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Abstract
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1 Introduction
The classical isoperimetric problem dates back to antique literature and geometry. The
problem can be stated as: Among all closed curves of given length in the Euclidean plane
R

2, which one maximizes the area of its enclosed region?
The solution to the problem is usually expressed in the form of an inequality that relates

the length PK of a rectifiable simple closed curve and the area AK of the planar region
K that the curve encloses in R

2. The solution to the classical isoperimetric problem is
characterized as the following isoperimetric inequality:

P2
K – 4πAK ≥ 0, (1.1)

with equality if and only if K is a Euclidean disc.
The history of geometric proofs for the classical isoperimetric problem goes back to An-

cient Greeks and was recorded by Pappus of Alexandria in the fourth century AD, but their
arguments were incomplete. The first progress towards the solution was made by Steiner
[22] in 1838 by a geometric method later named Steiner symmetrization. His proof con-
tained a flaw that later was fixed by analytic approach. In 1870, Weierstrass gave the first
rigorous proof as a corollary of his theory of calculus of several variables. Since then, many
other proofs have been discovered. In 1902, Hurwitz [10] published a short proof using
the Fourier series that applies to arbitrary rectifiable curves (not assumed to be smooth).
An elegant direct proof based on comparison of a simple closed curve of length L with the
circle of radius L

2π
was given by Schmidt [20]. See [4, 15, 16, 21] for more references.

In 1920s, Bonnesen proved a series of inequalities of the form [3]

P2
K – 4πAK ≥ BK , (1.2)
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where BK is a non-negative invariant and vanishes if and only if the domain K is a Euclidean
disc.

A well-known Bonnesen-style inequality is

P2
K – 4πAK ≥ π2(RK – rK )2, (1.3)

where RK and rK respectively denote the circumradius and inradius of K , with equality if
and only if K is a Euclidean disc.

Many inequalities of style (1.2), called Bonnesen-style inequalities, were found along
with variations and generalizations in the past decades [2, 5, 6, 8, 11, 19, 29–34]. On the
other hand, the classical isoperimetric inequality has been extended to higher dimensions
and a surface of constant curvature κ , i.e., the Euclidean plane R

2, projective plane RP2,
or hyperbolic plane H

2.
Let K be a compact set bounded by a rectifiable simple closed curve with the area AK

and perimeter PK in Xκ . Then [1, 7, 9, 14, 17, 18, 23–26]

P2
K – (4π – κAK )AK ≥ 0, (1.4)

with equality if and only if K is a geodesic disc.
The geodesic disc of radius r with center x is defined as

Bκ (x, r) =
{

y ∈Xκ : d(x, y) ≤ r
}

,

where d is the geodesic distance function in Xκ . The area, perimeter of Bκ (x, r) in Xκ are
respectively [12]

A
(
Bκ (x, r)

)
=

2π

κ

(
1 – cnκ (r)

)
, P

(
Bκ (x, r)

)
= 2π snκ (r). (1.5)

The limiting cases of as κ → 0 yield the Euclidean formulas A(B(x, r)) = πr2 and
P(B(x, r)) = 2πr.

A Bonnesen-type inequality in Xκ is of the form

P2
K – (4π – κAK )AK ≥ BK , (1.6)

where BK vanishes if and only if K is a geodesic disc [15, 28].
Bonnesen [3] established an inequality of the type (1.6) in the sphere of radius 1/

√
κ :

P2
K – (4π – κAK )AK ≥ 4π2 tn2

κ

(
RK – rK

2

)
, (1.7)

where RK and rK are respectively the minimum circumscribed radius and the maximum
inscribed radius of K .

Let Xκ be the surface of constant curvature κ , specifically:

Xκ =

⎧
⎪⎪⎨

⎪⎪⎩

PR2, Euclidean 2-sphere of radius 1/
√

κ , if κ > 0;

R
2, Euclidean plane, if κ = 0;

H
2, Hyperbolic plane of constant curvature κ , if κ < 0.
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Let

�κ (K) = P2
K – (4π – κAK )AK (1.8)

denote the isoperimetric deficit of K in Xκ . The trigonometric functions appearing in (1.7)
are defined by

snκ (t) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
–κ

sinh(
√

–κt), κ < 0,

t, κ = 0,
1√
κ

sin(
√

κt), κ > 0;

cnκ (t) =

⎧
⎪⎪⎨

⎪⎪⎩

cosh(
√

–κt), κ < 0,

1, κ = 0,

cos(
√

κt), κ > 0;

tnκ (t) =
snκ (t)
cnκ (t)

; ctκ (t) =
cnκ (t)
snκ (t)

;

and

κ · sn2
κ (t) + cn2

κ (t) = 1. (1.9)

The following Bonnesen-type inequality is obtained in [31]:

�κ (K) ≥
(

2π –
κ

2
AK

)2(
tnκ

RK

2
– tnκ

rK

2

)2

(1.10)

for a convex set K , with equality if K is a geodesic disc.
Inequality (1.10) was strengthened [28] as

�κ (K) ≥
(

2π –
κ

2
AK

)2(
tnκ

RK

2
– tnκ

rK

2

)2

+
(

2π –
κ

2
AK

)2(
tnκ

RK

2
+ tnκ

rK

2
–

2PK

4π – κAK

)2

, (1.11)

with equality if K is a geodesic disc.
For a convex set K in Xκ such that (2π – κAK )2 + κP2

K ≥ 0 if κ < 0, Klain [12] obtained
the following Bonnesen-style inequality:

�κ (K) ≥ ((2π – κAK )2 + κP2
K )2

4(2π – κAK )2

(
snκ (RK ) – snκ (rK )

)2, (1.12)

with equality if K is a geodesic disc.
For more results on Bonnesen-style inequality, see, e.g., [1, 2, 5–9, 11, 14, 17, 19, 23–26,

29–34].
The purpose of this paper is to find a new Bonnesen-style inequality with equality con-

dition on surfaces Xκ of constant curvature, especially on the hyperbolic plane H2 by inte-
gral geometric method. We are going to seek the following Bonnesen-style inequality for
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a convex set K in Xκ :

�κ (K) ≥ π2(tnκ (RK ) – tnκ (rK )
)2,

with equality if and only if K is a hyperbolic disc.
Finally, we give some special cases of these Bonnesen-style inequalities that strengthen

some known Bonnesen-style inequalities in the Euclidean plane including the Bonnesen
isoperimetric inequality (1.3).

2 Preliminaries
Let C(Xκ ) be the set of all convex sets with perimeter PK ≤ 2π√

κ
if κ > 0 in Xκ . For a fixed

point x0 ∈Xκ , the geodesic disc of radius r with center x0 is the set of points that lie at most
a distance r from x0 in Xκ . For K ∈ Xκ , let AK and PK denote the area and the perimeter
of K , respectively. Let rK and RK be the maximum inscribed radius and the minimum cir-
cumscribed radius of K , respectively. We always assume that K lies in an open hemisphere
of PR2 such that RK < π

2
√

κ
.

A set K is convex if, for points x, y ∈ K , the shortest geodesic curve connecting x, y
belongs to K . It should be noted that, for a convex set K in PR2, 2π – κAK > 0.

Let Gκ be the group of isometries in Xκ , and let dg be the kinematic density (Harr mea-
sure) on Gκ . Let K be fixed and gL as moving via the isometry g ∈ Gκ . For K , L ∈ Xκ , let
χ (K ∩gL) and �(∂K ∩∂(gL)) be the Euler–Poincaré characteristic of K ∩gL and the number
of points of the intersection ∂K ∩ ∂(gL), respectively.

The following fundamental kinematic formula is due to Blaschke [19]:

∫

{g:K∩gL�=∅}
χ (K ∩ gL) dg = 2π (AK + AL) + PK PL – κAK AL. (2.1)

As the limiting case, when K , L degenerate to curves ∂K , ∂L, respectively, then AK = AL =
0 and the perimeters are 2PK , 2PL. Hence we have the following kinematic formula of
Poincaré [19]:

∫

{g:∂K∩∂(gL) �=∅}
�
(
∂K ∩ ∂(gL)

)
dg = 4PK PL. (2.2)

Since the compact sets are assumed to be simply connected and enclosed by simple curves,
χ (K ∩gL) = n(g) ≡ (the number of connected components of the intersection K ∩gL). Let
μ = {g ∈ Gκ : K ⊂ gL or K ⊃ gL}, then the fundamental kinematic formula of Blaschke
(2.1) can be rewritten as [31]:

∫

μ

dg +
∫

{g:∂K∩∂(gL) �=∅}
n(g) dg = 2π (AK + AL) + PK PL – κAK AL. (2.3)

When ∂K ∩ ∂(gL) �= ∅, each component of K ∩ gL is bounded by at least an arc of ∂K
and an arc of ∂(gL), and n(g) ≤ �(∂K ∩ ∂(gL))/2. Then the following containment measure
inequality is an immediate consequence of Poincaré ’s formula (2.2) and Blaschke’s formula
(2.3) [12, 13, 19].
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Lemma 2.1 Let K , L be two compact sets bounded by rectifiable simple closed curves in
Xκ , then

∫

μ

dg ≥ 2π (AK + AL) – PK PL – κAK AL. (2.4)

If K ≡ L, then there is no g ∈ Gκ such that gK ⊃ K nor gK ⊂ K . Hence
∫
μ

dg = 0 and
inequality (2.4) immediately leads to the isoperimetric inequality (1.2).

The following Bonnesen inequality in Xκ is important for our main results [27].

Lemma 2.2 For K ∈ C(Xκ ), let RK and rK be respectively the maximum inscribed radius
and the minimum circumscribed radius of K . Then, for rK ≤ r ≤ RK ,

[
(2π – κAK )2 + κP2

K
]

sn2
κ (r) – 4πPK snκ (r) – AK (κAK – 4π ) ≤ 0. (2.5)

Proof Let L be a geodesic disc of radius r. Then neither gBκ (r) ⊂ K nor gBκ (r) ⊃ K for any
g ∈ Gκ and hence the measure

∫
μ

dg = 0. By (1.5) and (2.4) we have

PK snκ (r) –
(

2π

κ
– AK

)(
1 – cnκ (r)

)
– AK ≥ 0. (2.6)

Identity (1.9) shows 1 – κ · sn2
κ (r) = cn2

κ (r) > 0 and inequality (2.6) can be rewritten as

PK snκ (r) –
2π

κ
≥

(
AK –

2π

κ

)√
1 – κ · sn2

κ (r). (2.7)

For κ ≥ 0,

PK snκ (r) –
2π

κ
≤ 0,

hence by squaring both sides of (2.7) we have

(
PK snκ (r) –

2π

κ

)2

≤
(

AK –
2π

κ

)2(
1 – κ · sn2

κ (r)
)
,

that is,

(
(2π – κAK )2 + κP2

K
)

sn2
κ (r) – 4πPK snκ (r) – AK (κAK – 4π ) ≤ 0.

For κ < 0, then AK – 2π
κ

> 0. Squaring both sides of (2.7) leads to

(
PK snκ (r) –

2π

κ

)2

≥
(

AK –
2π

κ

)2(
1 – κ · sn2

κ (r)
)
,

i.e.,

(
(2π – κAK )2 + κP2

K
)

sn2
κ (r) – 4πPK snκ (r) – AK (κAK – 4π ) ≤ 0. �

We are now in the position to prove our Bonnesen-style inequalities.
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Theorem 2.1 Let K ∈ C(Xκ ). If rK ≤ r ≤ RK , then

�κ (K) ≥ (PK – 2π snκ (r))2

cn2
κ (r)

, (2.8)

with equality if K is a geodesic disc.

Proof Inequality (2.5) can be rewritten as

P2
K – AK (4π – κAK ) ≥ P2

K +
(
(2π – κAK )2 + κP2

K
)

sn2
κ (r) – 4πPK snκ (r).

Since (2π – κAK )2 + κP2
K = 4π2 + κ�κ (K), we have

(
1 – κ sn2

κ (r)
)
�κ (K) ≥ (

PK – 2π snκ (r)
)2.

Via (1.9), that is, 1 – κ · sn2
κ (r) = cn2

κ (r), then the previous inequality results in (2.8) and we
complete the proof. �

Theorem 2.2 Let K ∈ C(Xκ ), then

�κ (K) ≥ c
{

2π2[snκ (RK ) – snκ (rK )
]2 + 2

[
PK – π snκ (RK ) – π snκ (rK )

]2

– κ
[
sn2

κ (RK )
(
PK – 2π snκ (rK )

)2 + sn2
κ (rK )

(
PK – 2π snκ (RK )

)2]},

where c = 1/(2 cn2
κ (RK ) cn2

κ (rK )), and the equality holds if K is a geodesic disc.

Proof Inequality (2.8) holds for r = RK and r = rK , respectively:

�κ (K) ≥ (PK – 2π snκ (RK ))2

cn2
κ (RK )

;

�κ (K) ≥ (PK – 2π snκ (rK ))2

cn2
κ (rK )

.

By adding the above two inequalities side by side, we have

�κ (K) ≥ c
[
cn2

κ (rK )
(
PK – 2π snκ (RK )

)2 + cn2
κ (RK )

(
PK – 2π snκ (rK )

)2]

= c
[(

1 – κ sn2
κ (rK )

)(
PK – 2π snκ (RK )

)2 +
(
1 – κ sn2

κ (RK )
)(

PK – 2π snκ (rK )
)2]

= c
{(

PK – 2π snκ (RK )
)2 +

(
PK – 2π snκ (rK )

)2

– κ
[
sn2

κ (RK )
(
PK – 2π snκ (rK )

)2 + sn2
κ (rK )

(
PK – 2π snκ (RK )

)2]}.

Via elementary calculations we obtain the desired Bonnesen-style inequality. �

For κ < 0, the following Bonnesen-style inequalities are immediate consequences of
Theorem 2.2 with equality conditions.

Corollary 2.1 Let K ∈ C(H2), then

�κ (K) ≥ 2c
{
π2[snκ (RK ) – snκ (rK )

]2 +
[
PK – π snκ (RK ) – π snκ (rK )

]2}, (2.9)

where c = 1/(2 cn2
κ (RK ) cn2

κ (rK )), and the equality holds if K is a hyperbolic disc.
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Corollary 2.2 Let K ∈ C(H2), then

�κ (K) ≥ 2c
(
PK – π snκ (RK ) – π snκ (rK )

)2, (2.10)

where c = 1/(2 cn2
κ (RK ) cn2

κ (rK )), with equality if and only if K is a hyperbolic disc.

Proof Since

π2[snκ (RK ) – snκ (rK )
]2 +

[
PK – π snκ (RK ) – π snκ (rK )

]2

≥ [
PK – π snκ (RK ) – π snκ (rK )

]2,

with equality holds if and only if RK = rK , that is, K must be a hyperbolic disc, the
Bonnesen-style inequality (2.10) follows from inequality (2.9) immediately. �

3 Bonnesen-style inequalities in H
2

We are seeking more Bonnesen-style inequalities in H
2.

Theorem 3.1 Let K ∈ C(H2), then

�κ (K) ≥ π2(tnκ (RK ) – tnκ (rK )
)2 +

P2
K

4

(
1

cnκ (rK )
–

1
cnκ (RK )

)2

, (3.1)

with equality if K is a hyperbolic disc.

Proof By Theorem 2.1, r = RK and r = rK respectively lead to

�κ (K) ≥ (2π snκ (RK ) – PK )2

cn2
κ (RK )

and �κ (K) ≥ (PK – 2π snκ (rK ))2

cn2
κ (rK )

.

Adding two inequalities side by side and by the inequality x2 + y2 ≥ (x+y)2

2 , we have

2�κ (K) ≥ (2π snκ (RK ) – PK )2

cn2
κ (RK )

+
(PK – 2π snκ (rK ))2

cn2
κ (rK )

≥ 1
2

{
2π

(
tnκ (RK ) – tnκ (rK )

)
+

(
PK

cnκ (rK )
–

PK

cnκ (RK )

)}2

.

For K ∈ C(H2), tnκ and snκ are respectively hyperbolic tangent tanh(x) and hyperbolic
cosine cosh(x) that are strictly increasing on [0,∞). Therefore, for rK ≤ RK ,

tnκ (RK ) – tnκ (rK ) ≥ 0;
1

cnκ (rK )
–

1
cnκ (RK )

≥ 0.

By inequality (x + y)2 ≥ x2 + y2 (x ≥ 0, y ≥ 0), we have

2�κ (K) ≥ 2π2(tnκ (RK ) – tnκ (rK )
)2 +

P2
K

2

(
1

cnκ (rK )
–

1
cnκ (RK )

)2

. �

The following Bonnesen-style inequality with equality condition for K ∈ C(H2) is a di-
rect consequence of Theorem 3.1.
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Corollary 3.1 Let K ∈ C(H2), then

�κ (K) ≥ π2(tnκ (RK ) – tnκ (rK )
)2, (3.2)

with equality if and only if K is a hyperbolic disc.

Proof By slightly complicated elementary calculations, we have

π2(tnκ (RK ) – tnκ (rK )
)2 +

P2
K

4

(
1

cnκ (rK )
–

1
cnκ (RK )

)2

≥ π2(tnκ (RK ) – tnκ (rK )
)2. (3.3)

Then inequality (3.2) follows from (3.1) and (3.3) immediately.
Equality holds in (3.2) and (3.3) if and only if either PK = 0, which implies that K is a

single point, or RK = rK , which means that K is a hyperbolic disc. �

Since

π2(tnκ (RK ) – tnκ (rK )
)2 +

P2
K

4

(
1

cnκ (rK )
–

1
cnκ (RK )

)2

≥ P2
K

4

(
1

cnκ (rK )
–

1
cnκ (RK )

)2

,

with equality if and only if RK = rK , which implies that K must be a hyperbolic disc.
Combining this inequality with inequality (3.1) immediately leads to the following

Bonnesen-style inequality.

Corollary 3.2 Let K ∈ C(H2), then

�κ (K) ≥ P2
K

4

(
1

cnκ (rK )
–

1
cnκ (RK )

)2

, (3.4)

with equality if and only if K is a hyperbolic disc.

4 The limiting cases on the Euclidean plane R
2

The limiting cases of Bonnesen-style inequalities obtained in the previous sections are
known as Bonnesen-style inequalities in the Euclidean plane R

2.

Corollary 4.1 Let K be a compact convex set in R
2. If rK ≤ r ≤ RK , then

P2
K – 4πAK ≥ (PK – 2πr)2, (4.1)

with equality if K is a Euclidean disc.

Proof For κ < 0, let κ = – 1
R2 . Then inequality (2.8) becomes

P2
K – 4πAK –

A2
K

R2 ≥ (PK – 2πR sinh( r
R ))2

cosh2( r
R )

.

As R → ∞, the inequality above leads to the following inequality by L’Hôpital’s rule:

P2
K – 4πAK ≥ lim

R→∞

(
PK – 2πR sinh

(
r
R

))2

= (PK – 2πr)2. �
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Corollary 4.2 Let K be a compact convex set in R
2, then

P2
K – 4πAK ≥ π2(RK – rK )2, (4.2)

with equality if and only if K is a Euclidean disc.

Proof For κ = – 1
R2 , inequality (3.2) becomes

P2
K – 4πAK –

A2
K

R2 ≥ π2
(R sinh( RK

R )
cosh( RK

R )
–

R sinh( rK
R )

cosh( rK
R )

)2

.

As R → ∞, the inequality above becomes

P2
K – 4πAK ≥ lim

R→∞

(
R sinh

(
RK

R

)
– R sinh

(
rK

R

))2

= π2(RK – rK )2.

The inequality holds as an equality if and only if RK = rK , that is, K is a Euclidean disc. �

The limiting case of Theorem 2.2 is the following strengthening inequality of (4.2).

Corollary 4.3 Let K be a compact convex set in R
2. Then

P2
K – 4πAK ≥ π2(RK – rK )2 + (PK – πRK – πrK )2,

with equality if K is a Euclidean disc.
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