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1 Introduction
In 1920, Hardy [1] showed that, for p1 > 1, g ∈ Lp1 (0,∞) being a non-negative function,
the following inequality holds:

∫ ∞

0

(
1
x

∫ x

0
g(t) dt

)p1

dx ≤
(

p1

p1 – 1

)p1 ∫ ∞

0

(
g(x)

)p1 dx, p1 > 1, (1.1)

As is well known, the inequality (1.1) is today called to as classical Hardy’s integral inequal-
ity in the literature. It has many applications in analysis and in the theory of differential
equations (see, e.g., [2, 3] and [4]). This inequality has been generalized and developed
by many mathematicians. Various mathematicians studied new Hardy-type inequality for
different fractional derivatives and integrals; see [4–9] and the references therein.

In 1964, Levinson [10] showed that inequality (1.1) holds for parameters a1 and b1. That
is, for 0 < a1 < b1 < ∞ the following inequality is valid:

∫ b1

a1

(
1
x

∫ x

0
g(t) dt

)p1

dx ≤
(

p1

p1 – 1

)p1 ∫ ∞

0

(
g(x)

)p1 dx, p1 > 1. (1.2)

In 2010, Iqbal et al. [7] obtained new fractional inequalities within fractional derivatives
and integrals of Riemann–Liouville type. In 2011, 2013 and 2014, they proved some new
inequalities involving Riemann–Liouville fractional integrals, Caputo fractional derivative
and other fractional derivatives; see [11–14].

In 2017, Iqbal et al. [15] presented the Hardy-type inequalities for Hilfer fractional
derivative. Also, they obtained the Hardy-type inequality for generalized fractional inte-
gral within Mittag–Leffler function in its kernel utilizing convex and increasing functions.
In the same year, Iqbal et al. [16] obtained Hardy-type inequalities for a generalized frac-
tional integral operator within the Mittag–Leffler function in its kernel. Also, they set up a
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Hilfer fractional derivative utilizing convex and monotone convex function. In 2017, Na-
sibullin [17] proved new Hardy-type inequalities with fractional integrals and derivatives
of Riemann–Liouville.

Recently, a new type of fractional derivative was introduced by Caputo and Fabrizio in
[18]. The reason of introducing this new type of derivative was to search for fractional
derivative with nonsingular kernel and without the Gamma function. Since then many
researchers discussed this and applied this new fractional derivative to several real world
phenomena and excellent results were reported [19–35]. On the other side the discrete
version of fractional derivative is one of the interesting topics nowadays [19, 36–40]. Some
of the applications of the discrete fractional Caputo derivative can be found in [41, 42].

The organization of this paper is given below. In Sect. 1, we given introduction. In Sect. 2,
basic definitions and theorems are introduced. Motivated by [12, 26, 36] several Hardy-
type inequalities for the new left Riemann fractional derivative are established in Sect. 3.
Several examples are given for our results in Sect. 4.

2 Basic definitions and theorems
In this section, we present the following definitions and theorems, which are useful in
proofs of our results.

Definition 2.1 ([43]) Let I1 be an interval, and let ψ be a function I1 → R. ψ is called
convex if

ψ
(
βx + (1 – β)t

) ≤ βψ(x) + (1 – β)ψ(t) (2.1)

for all points x and t in I1 and all 0 ≤ β ≤ 1. ψ is strictly convex if (2.1) holds strictly
whenever x and t are distinct points and 0 < β < 1.

Let (
∑

1,Ω1,μ1) and (
∑

2,Ω2,μ2) be measure spaces with positive σ -finite measures.
Also, let U1(g) be the class of functions h : Ω1 →R defined as

h(x) :=
∫

Ω2

k1(x, t)g(t) dμ2(t),

and let Ak1 be an integral operator defined as

Ak1 g(x) :=
h(x)

K1(x)
=

1
K1(x)

∫
Ω2

k1(x, t)g(t) dμ2(t)

such that k1 : Ω1 × Ω2 → R denotes a non-negative measurable function, g : Ω2 → R

represents a measurable function and

K1(x) :=
∫

Ω2

k1(x, t) dμ2(t) > 0, x ∈ Ω1. (2.2)

Theorem 2.1 ([7]) Let v be a weight function on Ω1, and k1 : Ω1 × Ω2 → R be a non-
negative measurable function. Also, let K1 be defined on Ω1 by (2.2). Suppose that x �→
v(x) k1(x,t)

K1(x) is an integrable function on Ω1 for each fixed t ∈ Ω2. Define u on Ω2 as

u(t) :=
∫

Ω1

v(x)
k1(x, t)
K1(x)

dμ1(x) < ∞.
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If the function ψ : (0,∞) →R denotes a convex and increasing function, then the inequality

∫
Ω1

v(x)ψ
(∣∣∣∣ h(x)

K1(x)

∣∣∣∣
)

dμ1(x) ≤
∫

Ω2

u(t)ψ
(∣∣g(t)

∣∣)dμ2(t) (2.3)

holds for all measurable functions g : Ω2 →R.

In Theorem 2.1, by replacing k1(x, t) by k1(x, t)g2(t) and g by g1
g2

, where the functions
gj : Ω2 →R are measurable for j = 1, 2, the following result is obtained (see [11]).

Theorem 2.2 Let gj : Ω2 →R be measurable functions, hj ∈ U1(gj) (j = 1, 2), with h2(x) > 0
for all x ∈ Ω1. Also, let v be a weight function on Ω1 and k1 : Ω1 × Ω2 → R be a non-
negative measurable function. Suppose that x �→ v(x) g2(t)k1(x,t)

h2(x) is an integrable function on
Ω1 for each fixed t ∈ Ω2. Define u on Ω2 by

u(t) := g2(t)
∫

Ω1

v(x)k1(x, t)
h2(x)

dμ1(x) < ∞.

If the function ψ : (0,∞) →R denotes a convex and increasing function, then the following
inequality holds:

∫
Ω1

v(x)ψ
(∣∣∣∣h1(x)

h2(x)

∣∣∣∣
)

dμ1(x) ≤
∫

Ω2

u(t)ψ
(∣∣∣∣g1(t)

g2(t)

∣∣∣∣
)

dμ2(t). (2.4)

Theorem 2.3 ([7]) Let (
∑

1,Ω1,μ1) and (
∑

2,Ω2,μ2) be measure spaces with positive σ -
finite measures. Also let v be a weight function on Ω1, let k1 : Ω1 × Ω2 → R be a non-
negative measurable function by (2.2), let K1 be defined on Ω1 and 0 < p1 ≤ q1 < ∞. If
x �→ v(x) k1(x,t)

K1(x) is an integrable function on Ω1 for each fixed t ∈ Ω2, then u is written as

u(t) :=
[∫

Ω1

v(x)
(

k1(x, t)
K1(x)

) q1
p1

dμ1(x)
] p1

q1
< ∞.

If the function ψ denotes a non-negative convex on the interval I1 ⊆R, then the inequality

[∫
Ω1

v(x)
(
ψ

(
Ak1 g(x)

)) q1
p1 dμ1(x)

] 1
q1 ≤

[∫
Ω2

u(t)ψ
(
g(t)

)
dμ2(t)

] 1
p1

(2.5)

holds for all measurable functions g : Ω2 →R such that Im g ⊆ I1.

Theorem 2.4 ([7]) Let hj ∈ U1(gj) for j = 1, 2, 3, with h2(x) > 0 for all x ∈ Ω1. Let v be a
weight function on Ω1, and k1 : Ω1 ×Ω2 →R be a non-negative measurable function, then
u is written as

u(t) := g2(t)
∫

Ω1

v(x)k1(x, t)
h2(x)

dμ1(x) < ∞.

If the function ψ : (0,∞) × (0,∞) → R represents a convex and increasing function, then
the following inequality holds:

∫
Ω1

v(x)ψ
(∣∣∣∣h1(x)

h2(x)

∣∣∣∣,
∣∣∣∣h3(x)
h2(x)

∣∣∣∣
)

dμ1(x) ≤
∫

Ω2

u(t)ψ
(∣∣∣∣g1(t)

g2(t)

∣∣∣∣,
∣∣∣∣g3(t)
g2(t)

∣∣∣∣
)

dμ2(t). (2.6)



Başcı and Baleanu Journal of Inequalities and Applications        (2018) 2018:304 Page 4 of 11

3 Main results
Below, we show the definition of the new left Riemann fractional derivative, then we dis-
cuss Hardy-type inequalities for the new left Riemann fractional derivative.

According to [19], if g ∈ H1(a1, b1), 0 < a1 < b1 ≤ ∞, α ∈ (0, 1), then the left new Riemann
fractional derivative CFR

a1 Dα is defined by

(CFR
a1 Dαg

)
(x) =

M(α)
1 – α

d
dx

∫ x

a1

g(t) exp
(
λ(x – t)

)
dt, (3.1)

with λ = –α
1–α

and x ≥ a1. Here M(α) is a normalization constant depending on α.

Theorem 3.1 Let 0 < α < 1, p1 > 1 and q1 > 1. Also, let CFR
a1 Dα be defined by (3.1). If g ′ ∈

Lq1 (a1, b1), then the following inequality holds true:

∫ b1

a1

∣∣(CFR
a1 Dαg

)
(x)

∣∣q1 dx ≤ C1

∫ b1

a1

∣∣g ′(t)
∣∣q1 dt, (3.2)

where 1
p1

+ 1
q1

= 1, λ = –α
1–α

and C1 = ( M(α)
1–α

)q1 (– 1
p1λ

)q1/p1 (b1 – a1).

Proof We have

∣∣(CFR
a1 Dαg

)
(x)

∣∣ =
∣∣∣∣M(α)

1 – α

d
dx

∫ x

a1

g(t) exp
(
λ(x – t)

)
dt

∣∣∣∣

=
∣∣∣∣M(α)

1 – α

d
dx

(
g(x) ∗ exp(λx)

)∣∣∣∣
=

∣∣∣∣M(α)
1 – α

(
dg
dx

(x) ∗ exp(λx)
)∣∣∣∣

≤ M(α)
1 – α

∫ x

a1

∣∣g ′(t)
∣∣ exp

(
λ(x – t)

)
dt.

By using Hölder’s inequality for {p1, q1}, we can write

∣∣(CFR
a1 Dαg

)
(x)

∣∣ ≤ M(α)
1 – α

(∫ x

a1

∣∣g ′(t)
∣∣q1 dt

) 1
q1

(∫ x

a1

exp
(
p1λ(x – t)

)
dt

) 1
p1

=
M(α)
1 – α

(
–

1
p1λ

+
exp(p1λ(x – a1))

p1λ

) 1
p1

(∫ x

a1

∣∣g ′(t)
∣∣q1 dt

) 1
q1

.

Thus we get

∣∣(CFR
a1 Dαg

)
(x)

∣∣q1 ≤
(

M(α)
1 – α

)q1(
–

1
p1λ

+
exp(p1λ(x – a1))

p1λ

) q1
p1

∫ x

a1

∣∣g ′(t)
∣∣q1 dt

≤
(

M(α)
1 – α

)q1(
–

1
p1λ

) q1
p1

∫ b1

a1

∣∣g ′(t)
∣∣q1 dt.

Integrating both sides from a1 to b1, we obtain the following inequality:

∫ b1

a1

∣∣(CFR
a1 Dαg

)
(x)

∣∣q1 dx ≤
(

M(α)
1 – α

)q1(
–

1
p1λ

) q1
p1

(b1 – a1)
∫ b1

a1

∣∣g ′(t)
∣∣q1 dt.
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Let C1 = ( M(α)
1–α

)q1 (– 1
p1λ

)
q1
p1 (b – a). Then we obtain (3.2). �

Corollary 3.1 Let v be a weight function on (a1, b1), 0 < α < 1 and λ = –α
1–α

. Also, let CFR
a1 Dα

be defined by (3.1), let g ∈ H1(a1, b1) and define u on (a1, b1) by

u(t) = –λ

∫ b1

t

v(x) exp(λ(x – t))
1 – exp(λ(x – a1))

dx < ∞.

If the function ψ : (0,∞) → R represents a convex and increasing function, then the in-
equality

∫ b1

a1

v(x)ψ
(

λ2

1 – exp(λ(x – a1))
∣∣(CFR

a1 Dαg
)
(x)

∣∣
)

dx ≤
∫ b1

a1

u(t)ψ
(∣∣g ′(t)

∣∣)dt (3.3)

holds true.

Proof By applying Theorem 2.1 with Ω1 = Ω2 = (a1, b1), dμ1(x) = dx, dμ2(t) = dt,

k1(x, t) =

⎧⎨
⎩

– exp(λ(x–t))
λ

, a1 ≤ t ≤ x,

0, x < t ≤ b1,

then we find K1(x) = 1–exp(λ(x–a1))
λ2 . Also, if g is replaced by g ′ and h is taken as CFR

a1 Dαg , we
obtain (3.3). �

Remark 3.1 In Corollary 3.1, let v(x) = 1 – exp(λ(x – a1)) be a particular weight function
on (a1, b1). Then we obtain the following inequality:

∫ b1

a1

(
1 – exp

(
λ(x – a1)

))
ψ

(
λ2

1 – exp(λ(x – a1))
∣∣(CFR

a1 Dαg
)
(x)

∣∣dx
)

≤
∫ b1

a1

(
1 – exp

(
λ(b1 – t)

))
ψ

(∣∣g ′(t)
∣∣)dt. (3.4)

If the function ψ : (0,∞) →R is defined by ψ(x) = xq1 for q1 > 1, then (3.4) reduces to the
following inequality:

∫ b1

a1

(
1 – exp

(
λ(x – a1)

))( λ2

1 – exp(λ(x – a1))
∣∣(CFR

a1 Dαg
)
(x)

∣∣
)q1

dx

≤
∫ b1

a1

(
1 – exp

(
λ(b1 – t)

))∣∣g ′(t)
∣∣q1 dt. (3.5)

From x ∈ (a1, b1) and λ < 0, then for the left-hand side of (3.5) holds the following inequal-
ity:

∫ b1

a1

λ2q1

(1 – exp(λ(x – a1)))q1–1

∣∣(CFR
a1 Dαg

)
(x)

∣∣q1 dx

≥ λ2q1

(1 – exp(λ(b1 – a1))q1–1

∫ b1

a1

∣∣(CFR
a1 Dαg

)
(x)

∣∣q1 dx. (3.6)
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Also, the right-hand of (3.5) satisfies the following inequality:

∫ b1

a1

(
1 – exp

(
λ(b1 – t)

))∣∣g ′(t)
∣∣q1 dt ≤ (

1 –
(
λ(b1 – a1)

))∫ b1

a1

∣∣g ′(t)
∣∣q1 dt. (3.7)

So, by using (3.6) and (3.7) in (3.5) we obtain

λ2q1

(1 – exp(λ(b1 – a1)))q1–1

∫ b1

a1

∣∣(CFR
a1 Dαg

)
(x)

∣∣q1 dx

≤ (
1 – exp

(
λ(b1 – a1)

))∫ b1

a1

∣∣g ′(t)
∣∣q1 dt.

That is, we can write

∫ b1

a1

∣∣(CFR
a1 Dαg

)
(x)

∣∣q1 dx ≤
(

1 – exp(λ(b1 – a1))
λ2

)q1 ∫ b1

a1

∣∣g ′(t)
∣∣q1 dt.

Taking the power 1
q1

on both sides, we get

∥∥CFR
a1 Dαg

∥∥
q1

≤ 1 – exp(λ(b1 – a1))
λ2

∥∥g ′∥∥
q1

.

Next, we obtain a special case of Theorem 2.2 for the left new Riemann fractional deriva-
tive.

Corollary 3.2 Let v be a weight function on (a1, b1), 0 < α < 1 and λ = –α
1–α

. Let CFR
a1 Dα be

defined by (3.1) and define u on (a1, b1) by

u(t) = –
g ′

2(t)
λ

∫ b1

t

v(x) exp(λ(x – t))
(CFR
a1 Dαg2)(x)

dx < ∞.

If the function ψ : (0,∞) →R denotes a convex and increasing function, then the inequality

∫ b1

a1

v(x)ψ
(∣∣∣∣

(CFR
a1 Dαg1)(x)

(CFR
a1 Dαg2)(x)

∣∣∣∣
)

dx ≤
∫ b1

a1

u(t)ψ
(∣∣∣∣g ′

1(t)
g ′

2(t)

∣∣∣∣
)

dt (3.8)

holds true for all gj ∈ H1(a1, b1) (j = 1, 2).

Proof Using Theorem 2.2 with Ω1 = Ω2 = (a1, b1), dμ1(x) = dx, dμ2(t) = dt and we get

k1(x, t) =

⎧⎨
⎩

– exp(λ(x–t))
λ

, a1 ≤ t ≤ x,

0, x < t ≤ b1.

Also, if gj is replaced by g ′
j and hj is taken as CFR

a1 Dαgj for j = 1, 2, then we obtain the in-
equality (3.8). �
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Corollary 3.3 Let v be a weight function on (a1, b1), 0 < p1 ≤ q1 < ∞, 0 < α < 1 and λ = –α
1–α

.
Let CFR

a1 Dα be defined by (3.1) and define u on (a1, b1) by

u(t) =
[∫ b1

t
v(x)

(
–λ exp(λ(x – t))

(1 – exp(λ(x – a1)))

) q1
p1

dx
] p1

q1
< ∞.

If the function ψ denotes a convex and non-negative increasing on an interval I1 ⊆R, then
the following inequality holds true:

[∫ b1

a1

v(x)
(

ψ

(
λ2

1 – exp(λ(x – a1))
(CFR

a1 Dαg
)
(x)

)) q1
p1

dx
] 1

q1

≤
[∫ b1

a1

u(t)ψ
(
g ′(t)

)
dt

] 1
p1

, (3.9)

for all measurable functions g ′ : (a1, b1) → R such that Im g ′ ⊆ I1.

Proof By using Theorem 2.3 with Ω1 = Ω2 = (a1, b1), dμ1(x) = dx, dμ2(t) = dt,

k1(x, t) =

⎧⎨
⎩

– exp(λ(x–t))
λ

, a1 ≤ t ≤ x

0, x < t ≤ b1,

then we find K1(x) = 1–exp(λ(x–a1))
λ2 . Also, if g is replaced by g ′ and h is taken as CFR

a1 Dαg , we
obtain (3.9). �

Corollary 3.4 Let v be a weight function on (a1, b1), 0 < α < 1 and λ = –α
1–α

. Let CFR
a1 Dα

be defined by (3.1), and gj ∈ H1(a1, b1) for j = 1, 2, 3, where g2(x) > 0 for all x ∈ (a1, b1). If
0 < a1 < b1 < ∞ and x �→ – v(x)g′

2(t) exp(λ(x–t))
λ(CFR

a1 Dαg2)(x)
is integrable function over (a1, b1), then u(t) is

defined as

u(t) = –
g ′

2(t)
λ

∫ b1

t

v(x) exp(λ(x – t))
(CFR
a1 Dαg2)(x)

dx.

If the function ψ : (0,∞) × (0,∞) →R denotes a convex and increasing function, then the
following inequality holds true:

∫ b1

a1

v(x)ψ
(∣∣∣∣

(CFR
a1 Dαg1)(x)

(CFR
a1 Dαg2)(x)

∣∣∣∣,
∣∣∣∣
(CFR
a1 Dαg3)(x)

(CFR
a1 Dαg2)(x)

∣∣∣∣
)

dx

≤
∫ b1

a1

u(t)ψ
(∣∣∣∣g ′

1(t)
g ′

2(t)

∣∣∣∣,
∣∣∣∣g ′

3(t)
g ′

2(t)

∣∣∣∣
)

dt. (3.10)

Proof Using Theorem 2.4 with Ω1 = Ω2 = (a1, b1), dμ1(x) = dx, dμ2(t) = dt, we get

k1(x, t) =

⎧⎨
⎩

– exp(λ(x–t))
λ

, a1 ≤ t ≤ x,

0, x < t ≤ b1,

Also, K1(x) = 1–exp(λ(x–a1))
λ2 . Also, if gj is replaced by g ′

j and hj is taken as CFR
a1 Dαgj for j = 1, 2,

then we obtain the inequality (3.10). �
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4 Examples
Below, we will show the application of our some of our main results with three examples.

Example 4.1 In Theorem 3.1, let g(x) = sin x and (a1, b1) = (0, π
2 ). Then we obtain

∣∣(CFR
a1 Dα sin

)
(x)

∣∣ =
∣∣∣∣M(α)

1 – α

d
dx

∫ x

0
sin t exp

(
λ(x – t)

)
dt

∣∣∣∣
=

∣∣∣∣M(α)
1 – α

d
dx

(
sin x ∗ exp(λx)

)∣∣∣∣
=

∣∣∣∣M(α)
1 – α

(
cos x ∗ exp(λx)

)∣∣∣∣
≤ M(α)

1 – α

∫ x

0
| cos t| exp

(
λ(x – t)

)
dt.

By using Hölder’s inequality for {p1, q1}, we can write

∣∣(CFR
a1 Dα sin

)
(x)

∣∣ ≤ M(α)
1 – α

(∫ x

0
| cos t|q1 dt

) 1
q1

(∫ x

0
exp

(
p1λ(x – t)

)
dt

) 1
p1

≤ M(α)
1 – α

(
–

1
p1λ

) 1
p1

(∫ x

0
| cos t|q1 dt

) 1
q1

.

Thus, we have

∣∣(CFR
a1 Dα sin

)
(x)

∣∣q1 ≤
(

M(α)
1 – α

(
–

1
p1λ

) 1
p1

)q1 ∫ x

0
| cos t|q1 dt.

Integrating both sides from 0 to π
2 , we find

∫ π
2

0

∣∣(CFR
a1 Dα sin

)
(x)

∣∣q1 dx ≤ π

2

(
M(α)
1 – α

(
–

1
p1λ

) 1
p1

)q1 ∫ x

0
| cos t|q1 dt.

So, g(x) = sin x satisfies the Hardy-type inequality.

Example 4.2 In Corollary 3.2, let CFR
a1 Dα be the new Riemann fractional derivative and

v(x) = exp(λ(x – a1))(λ(x – a1) + 1) be a particular weight function. Also, let ψ(x) = xs be a
convex function for s ≥ 1, x > 0, and gj(x) = exp(λ(x – a1)) be a function for j = 1, 2. Then
we find

(CFR
a1 Dαg2

)
(x) =

M(α)
1 – α

d
dx

∫ x

a1

exp
(
λ(t – a1)

)
exp

(
λ(x – t)

)
dt

=
M(α)
1 – α

[
λ exp

(
λ(x – a1)

)
(x – a1) + exp

(
λ(x – a1)

)]

=
M(α)
1 – α

exp
(
λ(x – a1)

)[
λ(x – a1) + 1

]
.

So, we obtain

u(t) = –
g ′

2(t)
λ

∫ b1

t

v(x) exp(λ(x – t))
(CFR
a1 Dαg2)(x)

dx
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= – exp
(
λ(t – a1)

)∫ b1

t

exp(λ(x – a1))(λ(x – a1) + 1) exp(λ(x – t))
(CFR
a1 Dαg2)(x)

dx

= –
1 – α

λM(α)
[
exp

(
λ(b1 – a1)

)
– exp

(
λ(t – a1)

)]
< ∞.

Therefore, from (3.8) in Corollary 3.2, we can write

∫ b1

a1

exp
(
λ(x – a1)

)(
λ(x – a1) + 1

)
ψ(1) dx

≤
∫ b1

a1

–
1 – α

λM(α)
[
exp

(
λ(b1 – a1)

)
– exp

(
λ(t – a1)

)]
ψ(1) dt.

After some calculation, we obtain

λ(b1 –a1)2 exp
(
λ(b1 –a1)

) ≤ –
1 – α

λM(α)

[
exp

(
λ(b1 –a1)

)
(b1 –a1)–

exp(λ(b1 – a1)) – 1
λ

]
.

Example 4.3 In Corollary 3.3, let CFR
a1 Dα be the new Riemann fractional derivative and

v(x) = (1 – exp(λ(x – a1)))
q1
p1 be a particular weight function. Also, let ψ(x) = xs be a convex

function for s ≥ 1, x > 0. Then we find

u(t) =
[∫ b1

t
v(x)

(
–

λ exp(λ(x – t))
1 – exp(λ(x – a1))

) q1
p1

dx
] p1

q1

= –λ

(
p1

λq1

) p1
q1

[
exp

(
q1

p1
λ(b1 – t)

)
– 1

] p1
q1

< ∞,

and from (3.9) we can write

[∫ b1

a1

(
1 – exp

(
λ(x – a1)

)) (1–s)q1
p1 λ2s((CFR

a1 Dαg
)
(x)

) sq1
p1 dx

] 1
q1

≤
[∫ b1

a1

(–λ)
(

p1

λq1

) p1
q1

(
exp

(
q1

p1
λ(b1 – t)

)
– 1

) p1
q1 ∣∣g ′(t)

∣∣s dt
] 1

p1
. (4.1)

The left-hand side of (4.1) satisfies the following inequality:

[∫ b1

a1

(
1 – exp

(
λ(x – a1)

)) (1–s)q1
p1 λ2s((CFR

a1 Dαg
)
(x)

) sq1
p1 dx

] 1
q1

≥ λ2s(1 – exp
(
λ(b1 – a1)

)) 1–s
p1

(∫ b1

a1

((CFR
a1 Dαg

)
(x)

) sq1
p1 dx

) 1
q1

. (4.2)

Also, the right-hand side of (4.1) satisfies the following inequality:

[∫ b1

a1

(–λ)
(

p1

λq1

) p1
q1

[
exp

(
q1

p1
λ(b1 – t)

)
– 1

] p1
q1 ∣∣g ′(t)

∣∣s dt
] 1

p1

≤ (–λ)
1

p1

(
p1

λq1

) 1
q1

(
exp

(
q1

p1
λ(b1 – a1)

)
– 1

) 1
p1

(∫ b1

a1

∣∣g ′(t)
∣∣s dt

) 1
p1

. (4.3)
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So, by using (4.2) and (4.3) in (4.1), we obtain

[∫ b1

a1

((CFR
a1 Dαg

)
(x)

) sq1
p1 dx

] 1
q1 ≤ (–1)

s
p1 λ

1
p1

–2s
(

p1

λq1

) 1
q1

[
exp

(
q1

p1
λ(b1 – a1)

)] s
p1

×
(∫ b1

a1

∣∣g ′(t)
∣∣s dt

) 1
p1

.

Acknowledgements
The authors would like to thank the referees for their useful comments and remarks.

Funding
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed to each part of this work equally, and they all read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, Bolu, Turkey. 2Department
of Mathematics, Faculty of Arts and Sciences, Çankaya University, Ankara, Turkey. 3Institutes of Space Sciences,
Magurele-Bucharest, Romania.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 February 2018 Accepted: 29 October 2018

References
1. Hardy, G.H.: Note on some points in the integral calculus. LX. An inequality between integral. Messenger Math. 54,

150–156 (1925)
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