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1 Introduction
In recent years, there exist a large number of published papers on the theory of time scales
which was introduced by Stefan Hilger [1] in his Ph.D. thesis in 1988 in order to unify and
extend the difference and differential calculus in a consistent way, for instance, [2—16]
and the references therein. In particular, many scholars attached great importance to the
study of dynamic inequalities on time scales (see, e.g., [17—31] and the references therein),
which extended some discrete and continuous inequalities (see [32—36] and the references
therein).

In 2013, the authors in [22] established and applied the following useful linear Volterra—

Fredholm type integral inequality on time scales:

u(t) <ug+ /tf(r)[u(r) + /rg(s)u(s)As]At + /a h(t)u(t)Ar, tel,

0 0

where I = [, ] NT, tp € T, « € T, o > &y, up is a nonnegative constant, u, f, g, and / are
nonnegative rd-continuous functions defined on 1.
In 2014, the authors in [27] investigated the nonlinear Volterra—Fredholm type integral

inequality on time scales

u(t) §k+/fl(S)W(M(S))AS+/fz(S)/sfg('()W(M(‘E))A‘L’AS

+/ ﬁ(s)w(u(s))As+/ fz(s)/fg,(r)w(u(t))ArAs, tel,
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where I = [ty, ] N T, €T, @ € T, a > ty, u, f1, f2, f3 are rd-continuous functions defined
on [ fi, 2, f5 are nonnegative, w € C(R,,R,) is a nondecreasing function with w(u) > 0 for
u >0, and k is a nonnegative constant.

Very recently, the author in [29] discovered the retarded Volterra—Fredholm type inte-

gral inequality on time scales

a(t) s
u(t) < a(t) + b(t)/ [fl (8)u(s) +f2(s)/ g(T)u(T)A‘L’:| As
a(ty) a(to)
a(T) s
+Ab(T) / |:fl(s)u(s) +f2(s) / g(r)u(r)Ari| As, tel,
a(to) a(to)

where I = (£, T]NT, €T, T €T, T >ty, «:1— I is continuous and strictly increas-
ing satisfying a(t) < t, a® is rd-continuous, u, a, b, f, and g :  — R, are rd-continuous
functions and a is nondecreasing.

Inspired by the ideas employed in [22, 27, 29], here we obtain some new nonlinear
Volterra—Fredholm type integral inequalities on time scales. Our results not only gen-
eralize and extend the results of [22, 27] and some known integral inequalities but also
provide a handy and effective tool for the study of qualitative properties of solutions of
some complicated Volterra—Fredholm type dynamic equations.

2 Preliminaries
For an excellent introduction to the calculus on time scales, we refer the reader to [5]
and [6].

In what follows, we always assume that R denotes the set of real numbers, R, = [0, 00),
Z denotes the set of integers, and T is an arbitrary time scale (nonempty closed subset
of R), R denotes the set of all regressive and rd-continuous functions, R* ={pe R:1+
w(t)p(t) > 0,forall ¢ € T}, I = [ty, T] N'T*, where ty € T%, T € T, T > ty. The set T* is
defined as follows: If T has a maximum m and m is left-scattered, then T" = T — {m}.
Otherwise T* = T. The graininess function u : T — [0,00) is defined by wu(¢) := o (¢) — ¢,
the forward jump operator ¢ : T — T by o(¢) := inf{s € T : s > ¢}, and the “circle plus”
addition @ defined by (p @ q)(¢) := p(t) + q(t) + u({)p(t)q(t) for all t € T*.

We give the following lemmas in order to use them in our proofs. One can find details
in [5].

Lemma 2.1 ([5, Theorem 1.16]) Assume that f : T — R is a function and let t € T. Iff is
differentiable at t, then

f(o®) =f@&) + n@f * @)
Lemma 2.2 ([5, Theorem 1.98]) Assume that v: T — R is a strictly increasing function

and T = v(T) is a time scale. Iff: T — R is an rd-continuous function and v is differen-
tiable with rd-continuous derivative, then for a,b € T,

b v(b) -
[rovwa= [ ov)ois
a v(a)
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Lemma 2.3 ([29]) Let o : I — I be a continuous and strictly increasing function such that
al(t) < t,and o is rd-continuous. Assume thatf : I — R is an rd-continuous function, then

a(t)
g(t) = fls)As, tel, (2.1)
a(to)
implies
O =f(a®))a™@), tel (2.2)

Lemma 2.4 ([5, Theorem 1.117]) Suppose that for each ¢ > 0 there exists a neighborhood
U of t, independent of T € [ty, o (t)], such that

|w(o(t),t) —w(s,T) - wf(t,r)(o(t) —s)| < 8|a(t) -

, sel, (2.3)

where w: T x T — R, is continuous at (t,t), t € T with t > ty, and th(t, -) are rd-

continuous on [ty,o (t)]. Then

t
g(t):= / w(t, T)AT
to
implies
t
g0 = / WAL T)AT + w(o(0)t), teT. (2.4)
to
Lemma 2.5 ([5, Theorem 6.1]) Suppose thaty and f are rd-continuous functions and p €
R*. Then

Y2 () <p@)y(e) +f(t), teT

implies

¥(£) < y(to)ey(t, to) +/ ep(to(0))f(r)AT, teT.

to

Lemma 2.6 Letm>n=>0,m+#0,and a > 0, then

a’ <

forany k > 0.

Proof SetF(x) = Zx""a™ + *—x", x > 0.t is seen that F(x) obtains its minimum at x = a.
Hence we get (2.5) holds for any & > 0. d

Throughout this paper, we assume that:

(Hy) a :1— I is continuous and strictly increasing satisfying () < t and a® is rd-
continuous.

(Hp) B,y :I— Iare continuous satisfying B(¢) <t and y(¢) <t.

(H3) u,a,b:I— R, are rd-continuous functions, a is nondecreasing, and b () > 0.



Liu Journal of Inequalities and Applications (2018) 2018:211 Page 4 of 19

(Hq) f; (1=1,2,3,4,5,6),g; (i=1,2,3): I — R, are rd-continuous functions.
(Hs) v,w:T x T — R, is continuous at (¢,%), t € T with ¢ > &,.
(Hg) m,n:T x T — R, is continuous at (¢,£), ¢t € T with £ > £,.

3 Main results
Theorem 3.1 Assume that (H1)—(Hy) hold,0 <p <1,0<g <1,0 <r <1 are constants,
and p(t)A(t) < 1. Suppose that u satisfies

a(t s

) r
u(t) < a(t) + b(t)/ fi(s) |:u(s) +f2(s)/ gl(r)u(r)At] As

a(to) a(to)

B(T) s q
+ / f3(s) |:u(s) +f4(s)/ gz(r)u(r)Arj| As
B(to) Blto)
y(T) s r
+ f5(s) |:u(s) +f6(s)/ gg(r)u(r)Ar] As, tel. (3.1)
v (to) v (to)
If there exist positive constants k; (i = 1,2,3) such that

B(T)
- /5 [qk;’_lfg(S) (eg@c(s, to) + £i(5) /ﬂ

(to)

s

gz(T)es@C(Tyto)At)}As

(to)

y(T) s
+ / [rkg_l () <63®C(S, to) +f6(s)/ g3(1)epgc(T, to)AT>] As<1, (3.2)
r( Y

to) (to)
then
M(t) < KI_#GB@C(L lf()), tel, (33)
where
B(T) y(T)
K= / (1 - @kifs(s)As + / (1 - r)kifs(s)As, (3.4)
B(to) y(to)
a(t)
V() = a(t) + b(¢) /( ) (1 -p)Kfi(s)As, (3.5)
a(o(2) 1 s
A(f) = b2 (t) “ [pkfﬁ(s)(l + fo(s) ( )gﬂt)At)]As, (3.6)
A(t)
B(t) = 1= 2 OA®D) (3.7)
a(t)
C(t) = b(¢) |:pk’f_lfl (a(t)) <1 +f2(oz(t)) /( | gl(r)Ar)]aA(t). (3.8)
Proof Denote
al(t) s p
z(t) = a(t) + b(t)/ fi(s) |:u(s) +f2(s)/ gl(t)u(r)Ati| As
alt) a(t)
B(T) s q
+ f3(s) |:u(s) +f4(s)/ gg(t)u(t)Ar:| As
B(to) Bl(to)
y(T) s r
+ f5(s) [u(s) +f6(s)/ gg(r)u(r)At] As, tel. (3.9)
v (to) v (to)
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Then z is nondecreasing on I. From (3.1) and (3.9) we have
u(t) <z(t), tel (3.10)

Now using Lemma 2.6 for a = u(s) + fi(s) f;(to)gj(r)u(t)At, i=2,4,6,andj=i/2withm=1
and n = p, q,r for any ky, ky, k3 > 0, respectively, we have

alt) s

z(t) < a(t) + b(t)/

a(to)

{pki"lfl(s)[u(s) f(s) / gl(r)u(r)m}

(to)

+(1 —p)k{fl(s)}As

B(T) s
+/ {qu_lfg(s)[u(s) +f4(s)/ gz(f)u(r)Ar]
B( B(to)

t0)

+(1- q)kgfg(s)} As

(1) S
+/y10) {’kg_lj%(s)[u(s) +f5(5)/;(t0)g3(f)u(1')A‘Ei|

+ (1 = r)ksfs(s) } As. (3.11)

Now using (3.4) and (3.5) and (3.10) we get

a(t)

2(t) < K + V(¢) + b(t) f {pkﬁ“ﬁ (s) [z<s)

(to)

+£2(s) /s gl(r)z(r)Ar“As

(to)

B(T) s
+ / {qulfs(S) |:Z(S) + fa(s) / gg(r)z(r)At] }As
B B(to)

(to)

y(T) s
+ / {rkg‘l =(s) |:z(s) +fo(s) / gg(r)z(r)Ar] }As, tel (3.12)
Y v (to)

(to)
Since V/(¢) is nondecreasing on /, then for ¢ € I, from the above inequality we have

a(t)

zZ(t) < K+ V(T) + b(t)/
o

s

|:pkf_1f1(s) (Z(S) +£2(s) / gl(r)z(r)At):| As

to) (t0)

BT) s
+ / [qulf%(s)<2(s) +fa(s) / gz(t)Z(fMt)]As
B B(to)

(to)

y(T) s
+ / |:rk§‘1 (s) (z(s) +f6(s)/ gg(T)Z(‘L')AT>1|AS, tel. (3.13)
Y v (to)

(to)
Let
B(
M=K+ V(T) +/

Blto

+fym k5 i s
5 f5(8)] 2(s) + f(s) g3(1)z(t)AT ) |As. (3.14)
Y v(to)

(t0)

T) s
[qu_lﬁ;(s) (Z(S) +f4(5)/ gz(r)z(r)Ar)]As
) Blto)
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Then (3.13) can be restated as

a(t)

z(t) <M + b(t) I:pklflfl(s) <z(s) + fo(s) S gl(t)Z(T)AT>:| As, tel. (3.15)

a(to) a(to)

Set

a(t) s
w(t) = M + b(¢) / |:pk1flf1 (s) (z(s) +fo(s) gﬂt)z(r)At)] As, tel. (3.16)
a(to)

a(to)

Then w(¢) is nondecreasing, and from (3.15) and (3.16) we obtain
z(t) <w(t), tel (3.17)

Using Lemma 2.3, taking delta derivative of (3.16), and from (3.17), we have

a(o (1))
wh(t) = bA(t)/

alto)

[Pﬁ’?ﬂﬂ(zc)ﬁﬁu) S gﬂrnu»Af>]As

a(to)
a(t)

+b(t) |:pk‘f_lf1 (a(2)) <z(a(t)) +fo (@) / gl(‘t)z(r)A‘r)]aA(t)

(t0)

s

a(o(t)
swm/ PW%@QMHﬁ@/

(t0)

gl(r)w(r)At):|As
(t0)

alt

+b(t) [pk{‘lfl (a(2)) <w(oz(t)) + () /

a(o (1)

)
gl(t)w(t)Ar>]ocA(t)

(t0)

swdmwm/

a(to)

[pkf_lﬁ(s)<1 +]3(S)/( )gl(r)ArﬂAs

a(t)

+ w(t)b(t) [pklflfl (a(t)) <1 ) (Ol(t)) / gl(‘E)A‘E)]OlA(t)

(to)
= A@t)w(o (1)) + C(t)w(t), tel, (3.18)

where A(t) and C(¢) are defined as in (3.6) and (3.8). From (3.7), we get

B(2)

A= T 0B

(3.19)

and from (3.18), (3.19), and Lemma 2.1, we have

B(t)
1+ w(0B@)
B(t)

= 172080 [w(£) + w(e)w? ()] + CE)w), (3.20)

wh(t) <

(o(2) + CO)W(t)

which yields

B(¥)

A
W(”5[1+MMBM

I + C(t)] w(t), (3.21)



Liu Journal of Inequalities and Applications (2018) 2018:211 Page 7 of 19

ie.,

w™(2) < [B(6) + (1 + n(0)B(£)) C(£) [w(t)

=B CO)(t)yw(), tel (3.22)

Note that w is rd-continuous and B @ C € R*, from Lemma 2.5, (3.16), and (3.22), we
obtain

w(t) < wlto)epac(t, to) = Mepac(t, o), tel. (3.23)
From (3.17) and (3.23), we have
z(t) < Mepgc(t, ty), tel. (3.24)

Using (3.24) on the right—hand side of (3.14) and according to (3.2), we obtain

K+ V(T
M<KV (3.25)
1-A
From (3.24) and (3.25), we obtain
K+ V(T)
Z(t) = ﬁeBGBC(t’ tO), tel (3'26)
Noting (3.10), we get the desired inequality (3.3). This completes the proof. d

If we take p = g = r = 1, we can get the following corollary.

Corollary 3.1 Assume that (H;)—(Ha) hold. Suppose that u satisfies
al(t) s
u(t) < a(t) + b(t)/ fi(s) |:u(s) +f2(s)f gl(r)u(r)Ar]As
a(to) a(ty)

B(T) s
+/ f3(S)|:M(S) +f4(8)/ gz(r)u(r)Ar:|As
B(to) B(to)

y(T) s
+ f5(5)|:M(S) +f6(s)/ g3(r)u(r)Ar:|As, tel
(o) y(to)
If
B(T) s
KI:/ |:3(S)(BB®C(S:t0) +f4(S)/ gz(f)es@c(f»fo)AT>]AS
B(to) B(to)
y(T) s
+ f [fs(S) (eB@c(s, to) + fo(s) / gg(f)eg@c(r,to)m)}m 1
v (to) y(to)
then

T
u(t) < f( iesec(t,to), tel,
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where

(o (0) s A(2)
-_— A =T IAAR
A(t) = b2 (1) /a(to) [fl(s)(l +f5(s) am)gﬂr)Ar)]As, B(¢) = I 0AQ

a(t)

Ct) = b(t)[ (e (2)) (1 +fo(a(2)) / gl(t)Ar>]aA(t).

(t0)

Theorem 3.2 Assume that (Hy)-(Hy) hold, 0 < q; <, 0<r; <[, 1#0,and 0 <6; <1
(i =1,2,3) are constants, and p(t)A(t) < 1. Suppose that u satisfies

ot s

) 61
) <ale) + b(t)/ fi(s) [u’“ (s) +f2(s)/ gl(r)u”(r)Ar] As
alty) a(to)
B(T

)
q2
A [u (5) + fa(s) /ﬁ

Blto)

s

(%)
gg(t)zﬂ(r)At] As
)

(to

Y s

(T)
+ fs(S)[u’”' (5) +is) /

03
gg(t)u’3(t)Ar:| As, tel. (3.27)
v (to) v (to)

If there exist positive constants k; (i = 1,2,...,9) such that

pr s
k::/ [92/<42 f?,(S)(eBQBC(S;tO) +f4(5)/ gz(T)eB@c(T,to)Af)}AS
B B(to)

(t0)
s

v(T) o1 N
. / [93/<73 ﬁ(s>(e3@c<s,to) +l6) f g3<r>e3@c(r,to>m)]m<1, (3.28)
Y Y

(t0) (t0)
then
K+ V(T) 1
u(t) < ﬁeBe)C(t; to)) , tel, (3.29)
where

s

B _ _
R [ ot T2 as0 [ om0 )ar]
Blto) l Blto) l

+(1 —92)kzzf3(s)}As

y(T) - $ /-
+/ {93/(;3—1]%@[_‘13/(33 +f6(s)/ gg(f)( ergs)Af]
) l ) l

y(to

+ (1 - 03)kf(s) } As, (3.30)

I- ; I-
{elk‘fl‘lﬁ@[%kz‘ ) f (t )glm( L k?)m]

a(t)

V() = alt) + b(t) /

alty)
f(1- el)kfws)}As, 331)

a(o(t)
A() =b"(2)

a(ty)

[elkfl‘lﬁ(s)(1 +f3(s) / ( )gl(r)m)}m, (3.32)
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A(D)
1-pnA®R)

a(t)
) - mw[@kﬁ e ()(1+ﬁ(( )[ @rnAr)}aAux

(to)

ﬁm-—ﬂ”uﬂ F® = @ﬂ”(m ﬁm:%%ﬂdm

B(t) =

gm—ahwn’m @m—5FW”’m

~ 73 Iga,rae
B(t) = ks PP g ().
q3

Proof Denote

N

a(t) 01
z(t) = a(t) + b(t)f( )fl(s) |:u‘“(s) +f2(s)/ gl(r)u”(t)Ar:| As

(to)

B(T) s 0
+/ f3(3)|:lth2(5) +f4(s)/ gz(t)urz(t)Ar:| As

¥(

v (to)

Then z is nondecreasing on I. From (3.27) and (3.38) we have
W) <z(t), tel.

Using Lemma 2.6, we obtain

al(t) s 01
z(t) < a(t) + b(t)/ fl(s)|:uq1 (s) +f2(s)/( )gl(‘l:)u’1 (‘L’)A‘L’:| As

B(T)

+ f3(s) |:uq2 (s) + fals)

)
gz(r)urz(r)Ari| As
B(to)

Blto)

(T

+ f5(S) [u””‘ (s) + fo(s)

v (to)

03
gg(t)u’3(r)Ar] As

v (o)

a(t) _
<alt) + b(t)/ {lefl_lfl(s)[@kgl_lul(s) + ! lql ki
(

a(to) l

+f2(s)/( gl(r)(%kgl_lul(r) +

B(T)
+/ {ezkﬁz fg,()[qzk‘“l i+ l‘”k‘ﬂ
B

(to)

+f1 s)/ 2(1) ( Vzl ul(z )+ 7 k22>Ar:|+(1 92)k9f3 s)}

y(T) /-
+ / {93/(33‘75@)[%kg*’u’(s) ‘ l% K
y (to)

S [
+ﬁ®/mgh( 3 rslylr) 4
y(to

03
+ ﬁ;(s)[uq3 s)+f5(s)/ gg(r)u’S(r)At] As, tel.

! 4 )Ar] +(1 —91)/(f1ﬁ(s)}As

Page 9 of 19

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

_—r?’k;S) At:| (- 93)k§3f5(s)}As. (3.40)
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Using (3.30), (3.31), (3.35)—(3.37), and (3.39), we get

a(t) s

2(t) <K+ V() +b(t) /

a(ty)

{91kf1—1~1(S)[Z(S) +fz(5)/ §1(r)z(r)Ar“As

(to)

B(T) - s
+ / {szzzlfg(s)[z(s) +f4(s) / Ez(t)z(r)Ar“As
B B(to)

(t0)

y(T) ~ s
+ / {93/(;)3_1]’5 (s) |:z(s) +f6(s) Eg(f)z(t)Ar:| }As, tel
Y

(t0) y(to)

It is similar to the proof of Theorem 3.1, we get

K+ V(T
z(t)s%e3$c(t,to), tel.

Then, using #'(¢) < z(t), we have (3.29). This completes the proof.

Page 10 of 19

(3.41)

d

Remark 3.1 If we take a(t) =ug, b(t) =1, a(t) =¢, B(t) =t fo(t) =1, and fo(t) = f5(¢£) =0,
then Corollary 3.1 reduces to [22, Theorem 2.2]. If we take a(t) =k, b(t) = 1, (t) = ¢,
B)=t,p=1,q1=r1=q2=1,0, =0, =1, 1(t) =f3(£), /o(t) = fa(t), g1(£) = ga(t), and f5(¢) =
0, then Theorem 3.2 gives an exact estimation for the solution of (3.27) compared with the

result of [27, Theorem 4].

Theorem 3.3 Assume that (H;)—(Hs), (Hs), (He) hold, 0 < p < 1,0 < g < 1 are constants,
w(A®) <1, vA(t,s) > 0, wr(t,8) > 0 for t > s and (2.3) holds. Suppose that u satisfies

o

() P
f(‘L')u(T)AT:| As

a(to)

u(t) < a(t) + b(t) /t[v(t, s)u(s) + w(t,s)

to

T B(s) q
+f |:m(T,s)u(s)+n(T,s)/ g(t)u(r)Ari| As, tel.
to B

(t0)

If there exist positive constants k; (i = 1,2) such that

B(T) 3 P
A::/ |:qu fB(S)(eBeaC(S,to) +f4(s)/ gz(f)eB@C(t,to)At)}As
P Blto)

(to)

s

y(T)
+ / [”kg_lfS(S) <eB®C(Sr to) +fo(s)
y

(to)

g3(t)epgc(t, to)AT>] As<1,

y (to)
then

- K+ V(T)

u(t e t,ty), tel,
(1) < ) et to)

where

T
K:/’u—m@A&

to

V(t) = a(t) + b(¢) /t(l - p)K; As,

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)



Liu Journal of Inequalities and Applications (2018) 2018:211

a(s)

o ()
A(t) = b2 (2) / [V(o(t),s) +w(o(0),s) /

to a(ty)
E(t) = Lt)"‘y
1 - u(@®)A()

g(r)Ar] As,
(3.47)

a(t)
C(t) = b) [v(a(t),t) +w(o(t),t) / g(r)AT

(to)

t a(s)
+ /;0 |:Vf(t,s) + wf(t,s)‘/u )g(r)Ar] Asi|. (3.48)

(to

Proof Denote

t a(s)
z(t) = a(t) + b(t)/ |:V(L‘,S)M(S) +w(t,s) ( )f(T)M(T)A'L']pAS

q

T B(s)
+ / [m(T, s)u(s) + n(T,s)/ g(r)u(r)Ar] As, tel. (3.49)
to B(to)
Then z is nondecreasing on I. From (3.42) and (3.49), we have
u(t) <z(t), tel. (3.50)
Now, using Lemma 2.6 for a = v(t,s)u(s) + w(t,s) f;‘((tz))f(r)u(r)At, and m(T,s)u(s) +
n(T,s) ffﬁ(;))g(r)u(t)Ar with m = 1 and n = p, q for any ki, k» > 0, respectively, we have

()
f(‘[)u(t)A‘L':| +(1 —p)k’f}As

a(to)

z(t) < a(t) + b(t) /t{pkf—l |:v(t, s)u(s) + w(t, s)

T B(s)
kq‘l[ (T,s)us) + n(T,s) ()()A]
+/,;0{q2 m S)u\s)+n S/ﬂj(to)g‘[u‘l.' T
+(1- q)kg}As, tel (3.51)

Now, using (3.45) and (3.46) and (3.51), we have

t a(s)
zZ(t) < K+ V(t) + b(t)/ {pk‘fl [V(t,s)z(s) +w(t, s) f(r)z(r)Ar] }As
to a(to)

Bls)
g(r)z(r)Ar] }As, tel (3.52)

T
+ / {qu_l |:m(T,s)z(s) +n(T,s)
to B(to)

Since V/(¢) is nondecreasing on /, then for ¢ € I, from the above inequality we have
s

)
f(‘L')Z(‘()A‘L’] }As

a(to)

2(t) < K + V(T) + b®) / t { k! [V(t,s)z(s) + wi(t,s)

T B(s)
+ / {qu‘l |:m(T,s)z(s)+n(T,s) / g(r)z(r)Ar]}As, tel (3.53)
to B(to)
Let

M=K + V(T)+/

to

T B(s)
{qu_l |:m(T,s)z(s) +n(T,s) / g(r)z(r)At] }As. (3.54)
B(to)
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Then (3.53) can be restated as

als

)
f(@)z(r)A :| }As, tel. (3.55)

a(to)

z(t) <M + b( t)/ { I8 [V(t s)z(s) + w(t,s)

Set

y(t) =M + b(t) /t {pkf_l |:v(t,s)z(s) + w(t,s) f( )z T)A‘L’] } tel (3.56)

a(ty)

Then y(t) is nondecreasing, and from (3.55) and (3.56) we obtain
z(t) <y(t), tel. (3.57)

Using Lemma 2.3, taking the delta derivative of (3.56), and from (3.57), we have

ol(t)
yA(t) = bA(t)/ { N [ (a(t) )z(s)+w a(t) s / f(‘L')Z(‘L')AT]}
a(t)
+b(t){pkp |: (t),2)z(t) + w(o (2), 1) f(r)z(r)At:H
Ky

a(to)
t)/ {p 1|:vt (t,8)z(s) + w; AL, s)

o(t)
<bA(t)/ {p/ |: U(t) ) (s)+w(o(t),s)

a(s)
f(r)z(t)Ar] }As

a(tp)

a(s)
f(t)y(r)Ar:| }As

a(to)

a(t)
{ [ (©) + wlo(®),1) f(r)y(r)Ar“

a(to)
al(s)

+b(t)/ {pk{’ 1[ At $)y(s) + wA(t, s) ) f(r)y r)Ar“

/ {pkp_[ £,5) + w(o (0):5) a(to)f(T)Af]}As

al(t)
+ b(t)y(t) {pklf 1[ (0(0),£) + w(o(t),2) » f(r)Ar]
t a(s)
+/ pkf_l[vf(t,s)+wf(t,s) f(r)Ar]As}
to a(ty)
= Aty (o) + Cye), tel, (3.58)

where Z(t) and C(¢) are defined as in (3.47) and (3.48). It is similar to the proof of Theo-
rem 3.1, we get (3.44). This completes the proof. d

Theorem 3.4 Assume that (H3)—(Hs) hold, 0 <q; <1,0<r; <[,[#0,0<6;<1(i=1,2)
are constants, and w(t)A(t) < 1, v2(t,s) > 0, wr(t,5) > 0 for t > s. And assume (2.3) holds.
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Suppose that u satisfies

t s 01
W) < al) + / fl(s>[uql(s)+ / V(s,r)url(t)Ar:| As

to

T s )
+/ fz(s)|:uq2(s)+/ w(s,r)u’z(t)Arj| As, tel.

If there exist positive constants k; (i = 1,2,3,4,5,6) such that

T s
x::/ f2(3)|:1+/f1(5)eA(3:t0)A5
+/Sv~v(s,r)(1 +/IJ~’1(€)6A($J0)A§>AT]AS< L

then

u(t)§|:K+F(t)< /fl (8)ea(s, to)A )] , tel,

where

T _ s _
K:/ {ezkzz_lﬁ(S)[l fhkgz +f w(s,r)(l £ A >Ar]
to l Lo l

(1= 0K (s >}As,

FO) =alt) + /t{elkfuﬁ(s)[l—lql K / V(s,z)<l‘l“ kg)m]

+(1- Gl)kf‘fl(s)}As,

A@) =f) + V(o (1), 1) + /tvf(t,r)m,

FO- Lok e, R0 - Lok o,

Vs, ) = LRSI s, 0, s 8) = 2k (s, o),
q1 612

Proof Denote
t s 01
z(t) =ﬂ(t)+/ﬁ(s)[uql(s)+/ v(s,r)u”(r)Ari| As
s (%)
/ fz()[”qz()+/ w(s,r)u’z(r)Ar} As, tel

Then z is nondecreasing on I. From (3.59) and (3.67) we have

ult) <z(t), tel.
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(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)
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Using Lemma 2.6, we obtain

! 6;-1 91, q1-1 | l-q
z(t) < a(t) +/ {91/(11 fl(s)|:7k;“ u'(s) + Tkgl

to

S l_
+ / v(s,t)(%lkgllul(t) + T”kgl)m} +(1- 91)kf1f1(s)}As
to

6 92, gr-1 l-q
+/ {92k42_]‘2(s)|:7k22 ul(s)+Tkg2
to

+/ w(s,r)(r—zkgz_lul(r) + F—”k?)Ar]
; I i

+ (1= 6)kI f(s) } As, tel (3.69)
Using (3.62), (3.63), (3.65), (3.66), (3.68), and (3.69), we get

) < K+ F(0) + / 76 [z(s) N / SV(S,T)z(t)Arj|As

to

+ /T};(s)[z(s) + fs W(s,r)z(t)Ar]As, tel (3.70)

0

Since F(¢) is nondecreasing on I, then for ¢ € I, from the above inequality we have

z(t) < K+ F(T) + /tﬁ(s) [z(s) + /S’ﬁ(s,r)z(r)Ar:|As

0

T s
+ / fz(s)[z(m / W(s,r)z(t)Ar]As, tel (3.71)

to to

Let

T_ s
M=1(+F(T)+/ fz(s)|:z(s)+/ ﬁ/(s,r)z(r)At]As. (3.72)

to to

Then (3.71) can be restated as

Z(t) <M+ / t]fl(s) [z(s) + / S'ﬁ(s,t)z(r)AT:|As, tel (3.73)
Set
N(t)=M + ftfl(s) [z(s) + /8’17(5, t)z(r)At:|As, tel (3.74)

Then N(t) is nondecreasing, and from (3.73) and (3.74) we obtain

2(t) <N@), tel (3.75)
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Taking the delta derivative of (3.74) and from (3.75), we get

NA(t) =fi()z(t) + f(0) /to tV(t, T)z(7) At
5ﬁ(t)[N(t)+ /t tV(t,r)N(r)Ar} tel (3.76)
Let
V(£) = N(2) + /, t?(t,t)N(r)At, tel (3.77)
Obviously,
V() =N(to),  N@E)<V(), N0 <A@OV(©). (3.78)

From Lemma 2.4, (3.77), and (3.78), we obtain

VA1) = N2() + V(o (0), )N () + /tTJtA(t,r)N(r)Ar

to

< [ﬁ(t) +V(o(2),£) + ftVtA(t,r)Ar} V()

0

=A@)V (), tel
Itis easy to see that A € R*. Therefore, from Lemma 2.5 and the above inequality, we have
V(t) < V(to)ej(t, o) = N(to)ea(t, o), tel (3.79)
Combining (3.78) and (3.79), we get
N(6) <fi(ON(t)ea(t, o). (3.80)
Setting ¢ = T in (3.80), integrating it from £, to ¢, we easily obtain
tN
N(t) <N(to) + N(to)/ fils)ea(s, to)As, tel. (3.81)
to

By (3.74) and (3.81), we get

N(t) §M<1 + /t t}i(s)eA(s, to)As>, tel (3.82)
From (3.75) and (3.82), we have

2(t) §M(1 + /t tﬁ(s)eA(s, tO)As), tel (3.83)

Using (3.83) on the right-hand side of (3.72) and according to (3.60), we obtain

K+ F(T)
M< ———=,

<= (3.84)
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From (3.83) and (3.84), we obtain

z(t)_K; F(T) (

1+/ﬁ(s)eA s,to)As>, tel (3.85)

Then using (3.68), we have (3.61). This completes the proof. a

Remark 3.2 If we take [ = g1 =) =01 = 1, and f»(t) = 0, then Theorem 3.4 reduces to [28,
Theorem 3.2].

4 Applications

In this section, we will present some simple applications for our results. First, we consider

the following Volterra—Fredholm type dynamic integral equation:

t2 2 s 1 %
u(t) = Ko +/ —[uls) + S—/ * qu(r)At As
1S s+1J; ¢?t8

T3 52 l+g 3
+./1 [(s) s+1/ e u(t)Ar] As, tel, (4.1)

on time scales T = ', where ™0 = {¢" : n € Ng,¢ > 1},and I = [1, T] N g™, T = ¢, N is
some positive integer and Ky € R.

The following theorem gives the bound on the solution of Eq. (4.1).

Theorem 4.1 Suppose that u is a solution of Eq. (4.1) on 1. If there exist positive constants
k1 and ko such that

T -21 11
. 3 )22
A.—/l {kz 23|: | | |:1+(q 1)2k1 ri|

t€[l,s)
s [fl+gq
—_— 1 1)-k As< 1, 4.2
P 1QZT3V€1;[T|:+q )2 1U:| :“ a (4.2)
then
1 1
InT 3,22
e = D(g - 1)(ky + ki) + | Ko 1 -1
|u(t)|§ g 1_; ! l_[ [1+(q—1)§k125], tel (4.3)

s€(1,t)

Proof From (4.1), we get

1
u(t ArzAs
Aucofar |

) s S1l+g
|u(t)|:|1<0|+/1 ;I:|u(s)|+m/; v
1
51 3
/ []u(s)| S+1/ q2+t‘31|u(,)|m} As, tel. (4.4)

Take to = 1, a(t) = |Kol, b(t) = 1, 4(8) = 2, () = fa®) = L5, (0) = 2, fs(0) = fs(©) = 0,
a1(t) = g() = 1273, at)=t, BE) =t p= 2, and g = l in Theorem 3.1, on the basis of a
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straightforward computation, we have

Ty 13 InT 1
1<=/ 2k Zas= (25 Z1)(g-Dk;,
1 3 72 Ing

Using Theorem 3.1, we obtain the desired inequality (4.3). d

Secondly, we consider the following retarded Volterra—Fredholm type dynamic integral

equation on R:

u(t) =1<0+/7 1i83s [u(s)+ %/sfzu(f)dr]zds
0 0
+/0 e |:u(s)+/0 u(r)dt] ds, tel, (4.5)

where I = [0, T], T is some positive real number and Kj € R.
The next result also deals with the boundedness of the solutions of Eq. (4.5).

Theorem 4.2 Suppose that u is a solution of Eq. (4.5) on 1. If there exist positive constants

ki and ky such that
} %
1 _2[ 4k 1 1 -1 T 1 4k 1 1
PP o i WS f (B Pl QPSP St ML 2. <1, (4.6)
32 |1 P 21 3 1 ] 1
ik ? -1 ik ? -1

then

1 1
213 e 1,2/T 1 3T
2k; (1—e3)+ |Ko| + 5k (5 — s In(1 + = 1 -1
|M(t)|§ 3 2( ) | Oll ZAI(Z 3 ( 2 )) exp{zlﬁzs}: tel. (47)

Proof From (4.5), we have

u(®)] < |Ko|+/07 i[}u(s){ ; Sé/;ﬂu(fwf]zds

1+3s
+/(;§e‘s|:|u(s)| +/0S‘u(t)|df:|3ds, tel (4.8)

Take £ = 0, a(t) = |Ko|, b(t) = 1, /1(t) = £255, o(0) = &, f3(t) = ™', fu(t) = 1 f5(t) = f6(£) = 0,
a®) =t @) =1,a)=4%, B(t)=% p=1,and g =1 in Theorem 3.1, on the basis of a

straightforward computation, we obtain

T
3

21 2 1
K:/ —ky e ds=—k; (1—6_%),
. 3 3
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t
511 3 11/¢ 1 3t
V(t)=|1(0|+/ Sk ds= 1Kol + k2 (= - 21+ 22 )),
by 20 T4 3s 2" 273 2

1 -1
A(t) =0, B(t) =0, C(t) = Zkl 2’
1 _1
epec(t,0) = exp{ Zkl 7s}.
Using Theorem 3.1, we obtain the desired inequality (4.7). O

5 Conclusions

In this paper, we have established some new retarded Volterra—Fredholm type integral
inequalities on time scales, which extend some known inequalities and provide a handy
tool for deriving bounds of solutions of retarded dynamic equations on time scales. Unlike
some existing results in the literature, the integral inequalities considered in this paper
involve the power nonlinearity, which results in difficulties in the estimation on the explicit
bounds of unknown function u(t). We establish an inequality to overcome the difficulties,
which can be used as a handy tool to solve the similar problems.
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