (3.23)

where

col{c1, c2, c3} = Q–1 col{0, 0, 1} and Q =

⎛

⎜⎝
1 1 0
k1 α β

k2
1 α2 – β2 2αβ

⎞

⎟⎠ . (3.24)

In this case

c1 =
1

β2 + (α – k1)2 , c2 = –
1

β[β2 + (α – k1)2]
, c3 =

α – k1

β[β2 + (α – k1)2]
, (3.25)

and

w0 ≤ 1
β2 + (α – k1)2

{
1

|k1| +
1

|α| +
|k1 – α|
|αβ|

}
. (3.26)

4 Stability of third-order delay equations
Consider the following equation:

x′′′(t) +
2∑

i=0

m∑

j=1

pij(t)x(i)(t – τij(t)
)

= f (t), t ∈ [0,∞), (4.1)

x(i)(ξ ) = 0 for ξ < 0, i = 0, 1, 2.

Denote by a2j, b1j and c0j the average values of the coefficients p2j(t), p1j(t), p0j(t), respec-
tively, and 
a2j(t) = p2j(t) – a2j, 
b1j(t) = p1j(t) – b1j, 
c0j(t) = p0j(t) – c0j for j = 1, . . . , m.



Domoshnitsky et al. Journal of Inequalities and Applications        (2018) 2018:341 Page 8 of 13

Rewrite Eq. (4.1) in the form

x′′′(t) +
m∑

j=1

(
a2j + 
a2j(t)

)
x′′(t – τ2j(t)

)

+
m∑

j=1

(
b1j + 
b1j(t)

)
x′(t – τ1j(t)

)

+
m∑

j=1

(
c0j + 
c0j(t)

)
x
(
t – τ0j(t)

)
= f (t), t ∈ [0,∞), (4.2)

x(i)(ξ ) = 0 for ξ < 0, i = 0, 1, 2.

To connect Eq. (4.2) with (3.1) let us set

A =
m∑

j=1

a2j, B =
m∑

j=1

b1j, C =
m∑

j=1

c0j. (4.3)

Denote τ ∗
ij = esssupt≥0 τij(t), 
a∗

2j = esssupt≥0 |
a2j(t)|, 
b∗
1j = esssupt≥0 |
b1j(t)|, 
c∗

0j =
esssupt≥0 |
c0j(t)|, j = 1, . . . , m, i = 0, 1, 2, and

q =
m∑

j=1

|a2j|τ ∗
2j{w3 + 1}ds +

m∑

j=1

|b1j|τ ∗
1jw2 +

m∑

j=1

|c0j|τ ∗
0jw1

+
m∑

j=1


a∗
2jw2 +

m∑

j=1


b∗
1jw1 +

m∑

j=1


c∗
0j(t)w0. (4.4)

It is clear that the choice of the parameters w0, w1, w2 and w3 depends on the case (1),
(2), (3) and (4) in which the “constant parts” of the coefficients A, B and C of the given
Eq. (4.2) are defined by (4.3).

Consider

x′′′(t) +
m∑

j=1

(
a2j + 
a2j(t)

)
x′′(t – τ2j(t)

)

+
m∑

j=1

(
b1j + 
b1j(t)

)
x′(t – τ1j(t)

)

+
m∑

j=1

(
c0j + 
c0j(t)

)
x
(
t – τ0j(t)

)
= 0, t ∈ [0,∞), (4.5)

x(i)(ξ ) = 0 for ξ < 0, i = 0, 1, 2.

Theorem 4.1 If the Hurwitz condition (3.3) for A, B, C defined by (4.3) is fulfilled and q,
defined by Eq. (4.4), satisfies the inequality q < 1, then Eq. (4.5) is exponentially stable.



Domoshnitsky et al. Journal of Inequalities and Applications        (2018) 2018:341 Page 9 of 13

Remark 4.1 If all the coefficients are constants and 
a∗
2j = 
b∗

1j = 
c∗
0j = 0, j = 1, . . . , m,

then

q =
m∑

j=1

|a2j|τ ∗
2j{w3 + 1}ds +

m∑

j=1

|b1j|τ ∗
1jw2 +

m∑

j=1

|c0j|τ ∗
0jw1. (4.6)

It is clear now that q < 1 if the delays are small enough.

We obtain the following fact.

Corollary 4.1 If the Hurwitz condition (3.3) for A, B, C defined by (4.3) is fulfilled,
the delays τ ∗

ij and 
a∗
2j, 
b∗

1j, 
c∗
0j for j = 1, . . . , m, i = 0, 1, 2, are sufficiently small, then

Eq. (4.5) is exponentially stable.

Example 4.1 Consider the equation

x′′′(t) + 6x′′(t – τ2(t)
)

+ 11x′(t – τ1(t)
)

+ 6x
(
t – τ0(t)

)
= 0, (4.7)

x(i)(ξ ) = 0 for ξ < 0, i = 0, 1, 2.

In this case Theorem 4.1 and estimates (3.12) in Example 3.1 imply that

q = 60τ ∗
2j + 44τ ∗

1j + 12τ ∗
0j. (4.8)

Denoting X = τ2, Y = τ1, Z = τ0, we obtain a simple geometrical interpretation of this re-
sult: Eq. (4.7) is exponentially stable if the point M(τ2(t), τ1(t), τ0(t)) for every t ≥ 0 is in-
side the pyramid formed by the planes X = 0, Y = 0, Z = 0 and 60X + 44Y + 12Z = 1. The
last plane can be constructed as one having the intersections with the axes at the points
( 1

60 , 0, 0), (0, 1
44 , 0) and (0, 0, 1

12 ).

Example 4.2 Consider the equation

x′′′(t) +
(
6 + 
a(t)

)
x′′(t – τ2(t)

)

+
(
11 + 
b(t)

)
)x′(t – τ1(t)

)
+

(
6 + 
c(t)

)
x
(
t – τ0(t)

)
= 0, (4.9)

where

τ2(t) ≤ 1
240

, τ1(t) ≤ 1
176

, τ0(t) ≤ 1
48

. (4.10)

From Theorem 4.1 we obtain the following test of exponential stability:


a∗
1

16
+


b∗
1
8

+

c∗

3
14

< 1. (4.11)

Denoting X = 
a∗, Y = 
b∗, Z = 
c∗, we obtain a simple geometrical interpreta-
tion of this result: Eq. (4.9) under condition (4.10) is exponentially stable if the point
M(
a(t),
b(t),
c(t)) for every t ≥ 0 is inside the pyramid formed by the planes X = 0,
Y = 0, Z = 0 and X

1
16

+ Y
1
8

+ Z
3

14
= 1. The last plane can be constructed as one having the

intersections with the axes at the points ( 1
16 , 0, 0), (0, 1

8 , 0) and (0, 0, 3
14 ).
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5 Proofs

Proof of Theorem 4.1 Let us assume first that t – τij(t) ≥ 0 for i = 0, 1, 2, j = 1, . . . , m, t ≥ 0.
Rewrite Eq. (4.2) in the form

x′′′(t) +
m∑

j=1

a2jx′′(t) +
m∑

j=1

b1jx′(t) +
m∑

j=1

c0jx(t)

+
m∑

j=1

(
a2j + 
a2j(t)

)
x′′(t – τ2j(t)

)
–

m∑

j=1

a2jx′′(t)

+
m∑

j=1

(
b1j + 
b1j(t)

)
x′(t – τ1j(t)

)
–

m∑

j=1

b1jx′(t)

+
m∑

j=1

(
c0j + 
c0j(t)

)
x
(
t – τ0j(t)

)
–

m∑

j=1

c0jx(t) = f (t), t ∈ [0,∞). (5.1)

We can rewrite Eq. (5.1) in the form

x′′′(t) + Ax′′(t) + Bx′(t) + Cx(t)

=
m∑

j=1

a2j

∫ t

t–τ2j(t)
x′′′(s) ds –

m∑

j=1


a2j(t)x′′(t – τ2j(t)
)

+
m∑

j=1

b1j

∫ t

t–τ1j(t)
x′′(s) ds –

m∑

j=1


b1j(t)x′(t – τ1j(t)
)

+
m∑

j=1

c0j

∫ t

t–τ1j(t)
x′(s) ds +

m∑

j=1


c0j(t)x(t – τ0j(t) + f (t). (5.2)

Let us use the Azbelev W -transform [23],

x(t) =
∫ t

0
W (t, s)z(s) ds, (5.3)

where z ∈ L∞ (L∞ is the space of essentially bounded functions z : [0,∞) → R), W (t, s)
is the Cauchy function of Eq. (3.1). It is clear that Eq. (5.3) is the representation of the
solution of the initial value problem

x′′′(t) + Ax′′(t) + Bx′(t) + Cx(t) = z(t), t ∈ [0,∞), (5.4)

x(0) = 0, x′(0) = 0, x′′(0) = 0. (5.5)

Differentiating (5.3), we can find

x′(t) =
∫ t

0
W ′

t (t, s)z(s) ds, x′′(t) =
∫ t

0
W ′′

tt(t, s)z(s) ds, (5.6)

x′′′(t) =
∫ t

0
W ′′′

ttt(t, s)z(s) ds + z(t). (5.7)
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After the substitution (5.3), (5.6), (5.7) into (5.2) we obtain the equation

z(t) = Kz(t) + f (t), (5.8)

where the operator K : L∞ → L∞ is defined as follows:

Kz(t) =
m∑

j=1

a2j

∫ t

t–τ2j(t)

{∫ s

0
W ′′′

sss(s,η)z(η) dη + z(s)
}

ds

–
m∑

j=1


a2j(t)
∫ t–τ2j(t)

0
W ′′

tt
(
t – τ2j(t), s

)
z(s) ds

+
m∑

j=1

b1j

∫ t

t–τ1j(t)

{∫ s

0
W ′′

ss(s,η)z(η) dη

}
ds

–
m∑

j=1


b1j(t)
∫ t–τ1j(t)

0
W ′

t
(
t – τ1j(t), s

)
z(s) ds

+
m∑

j=1

c0j

∫ t

t–τ0j(t)

{∫ t

0
W ′

s (s,η)z(η) dη

}
ds

+
m∑

j=1


c0j(t)
∫ t–τ0j(t)

0
W

(
t – τ0j(t), s

)
z(s) ds. (5.9)

The condition q < 1, where q is defined by Eq. (4.4), implies that the norm ‖K‖ of the
operator K : L∞ → L∞ is less than one and this guarantees the action and boundedness
of the operator (I – K)–1 = I – K – K2 + K3 + · · · from L∞ to L∞. It is clear now that, for
every bounded right-hand side f , the solution z of Eq. (5.8) is bounded. From the Hurwitz
condition (3.3) on Eq. (3.1) it follows that the solution x(t) and its derivatives x′(t) and x′′(t)
defined by formulas (5.3) and (5.6) are bounded on the semiaxis t ∈ [0,∞) for any bounded
right-hand side f . The Bohl–Perron theorem formulated in Lemma 2.1 (see also [23], p.
93 or [1], p. 500 in a more general formulation) claims that boundedness of solutions of
Eq. (4.2) for all bounded right-hand sides f is equivalent to the exponential stability of
Eq. (4.5). Thus the reference to the Bohl–Perron theorem completes this part of the proof.

If we do not assume that t – τij(t) ≥ 0 for i = 0, 1, 2, j = 1, . . . , m, t ≥ 0, we can ex-
tend the coefficients on the interval [–τ , 0), where τ = esssupt≥0 τij(t), as follows: τij(t) ≡
0, p2j(t) ≡ ∑m

j=1 a2j, p1j(t) ≡ ∑m
j=1 b1j and p1j(t) ≡ ∑m

j=1 c0j and consider Eq. (4.1) on the in-
terval [–τ ,∞). Passing now to Eqs. (4.2) and (4.5) on this interval [–τ ,∞), we can repeat
the whole proof. This remark completes the proof of Theorem 4.1. �

6 Conclusion, discussion and some topics for future research
In this paper we propose a general algorithm for stabilization of third-order differential
Eq. (1.1) by the delay feedback control

u(t) = –
2∑

i=0

m∑

j=1

pij(t)x(i)(t – τij(t)
)
. (6.1)

If the delays τij(t) and “oscillations” of the coefficients |
a2j(t)|, |
b1j(t)|, |
c0j(t)| are small
enough, then Eq. (4.5) becomes exponentially stable and stabilization is achieved. In the
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model of ship stabilization, which can be described by the third-order delay equation with
constant coefficients, a sufficient smallness of the delays looks very natural from the me-
chanical point of view.

Note that a similar idea for stability studies of the second-order delay differential equa-
tions was proposed first in [26], developed then in [27] and the exact estimates of the inte-
grals of the Cauchy functions (i.e. of w0, w1, w2) for second-order equations were obtained
in [28].

The following question for future research could be considered: is it possible to ob-
tain the exponential stability in the case of A = 0 and/or B = 0? A question of this sort
had a long history for second-order delay equations. Myshkis considered the equation
x′′(t) + px(t – τ ) = 0 and, analyzing the roots of characteristic equation, proved instability
of this equation for every positive constants p and τ (see [29] Chapter III, Section 16, pp.
105–106). In [30] it was proven that all solutions of the equation x′′(t)+px(t –τ (t)) = 0 with
every positive constant p and nonnegative τ (t) are bounded if and only if

∫ ∞
τ (t) dt < ∞. It

was considered impossible to obtain exponential stability of second-order delay equations
without damping terms for the delay satisfying the inequality τ (t) > ε for every positive ε.
Using an analysis of the roots of the characteristic equations, first results on the stability
of the equation x′′(t) + ax(t) – bx(t – τ ) = 0 (a, b and τ are constant parameters) were ob-
tained in [2, 4, 21]. In the case of variable coefficients and delays, results on the exponential
stability of second-order delay equation

x′′(t) +
m∑

j=1

pj(t)x
(
t – τj(t)

)
= 0, t ∈ [0,∞), (6.2)

were obtained first in [3]. An approach to the analysis of the stability of this second-order
equation based on estimates of the integrals of the Cauchy functions w0, w1, w2 was pro-
posed in [31]. We suppose that this approach can be developed also in the stability analysis
of the third-order delay equation

x′′′(t) +
m∑

j=1

pj(t)x
(
t – τj(t)

)
= 0, t ∈ [0,∞). (6.3)

It is interesting to develop the method proposed in our paper for stability studies of sys-
tems of delay equations. Another possible development is to apply our “linear” results to
the stability of nonlinear delay differential equations and to obtain, for example, analogous
results to the ones obtained in [11, 17, 19].
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