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1 Introduction
For a compactly supported smooth function h on R

n the classical Sobolev inequality [30]
and Gagliardo–Nirenberg inequality [14, 26] state the existence of positive constants C
and ˜C such that

∫

Rn
|∇h|dx ≥ C(n)

(∫

Rn
|h| n

n–1 dx
) n–1

n
, n > 1 (1)

and

(∫

Rn
|∇h|2 dx

) 1
2 ≥ ˜C(n)

(∫

Rn
|h| 2n

n–2 dx
) n–2

2n
, n > 2 (2)

hold. Inequalities (1) and (2) follow from a more general Gagliardo–Nirenberg–Sobolev
(GNS) inequality,

(∫

Rn
|∇h|p dx

) 1
p

≥ C(n, p)
(∫

Rn
|h| np

n–p dx
)

n–p
np

, (3)

where 1 ≤ p < n. Inequalities (1) and (2) are obtained by choosing p = 1 and p = 2, re-
spectively, in (3). These inequalities are important in the study of PDEs, heat kernel and
spectral estimates (see, e.g., [10, 11]).

On the other hand, the corresponding versions of these inequalities for discrete graphs
were obtained by Chung and Yau (see [8, 9]). The discrete analogue of (1) and (2) depend
on a parameter associated with a graph, which we call the isoperimetric dimension of the
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graph, and a constant, which we call the isoperimetric constant of the graph. We define
them as follows:

Let G denote a graph with vertex set V (G). The graph G has an isoperimetric constant Cδ

depending on the isoperimetric dimension δ if the number of edges between every subset
Z of the vertex set V (G) and its compliment Z̄, denoted by |E(Z, Z̄)|, satisfies

∣

∣E(Z, Z̄)
∣

∣ ≥ Cδ

(

Vol(Z)
) δ–1

δ , whenever Vol(Z) ≤ Vol(Z̄).

Here Vol(Z) denotes the sum of the valencies of all vertices in Z. Let h : V (G) → R be an
arbitrary function and τh is the largest value such that

∑

h(v)<τh

dv ≤
∑

h(u)≥τh

du

with du being the valency of the vertex u.
For a connected graph G, the discrete analogue of the Sobolev inequalities state the

existence of positive constants C1 = Cδ (δ–1)
δ

and C2 = δ–1
2δC–1/2

δ

such that

∑

u∼v

∣

∣h(u) – h(v)
∣

∣ ≥ C1

(

∑

v

∣

∣h(v) – τh
∣

∣

δ
δ–1 dv

) δ–1
δ

, δ > 1 (4)

and

(

∑

u∼v

∣

∣h(u) – h(v)
∣

∣

2
) 1

2 ≥ C2 min
τh

(

∑

v

∣

∣h(v) – τh
∣

∣

ηdv

) 1
η

, δ > 2 (5)

holds. Here η = 2δ
δ–2 and u ∼ v means u and v are neighbors.

Inequalities such as (4) and (5) play an important role in the study of heat kernel and
spectral estimates of discrete Laplacian on graphs. For instance, the lower bound on the
kth eigenvalue λk of the discrete Laplacian on a connected graph G is obtained by using
inequality (5) as

λk ≥ C3

(

k
Vol(G)

) 2
δ

,

where the constant C3 depends on δ.
One can consider a generalization of discrete graphs by identifying each edge by an

interval of the real line instead of an ordered pair of vertices. In this way, one can define
a distance function on such graphs, which can be the smallest path length between two
points on the graph. This new object, with a metric defined on it, is called a metric graph. In
addition, we can define ordinary differential operators on each edge with certain boundary
conditions at the vertices. Boundary conditions or vertex conditions are chosen in a way
which makes the overall operator self-adjoint on the graph.

Let � denote a metric graph with N being the number of edges and denote the jth edge
by ej which is identified by an interval of the real line, i.e., ej = (x2j–1, x2j), j = 1, 2, . . . , N .
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In the Hilbert space L2(�) :=
⊕∑N

j=1 L2(ej), the Laplace operator (6) with standard condi-
tions (7), which are also known as Kirchhoff, Neumann or free conditions, is a self-adjoint
operator

Hh := –h′′, (6)
⎧

⎨

⎩

h is continuous at the vertex V,
∑

xj∈V ∂h(xj) = 0.
(7)

The extended normal derivative is ∂h(xj) := limx→xj
d

dx h(x) if xj is the left-end point and
∂h(xj) := limx→xj – d

dx h(x) if xj is the right-end point. For the description of all possible
vertex conditions for which (6) is self-adjoint, see [16, 18]. The pair of a metric graph
and a self-adjoint differential operator is called a quantum graph. Such objects naturally
arise in different areas of mathematics, science and engineering when analyzing various
processes in systems which, locally, look like a thin neighborhood of a graph. In the last two
decades, quantum graphs have evolved as an interesting branch of mathematical physics
and have found many useful applications in physics, particularly in quantum chaos [15,
19] and mesoscopic physics [12, 13, 18]. For a detailed study of quantum graphs, we refer
the reader to [3, 20–22, 29].

Although a quantum graph is fundamentally a different object from a discrete graph,
in some special situations their spectra are related to each other. For example, it is well
known (see [2, 4–6, 27, 31]) that if all edges of a compact metric graph are of the same
length then the set of eigenvalues {λj : λj/π2 /∈ Z} of the Laplace operator (6) with vertex
conditions (7) is related to the set of eigenvalues μj of the normalized discrete Laplacian
as

1 – cos(
√

λj) = μj, μj 	= 0, 2.

Therefore, it is a natural question to ask whether it is possible to derive some functional
inequalities of the type discussed above for metric graphs and whether one can obtain
some estimates on the spectrum of the related quantum graphs? In this paper, we try
to answer this question by deriving analogues of (3) for compact and connected metric
graphs. A different version of GNS inequalities for non-compact metric graphs has been
used by Adami, Serra and Tilli [1] to study ground states of certain NLSE.

The plan of the paper is as follows. In the next section we fix the notation and state our
main results, Theorems 2.1 and 2.3. Section 3 contains proofs of the main results. Func-
tional inequalities involving the graph’s Cheeger constant is the theme of Sect. 4. As a
consequence of Theorem 4.3, we recover the well known Cheeger inequality for quantum
graphs, which gives a lower bound on the lowest non-zero eigenvalue of the Laplacian (6)
with standard conditions (7) on the vertices. For quantum graphs the same lower bound,
Corollary 4.4, was first obtained by Nicaise [25, Theorem 3.2] and also by Post [28, Theo-
rem 6.1].

2 Main results
Let � be a compact and connected metric graph. We say that � has an isoperimetric con-
stant Cγ depending on the isoperimetric dimension γ if for every subgraph Z of �, the
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number of edges that depart from Z, denoted by |∂Z|, satisfies

|∂Z| ≥ Cγ

(

Vol(Z)
)

γ –1
γ , whenever Vol(Z) ≤ Vol(Z̄). (8)

Here Z̄ denotes the complement of Z. For a non-negative function h on the metric graph
�, we define

Z+
h (t) :=

{

x ∈ � : h(x) > t
}

(9)

and

Z–
h (t) :=

{

x ∈ � : h(x) ≤ t
}

. (10)

Here t ≥ 0. It is easy to observe that there always exists a non-negative number th such that
Vol(Z+

h (th)) = Vol(Z–
h (th)) and therefore Vol(Z+

h (t)) ≤ Vol(Z–
h (t)) for all t ≥ th. In addition, if

h = c ≥ 0 is a constant function then we set th = c.
Let V denote the set of vertices of �. We say that h ∈ C1(�) if h|ej ∈ C1(ej) and h satisfies

the standard matching conditions (7) at all the vertices. The following two theorems are
our main results:

Theorem 2.1 For h ∈ C1(�), h ≥ 0 and for γ > 1, the following inequality holds:

∫

�

∣

∣h′(x)
∣

∣dx ≥ Cγ

(∫

�

∣

∣h(x) – th
∣

∣

γ
γ –1 dx

)
γ –1
γ

. (11)

Corollary 2.2 Let h satisfy the conditions of the above theorem. Then, for γ > 1, we have
the following inequality:

∫

�

∣

∣h′(x)
∣

∣dx ≥ Cγ 2–1/γ
(∫

�

∣

∣h(x)
∣

∣

γ
γ –1 dx

)
γ –1
γ

– Cγ th
(

Vol
(

Z+
h (0)

))
γ –1
γ , (12)

where Z+
h (0) = {x ∈ � : h(x) > 0}.

Theorem 2.3 For h ∈ C1(�), h ≥ 0 and for γ > 1 and integer q ≥ 2, the following inequality
holds:

(∫

�

∣

∣h′(x)
∣

∣

qγ
q+γ –1 dx

)
q+γ –1

qγ

≥ Cγ ,q

(∫

�

∣

∣h(x)
∣

∣

qγ
γ –1 dx

)
γ –1
qγ

– Cγ ,q
(h,γ , q,�)
(∫

�

∣

∣h(x)
∣

∣

qγ
γ –1 dx

)
(γ –1)(1–q)

qγ

, (13)

where Cγ ,q = 2–1/γ Cγ

q and 
(h,γ , q,�) = 21/γ thq Vol(Z+
hq (0))

γ –1
γ .

Remark 2.4 If th = 0, then inequality (11) reduces to

∫

�

∣

∣h′(x)
∣

∣dx ≥ Cγ

(∫

�

∣

∣h(x)
∣

∣

γ
γ –1 dx

)
γ –1
γ

,
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and if thq = 0, then inequality (13) becomes

(∫

�

∣

∣h′(x)
∣

∣

qγ
q+γ –1 dx

)
q+γ –1

qγ

≥ Cγ ,q

(∫

�

∣

∣h(x)
∣

∣

qγ
γ –1 dx

)
γ –1
qγ

.

3 Proofs of the main results
In this section we prove our main results. We closely follow the argument of Cheeger [7]
and Maz’ya [23, 24]. A similar argument was used in the case of discrete graphs [8, 9]. We
will need the following lemma.

Lemma 3.1 For γ > 1, the following inequalities hold:

∫ ∞

t0

Vol
(

Z+
h (t)

)
γ –1
γ dt ≥

(∫

�

(

h(x) – th
)

γ
γ –1
+ dx

)
γ –1
γ

, (14)

∫ t0

0
Vol

(

Z–
h (t)

)
γ –1
γ dt ≥

(∫

�

(

h(x) – th
)

γ
γ –1
– dx

)
γ –1
γ

. (15)

Proof For simplicity we put p = γ

γ –1 and, using the definition of Lebesgue integral, we write

(∫

�

(

h(x) – th
)p

+ dx
) 1

p
=

(∫ ∞

0
Vol

(

Z+
h (t)

)

d(t – th)p
+

) 1
p

=
(∫ ∞

th

Vol
(

Z+
h (t)

)

d(t – th)p
) 1

p

=
(

p
∫ ∞

0
Vol

(

Z+
h (th + t)

)

tp–1 dt
) 1

p

=
(

p
∫ ∞

0
Vol

(

Z+
h (th + t)

) 1
p Vol

(

Z+
h (th + t)

)1– 1
p tp–1 dt

) 1
p

. (16)

As Vol(Z+
h (t)) is a monotonically decreasing function of t, we have

t Vol
(

Z+
h (th + t)

) 1
p ≤

∫ t

0
Vol

(

Z+
h (th + τ )

) 1
p dτ ,

and hence

tp–1 Vol
(

Z+
h (th + t)

)
p–1

p ≤
(∫ t

0
Vol

(

Z+
h (th + τ )

) 1
p dτ

)p–1

. (17)

Using inequality (17) and by putting g(t) =
∫ t

0 Vol(Z+
h (th + τ ))

1
p dτ , equation (16) becomes

(∫

�

(

h(x) – th
)p

+ dx
) 1

p
≤

(∫ ∞

0
pgp–1(t)g ′(t) dt

) 1
p

.
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This implies that

(∫

�

(

h(x) – th
)p

+ dx
) 1

p
≤

∫ ∞

0
Vol

(

Z+
h (th + t)

) 1
p dt

=
∫ ∞

th

Vol
(

Z+
h (t)

) 1
p dt,

which is the desired inequality (14).
To prove the second inequality, we consider

(∫

�

(

h(x) – th
)p

– dx
) 1

p
=

(∫ ∞

0
Vol

(

Z+
h (t)

)

d(t – th)p
–

) 1
p

=
(∫ th

0
Vol

(

Z+
h (t)

)

d(th – t)p
) 1

p

=
(

p
∫ th

0
– Vol

(

Z+
h (t)

)

(th – t)p–1 dt
) 1

p
. (18)

As – Vol(Z+
h (t)) ≤ – Vol(Z–

h (t)) ≤ Vol(Z–
h (t)) for t < th, equation (18) becomes

(∫

�

(

h(x) – th
)p

– dx
) 1

p
≤

(

p
∫ th

0
Vol

(

Z–
h (t)

)

(th – t)p–1 dt
) 1

p
. (19)

Now Vol(Z–
h (t)) is a monotonically increasing function of t and therefore

(th – t)p–1 Vol
(

Z–
h (t)

)
p–1

p ≤
(∫ th

t
Vol

(

Z–
h (τ )

) 1
p dτ

)p–1

. (20)

Using inequality (20) and by putting q(t) =
∫ th

t Vol(Z–
h (τ ))

1
p dτ , inequality (19) becomes

(∫

�

(

h(x) – th
)p

– dx
) 1

p
≤

(∫ th

0
–pqp–1(t)q′(t) dt

) 1
p

.

This implies that

(∫

�

(

h(x) – th
)p

– dx
) 1

p
≤

∫ th

0
Vol

(

Z–
h (t)

) 1
p dt. �

3.1 Proof of Theorem 2.1
Define the set Zh(t) as

Zh(t) =

⎧

⎨

⎩

Z+
h (t), if t > th,

Z–
h (t), if t ≤ th.

We know that Vol(Z+
h (t)) ≤ Vol(Z–

h (t)) = Vol(Z̄+
h (t)) for all t > th and Vol(Z–

h (t)) ≤
Vol(Z+

h (t)) = Vol(Z̄–
h (t)) for all t ≤ th. Therefore,

∣

∣∂Z+
h (t)

∣

∣ ≥ Cγ

(

Vol
(

Z+
h (t)

))
γ –1
γ if t > th (21)
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and

∣

∣∂Z–
h (t)

∣

∣ ≥ Cγ

(

Vol
(

Z–
h (t)

))
γ –1
γ if t ≤ th. (22)

In order to prove the theorem, we need the co-area formula
∫

�

∣

∣h′(x)
∣

∣dx =
∫ ∞

0

∣

∣∂Zh(t)
∣

∣dt,

or
∫

�

∣

∣h′(x)
∣

∣dx =
∫ th

0

∣

∣∂Z–
h (t)

∣

∣dt +
∫ ∞

th

∣

∣∂Z+
h (t)

∣

∣dt. (23)

Equation (23), along with inequalities (21) and (22). implies that

∫

�

∣

∣h′(x)
∣

∣dx ≥ Cγ

(∫ th

0

(

Vol
(

Z–
h (t)

))
γ –1
γ dt +

∫ ∞

th

(

Vol
(

Z+
h (t)

))
γ –1
γ dt

)

,

which, due to Lemma 3.1, gives

∫

�

∣

∣h′(x)
∣

∣dx ≥ Cγ

(∫

�

(

h(x) – th
)

γ
γ –1
– dx

)
γ –1
γ

+ Cγ

(∫

�

(

h(x) – th
)

γ
γ –1
+

)
γ –1
γ

= Cγ

(∫

�

∣

∣h(x) – th
∣

∣

γ
γ –1 dx

)
γ –1
γ

.

Here we used |h(x) – th|p = (h(x) – th)p
+ + (h(x) – th)p

–.

3.2 Proof of Corollary 2.2
Inequality (11) in particular implies that

∫

�

∣

∣h′(x)
∣

∣dx ≥ Cγ

(∫

�

(

h(x) – th
)

γ
γ –1
+ dx

)
γ –1
γ

. (24)

For β ≥ 1, a > 0 and b > 0, the following elementary inequality holds:

(a + b)β ≤ 2β–1(aβ + bβ
)

. (25)

If we choose a = (h – th)+, b = th and use the fact that (h – th)+ ≥ h, inequality (25) yields

(h – th)β+ ≥ 21–βhβ – tβ

h .

Therefore,
∫

�

(

h(x) – th
)β

+ dx =
∫

Z+
h (0)

(

h(x) – th
)β

+ dx

≥ 21–β

∫

Z+
h (0)

hβ (x) dx – tβ

h Vol
(

Z+
h (0)

)

≥
[

21–β

∫

Z+
h (0)

hβ (x) dx – tβ

h Vol
(

Z+
h (0)

)

]

+
. (26)
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By another elementary inequality

(a – b)1/β
+ ≥ a1/β – b1/β ,

we obtain

[

21–β

∫

Z+
h (0)

hβ (x) dx – tβ

h Vol
(

Z+
h (0)

)

] 1
β

+
≥ 2

1
β

–1
[∫

Z+
h (0)

hβ (x) dx
] 1

β

– th Vol
(

Z+
h (0)

) 1
β . (27)

Finally, choosing β = γ

γ –1 and combining inequalities (24), (26) and (27), we obtain the
desired inequality (12).

3.3 Proof of Theorem 2.3
We apply estimate (12) to hq assuming h ≥ 0, h ∈ C1(�) and q > 1 is an integer, which gives

(∫

�

∣

∣hq(x)
∣

∣

γ
γ –1 dx

)
γ –1
γ

– 2
1
γ thq

(

Vol
(

Z+
hq (0)

))
γ –1
γ ≤ 2

1
γ

Cγ

∫

�

∣

∣

(

hq)′(x)
∣

∣dx.

Putting 
(h,γ , q,�) = 21/γ thq Vol(Z+
hq (0))

γ –1
γ , the above inequality becomes

(∫

�

∣

∣hq(x)
∣

∣

γ
γ –1 dx

)
γ –1
γ

– 
(h,γ , q,�) ≤ 2
1
γ

Cγ

∫

�

∣

∣

(

hq)′(x)
∣

∣dx,

(∫

�

∣

∣h(x)
∣

∣

qγ
γ –1 dx

)
γ –1
γ

– 
(h,γ , q,�)

≤ q2
1
γ

Cγ

∫

�

∣

∣

(

hq–1)(x)
∣

∣

∣

∣h′(x)
∣

∣dx

≤ q2
1
γ

Cγ

(∫

�

∣

∣h(x)
∣

∣

(q–1) p
p–1 dx

)
p–1

p
(∫

�

∣

∣h′(x)
∣

∣

p dx
) 1

p
.

We choose p such that qγ

γ –1 = p(q–1)
p–1 , that is,

p =
qγ

q + γ – 1
.

With this choice of p, the above inequality becomes

(∫

�

∣

∣h′(x)
∣

∣

qγ
q+γ –1 dx

)
q+γ –1

qγ

≥ Cγ ,q

(∫

�

∣

∣h(x)
∣

∣

qγ
γ –1 dx

)
γ –1
qγ

– Cγ ,q
(h,γ , q,�)
(∫

�

∣

∣h(x)
∣

∣

qγ
γ –1 dx

)
(γ –1)(1–q)

qγ

,

where Cγ ,q = 2–1/γ Cγ

q .
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4 Sobolev inequalities involving Cheeger constant
Finding an optimal cut of a graph into two or more disjoint subsets is one of the fundamen-
tal problems in graph theory. Cheeger cut, which we define below, among several kinds of
balanced graph cut, is the most widely used tool to obtain optimal partitioning of a graph.
The Cheeger constant C� of a metric graph � is defined as

C� := inf
|∂Z|

min{Vol(Z), Vol(Z̄)}

where inf is taken over all Lebesgue measurable open subsets Z of the metric graph. The
partition (Z, Z̄) of � is called a Cheeger cut if

|∂Z|
min{Vol(Z), Vol(Z̄)} = C� .

In order to find the Cheeger cut of a metric graph, one would really need to know the value
of the associated Cheeger constant or at least an approximation of it. The most well-known
technique to approximate the Cheeger constant is via lowest non-zero eigenvalue of the
standard Laplace operator. Precisely, if λ1 denotes the lowest non-zero eigenvalue of the
Laplace operator (6) subject to standard conditions (7) at the vertices, then the Cheeger
inequality

λ1 ≥ C2
�

4

provides an upper bound on the Cheeger constant. For more details on the theory of
Cheeger constants for quantum graph, we refer to the review article [17].

It is easy to see that C� = limγ→∞ Cγ , where Cγ is the isoperimetric constant of the
graph defined in (8). Using this observation, one can rewrite the inequalities obtained in
Theorems 2.1 and 2.3 in terms of the graph Cheeger constant. The obtained inequalities
in the following theorems could be used as an alternative to estimate the Cheeger con-
stant.

Theorem 4.1 Let C� be the Cheeger constant of the graph �. Then, for a non-negative
function h ∈ C1(�), the following inequality holds:

∫

�

∣

∣h′(x)
∣

∣dx ≥ C�

∫

�

∣

∣h(x) – th
∣

∣dx. (28)

Corollary 4.2 Let h satisfy the conditions of the above theorem. Then the following in-
equality holds:

∫

�

∣

∣h′(x)
∣

∣dx ≥ C�

∫

�

∣

∣h(x)
∣

∣dx – C�th Vol
(

Z+
h (0)

)

, (29)

where Z+
h (0) = {x ∈ � : h(x) > 0}.
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Theorem 4.3 For h ∈ C1(�), h ≥ 0 and for integer q ≥ 2, the following inequality holds:

(∫

�

∣

∣h′(x)
∣

∣

q dx
) 1

q
≥ C�

q

[(∫

�

∣

∣h(x)
∣

∣

q dx
) 1

q
– ˜
(h, q,�)

(∫

�

∣

∣h(x)
∣

∣

q dx
)

(1–q)
q

]

, (30)

where ˜
(h, q,�) = thq Vol(Z+
hq (0)).

The following result follows from Theorem 4.3 and is commonly known as Cheeger
inequality. It was first proved by Nicaise [25, Theorem 3.2].

Corollary 4.4 Let λ1 be the lowest non-zero eigenvalue of the Laplace operator H given
by (6) with the standard or Kirchhoff vertex conditions (7) defined in L2(�), where � is a
compact and connected metric graph. Then we have

λ1 ≥ C2
�

4
. (31)

Proof The lowest eigenvalue of the operator H is zero and corresponding eigenfunction is
a constant. Let ψ1 denote the eigenfunction corresponding to the lowest non-zero eigen-
value λ1. We can assume ψ1 to be real-valued. We define

�+ :=
{

x ∈ � | ψ1(x) > 0
}

and

˜ψ1 := 1�+ψ1.

Clearly, ˜ψ1 disappears on the boundary of �+. By min–max principle, we have

λ1 =
〈–˜ψ ′′

1 , ˜ψ1〉
〈˜ψ1, ˜ψ1〉 =

∫

�
|˜ψ ′

1(x)|2 dx
∫

�
|˜ψ1(x)|2 dx

≥ C2
�

4
.

Here we used integration by parts and applied inequality (30) to ˜ψ1 with q = 2 along with
the fact that the mean value of the eigenfunction is 0. Note that ˜
(˜ψ1, 2,�) = 0. �

5 Conclusions
Metric graphs are locally one-dimensional objects. We first defined isoperimetric dimen-
sion of these graphs which may be greater than one and may not be an integer. We obtained
Sobolev type inequalities for such graphs. These inequalities depend on the isoperimet-
ric dimension of the graph. Moreover, we gave versions of these inequalities that involve
graph’s Cheeger constant. Functional inequalities are important tools for the study of spec-
tral properties of differential operators. We demonstrated this connection by obtaining a
previously known lower bound on the first non-zero eigenvalue of the Laplace operator
defined on a metric graph.
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