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1 Introduction
In recent years, due to the application in many fields, fractional calculus has attracted more
and more attention from researchers, and many meaningful results have been obtained [1,
2, 9–14, 17, 18, 24–26]. Since some nature phenomena are naturally modeled by fractional
differential equation boundary value problems, it is important to study the problems of
nonlinear fractional differential equations boundary value problems. On the other hand,
the study of a coupled system involving fractional differential equations boundary value
problems is also important as such systems occur in various problems of applied nature,
for instance, see [2, 22, 31].

Recently, Su [31] discussed a two-point boundary value problem for a coupled system
of fractional differential equations

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+u(t) = f (t,υ(t), Dμ

0+υ(t)), 0 < t < 1,

Dβ
0+υ(t) = g(t, u(t), Dν

0+u(t)), 0 < t < 1,

u(0) = u(1) = υ(0) = υ(1) = 0,

where 1 < α,β < 2,μ,ν > 0,α –ν ≥ 1,β –μ ≥ 1, f , g : [0, 1]×R×R →R are given functions
and Dα

0+ is the standard Riemann–Liouville derivative of order α. Bashir Ahmad et al.
[2] considered a three-point boundary value problem for a coupled system of nonlinear
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fractional differential equations given by

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+u(t) = f (t,υ(t), Dp

0+υ(t)), 0 < t < 1,

Dβ
0+υ(t) = g(t, u(t), Dq

0+u(t)), 0 < t < 1,

u(0) = υ(0) = 0, u(1) = γ u(η), υ(1) = γ υ(η),

where 1 < α,β < 2, p, q,γ > 0, 0 < η < 1,α – q ≥ 1,β – p ≥ 1,γ ηα–1 < 1,γ ηβ–1 < 1, f , g :
[0, 1]×R×R→R are given functions and Dα

0+ is the standard Riemann–Liouville deriva-
tive of order α. For more fractional-order boundary value problems and boundary value
problems, we refer the reader to [3, 4, 6, 8, 15, 16, 19–21, 23, 27, 29, 30, 32, 33, 36].

It should be noted that all of the above papers mentioned deal with non-resonance case.
However, there are few papers that consider the coupled system of nonlinear fractional
differential equations with boundary conditions at resonance. In [5], Bai investigated the
nonlinear nonlocal problem

Dα
0+u(t) = f

(
t, u(t)

)
, u(0) = 0, βu(η) = u(1), 0 < t < 1,

where 1 < α ≤ 2, 0 < βηα–1 < 1. If βηα–1 = 1, resonance occurs, this case was considered
in [34]. In [34] the authors considered the existence of solutions of the fractional order
ordinary differential equation

Dα
0+u(t) = f

(
t, u(t), Dα–1

0+ u(t)
)

+ e(t), 0 < t < 1,

with boundary value conditions I2–α
0+ u(0) = 0, u(1) = σu(η), where 1 < α ≤ 2 is a real num-

ber, Dα
0+ and Iα

0+ are the standard Riemann–Liouville derivative and integral, respectively,
and σηα–1 = 1. Under such conditions, the kernel of the linear operator L = Dα

0+ is of one
dimension. The case that the kernel of the linear operator L = Dα

0+ is of two dimensions
was considered in [7].

In [22], Jiang studied the solvability for a coupled system of fractional differential equa-
tions at resonance. In [35], the authors investigated a three-point boundary value problem
for a coupled system of nonlinear fractional differential equations given by

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+u(t) = f (t,υ(t), Dβ–1

0+ υ(t)), 0 < t < 1,

Dβ
0+υ(t) = g(t, u(t), Dα–1

0+ u(t)), 0 < t < 1,

u(0) = υ(0) = 0, u(1) = σ1u(η1), υ(1) = σ2υ(η2),

(1.1)

where 1 < α,β ≤ 2, 0 < η1,η2 < 1,σ1,σ2 > 0,σ1η
α–1
1 = σ2η

β–1
2 = 1, D is the standard

Riemann–Liouville fractional derivative. System (1.1) happens to be at resonance in the
sense that the associated linear homogeneous coupled system

⎧
⎨

⎩

Dα
0+u(t) = 0, Dβ

0+υ(t) = 0, 0 < t < 1,

u(0) = υ(0) = 0, u(1) = σ1u(η1), υ(1) = σ2υ(η2),

has (u(t),υ(t)) = (c1tα–1, c2tβ–1), c1, c2 ∈R as a nontrivial solution.



Zhang Journal of Inequalities and Applications  (2018) 2018:198 Page 3 of 17

Enlightened by the above contributions, in this paper we investigate the multi-point
boundary value problem at resonance for a coupled system of nonlinear fractional differ-
ential equations given by

⎧
⎨

⎩

Dα
0+u(t) = f (t,υ(t), Dβ–2

0+ υ(t), Dβ–1
0+ υ(t)), 0 < t < 1,

Dβ
0+υ(t) = g(t, u(t), Dα–2

0+ u(t), Dα–1
0+ u(t)), 0 < t < 1,

(1.2)

⎧
⎨

⎩

u(0) = 0, Dα–1
0+ u(0) = Dα–1

0+ u(η), u(1) =
∑m1

i=1 αiu(ηi),

υ(0) = 0, Dβ–1
0+ υ(0) = Dβ–1

0+ u(ξ ), υ(1) =
∑m2

i=1 βiυ(ξi),
(1.3)

where 2 < α,β ≤ 3, 0 < ξ ,η ≤ 1, 0 < ηi, ξj < 1 (1 ≤ i ≤ m1, 1 ≤ j ≤ m2), m1 ≥ 2, m2 ≥ 2, and
f , g : [0, 1] × R

3 → R satisfy the Carathéodory conditions. Dα
0+ and Iα

0+ are the standard
Riemann–Liouville fractional derivative and fractional integral, respectively, and

m1∑

i=1

αiη
α–1
i =

m1∑

i=1

αiη
α–2
i = 1, (1.4)

m2∑

i=1

βiξ
β–1
i =

m2∑

i=1

βiξ
β–2
i = 1. (1.5)

We assume, in addition, that

Rα =
1
α

ηα 
(α)
(α – 1)

(2α – 1)

[

1 –
m1∑

i=1

αiη
2α–2
i

]

–
1

α – 1
ηα–1 (
(α))2


(2α)

[

1 –
m1∑

i=1

αiη
2α–1
i

]

�= 0, (1.6)

Rβ =
1
β

ξβ 
(β)
(β – 1)

(2β – 1)

[

1 –
m2∑

i=1

αiη
2α–2
i

]

–
1

β – 1
ξβ–1 (
(β))2


(2β)

[

1 –
m2∑

i=1

βiξ
2β–1
i

]

�= 0, (1.7)

where 
 is the gamma function. Due to conditions (1.4) and (1.5), the coupled system
(1.2)–(1.3) happens to be at resonance in the sense that the associated linear homogeneous
coupled system

⎧
⎨

⎩

Dα
0+u(t) = 0, 0 < t < 1,

Dβ
0+υ(t) = 0, 0 < t < 1,

with boundary value conditions (1.3) has (u(t),υ(t)) = (c11tα–1 + c12tα–2, c21tβ–1 +
c22tβ–2), cij ∈ R as nontrivial solutions.

Since the associated linear homogeneous coupled system about (1.2)–(1.3) has nontriv-
ial solutions (u(t),υ(t)) = (c11tα–1 + c12tα–2, c21tβ–1 + c22tβ–2), cij ∈ R, it is more complex
than [35].
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The rest of this paper is organized as follows. We present some notations and lemmas in
Sect. 2 and establish a theorem of existence of a solution for the coupled system (1.2)–(1.3)
in Sect. 3.

2 Background materials and methods
In this section, we present some necessary basic knowledge about fractional calculus the-
ory and a fixed point theorem.

The definitions and properties of fractional integral and derivative can be found in many
literature works [24].

Definition 2.1 ([24]) The Riemann–Liouville fractional integral Iα
0+f and derivative Dα

0+y
of order α (α > 0) are defined by

Iα
0+f (t) =

1

(α)

∫ t

0
(t – s)α–1f (s) ds (t > 0),

and

Dα
0+y(t) =

1

(n – α)

(
d
dt

)n ∫ t

0

y(s)
(t – s)α–n+1 ds,

respectively, where n = [α] + 1.

The properties of fractional calculus we will use are listed below.
Assume that u ∈ C(0, 1) ∩ L1(0, 1) and Dα

0+u ∈ C(0, 1) ∩ L1(0, 1) with α > 0. Then

Iα
0+Dα

0+u(t) = u(t) + C1tα–1 + C2tα–2 + · · · + CN tα–N ,

where Ci ∈ R, i = 1, 2, . . . , N , N = [α + 1] – 1. If α > 0,β > 0, then for a continuous function
f , the equality (Iα

0+Iβ
0+f )(x) = (Iα+β

0+ f )(x) is satisfied. Let α > 0, m ∈ N, and D = d/dx. If the
fractional derivatives (Dα

0+y)(x) and (Dα+m
0+ y)(x) exist, then (DmDα

0+y)(x) = (Dα+m
0+ y)(x). If α >

0, then for a continuous function f , (Dα
0+Iα

0+f )(x) = f (x) is satisfied. If α > β > 0, then for a
continuous function f , it has (Dβ

0+Iα
0+f )(x) = (Iα–β

0+ f )(x).
Now, we present some notations and a fixed point theorem.
Let Y , Z be real Banach spaces, L : dom(L) ⊂ Y → Z be a Fredholm map of index zero,

and P : Y → Y , Q : Z → Z be continuous projectors such that

Im(P) = Ker(L), Ker(Q) = Im(L),

Y = Ker(L) ⊕ Ker(P), Z = Im(L) ⊕ Im(Q).

We can conclude that L|dom(L)∩Ker(P) : dom(L) ∩ Ker(P) → Im(L) is invertible. Denote the
inverse of the map by KP . If � is an open bounded subset of Y such that dom(L) ∩ � �= ∅
and QN(�) is bounded and KP(I – Q)N : � → Y is compact, then the map N : Y → Z will
be called L-compact on �.

The theorem we used is Theorem 2.4 of [28].

Theorem 2.1 Suppose that L is a Fredholm operator of index zero and N is L-compact on
�, and the following conditions are satisfied:
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(i) Lx �= λNx for every (x,λ) ∈ [(dom(L)\Ker(L)) ∩ ∂�] × (0, 1);
(ii) Nx /∈ Im(L) for every x ∈ Ker(L) ∩ ∂�;

(iii) deg(JQN |Ker(L),� ∩ Ker(L), 0) �= 0, where Q : Z → Z is a projection as above with
Im(L) = Ker(Q) and J : Im(Q) → Ker(L) is any isomorphism.

Then the equation Lx = Nx has at least one solution in dom(L) ∩ �.

In the following, the Banach space C[0, 1] with the norm ‖x‖∞ = maxt∈[0,1] |x(t)| and
L1[0, 1] with the norm ‖x‖1 =

∫ 1
0 |x(t)|dt will be used. Given μ > 0 and N = [μ] + 1, one

can define a linear space

Cμ[0, 1] :=
{

u(t)|u(t) = Iμ
0+x(t) + c1tμ–1 + · · · + cN–1tμ–(N–1), t ∈ [0, 1]

}
, (2.1)

where x ∈ C[0, 1] and ci ∈ R, i = 1, . . . , N – 1. It can prove that with the norm ‖u‖Cμ =
‖Dμ

0+u‖∞ + · · · + ‖Dμ–(N–1)
0+ u‖∞ + ‖u‖∞, Cμ[0, 1] is a Banach space [34].

Lemma 2.1 ([34]) F ⊂ Cμ[0, 1] is a sequentially compact set if and only if F is uniformly
bounded and equicontinuous. Here uniformly bounded means that there exists M > 0 such
that, for every u ∈ F , it has

‖u‖Cμ =
∥
∥Dμ

0+u
∥
∥∞ + · · · +

∥
∥Dμ–(N–1)

0+ u
∥
∥∞ + ‖u‖∞ < M,

and equicontinuous means that for ∀ε > 0, ∃δ > 0 such that, for any t1, t2 ∈ [0, 1],

∣
∣u(t1) – u(t2)

∣
∣ < ε

(∀u ∈ F , |t1 – t2| < δ
)
,

∣
∣Dα–i

0+ u(t1) – Dα–i
0+ u(t2)

∣
∣ < ε

(∀u ∈ F ,∀i ∈ {0, . . . , N – 1}, |t1 – t2| < δ
)
.

Let Z1 = L1[0, 1] with the norm ‖ · ‖1. Fractional functional spaces Y1 = Cα–1[0, 1]
and Y2 = Cβ–1[0, 1] defined by (2.1) are equipped with the norms ‖u‖Y1 = ‖Dα–1

0+ u‖∞ +
‖Dα–2

0+ u‖∞ + ‖u‖∞ and ‖υ‖Y2 = ‖Dβ–1
0+ υ‖∞ + ‖Dβ–2

0+ υ‖∞ + ‖υ‖∞, respectively. Then Y =
Y1 × Y2 is a Banach space with the norm defined by ‖(u,υ)‖Y = max{‖u‖Y1 ,‖υ‖Y2} and
Z = Z1 × Z1 is a Banach space with the norm defined by ‖(x, y)‖Z = max{‖x‖1,‖y‖1}.

Definition 2.2 A pair of functions (u,υ) ∈ Y is called a solution of the coupled system
of multi-point boundary value problem (1.2)–(1.3) if Dα–1

0+ u and Dβ–1
0+ υ are all absolutely

continuous on (0, 1), (u,υ) satisfies (1.2) almost everywhere on (0, 1) and satisfies boundary
conditions (1.3).

Definition 2.3 The map f : [0, 1] × R
n → R satisfies the Carathéodory conditions with

respect to L1[0, 1] if the following conditions hold:
(i) for each z ∈R

n, the mapping t → f (t, z) is Lebesgue measurable;
(ii) for almost each t ∈ [0, 1], the mapping z → f (t, z) is continuous on R

n;
(iii) for each r > 0, there exists ρr ∈ L1([0, 1],R) such that, for a.e. t ∈ [0, 1] and every

|z| ≤ r, we have |f (t, z)| ≤ ρr(t).

Define L1 : dom(L1) ∩ Y1 → Z1 by

L1u = Dα
0+u, u ∈ dom(L1), (2.2)
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with

dom(L1) =

{

u ∈ Cα–1[0, 1]|Dα
0+u ∈ L1[0, 1], u(0) = 0,

Dα–1
0+ u(0) = Dα–1

0+ u(η), u(1) =
m1∑

i=1

αiu(ηi)

}

.

Define L2 : dom(L2) ∩ Y2 → Z1 by

L2υ = Dβ
0+υ, υ ∈ dom(L2), (2.3)

with

dom(L2) =

{

υ ∈ Cβ–1[0, 1]|Dβ
0+υ ∈ L1[0, 1],υ(0) = 0,

Dβ–1
0+ υ(0) = Dβ–1

0+ υ(ξ ),υ(1) =
m2∑

i=1

βiυ(ξi)

}

.

Define L to be the linear operator from dom(L) ∩ Y to Z with

dom(L) =
{

(u,υ) ∈ Y |u ∈ dom(L1),υ ∈ dom(L2)
}

,

and

L(u,υ) = (L1u, L2υ), (u,υ) ∈ dom(L). (2.4)

Define N : Y → Z as

N(u,υ) = (N1υ, N2u), (2.5)

where N1 : Y2 → Z1 is defined by

N1υ(t) = f
(
t,υ(t), Dβ–2

0+ υ(t), Dβ–1
0+ υ(t)

)
, (2.6)

and N2 : Y1 → Z1 is defined by

N2u(t) = g
(
t, u(t), Dα–2

0+ u(t), Dα–1
0+ u(t)

)
. (2.7)

Then the coupled system of boundary value problem (1.2)–(1.3) can be written by

L(u,υ) = N(u,υ). (2.8)

Lemma 2.2 The mapping L : dom(L) ⊂ Y → Z is a Fredholm operator of index zero.

Proof It is clear that Ker(L) = {(c11tα–1 + c12tα–2, c21tβ–1 + c22tβ–2)|cij ∈R, i, j = 1, 2} ∼= R
4.
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Let (x, y) ∈ Im(L), then there exists (u,υ) ∈ dom(L) such that (x, y) = L(u,υ), that is, u ∈
Y1, x = Dα

0+u, and υ ∈ Y2, y = Dβ
0+υ . Thus we have

Iα
0+x(t) = u(t) + c1tα–1 + c2tα–2 + c3tα–3.

By the boundary conditions (1.3), we obtain c3 = 0, c1, c2 can be any constants, and x sat-
isfies

Dα–1
0+ Iα

0+x(0) = Dα–1
0+ Iα

0+x(η), Iα
0+x(1) =

m1∑

i=1

αiIα
0+x(ηi).

By the properties of fractional calculus, Dα–1
0+ Iα

0+ = I1
0+, thus the above two equalities can be

reduced to
∫ η

0
x(s) ds = 0, (2.9)

∫ 1

0
(1 – s)α–1x(s) ds –

m1∑

i=1

αi

∫ ηi

0
(ηi – s)α–1x(s) ds = 0. (2.10)

Similarly, we can derive that y satisfies

∫ ξ

0
y(s) ds = 0, (2.11)

∫ 1

0
(1 – s)β–1y(s) ds –

m2∑

i=1

βi

∫ ξi

0
(ξi – s)β–1y(s) ds = 0. (2.12)

On the other hand, suppose that x, y ∈ Z1 satisfy (2.9)–(2.10) and (2.11)–(2.12), respec-
tively. Let u(t) = Iα

0+x(t),υ(t) = Iβ
0+y(t), then a basic calculation shows that u ∈ dom(L1),

Dα
0+u(t) = x(t), and υ ∈ dom(L2), Dβ

0+υ(t) = y(t). That is, (x, y) ∈ Im(L). From the above ar-
gument, we can derive that

Im(L) =
{

(x, y) ∈ Z|x satisfies (2.9)–(2.10), y satisfies (2.11)–(2.12)
}

. (2.13)

Consider continuous linear mappings Qα
1 : Z1 → Z1 and Qα

2 : Z1 → Z1 defined by

Qα
1 x =

∫ η

0
x(s) ds, (2.14)

Qα
2 x =

∫ 1

0
(1 – s)α–1x(s) ds –

m1∑

i=1

αi

∫ ηi

0
(ηi – s)α–1x(s) ds. (2.15)

Continuous linear mappings Qβ
1 : Z1 → Z1 and Qβ

2 : Z1 → Z1 are defined by

Qβ
1 x =

∫ ξ

0
x(s) ds, (2.16)

Qβ
2 x =

∫ 1

0
(1 – s)β–1x(s) ds –

m2∑

i=1

βi

∫ ξi

0
(ξi – s)β–1x(s) ds. (2.17)
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Using the above definitions, we construct the following auxiliary maps Rα
1 , Rα

2 , Rβ
1 , and

Rβ
2 : Z1 → Z1 by

Rα
1 g =

1
Rα

[

(α)
(α – 1)


(2α – 1)

(

1 –
m1∑

i=1

αiη
2α–2
i

)

Qα
1 g –

1
α – 1

ηα–1Qα
2 g

]

, (2.18)

Rα
2 g = –

1
Rα

[
(
(α))2


(2α)

(

1 –
m1∑

i=1

αiη
2α–1
i

)

Qα
1 g –

1
α

ηαQα
2 g

]

, (2.19)

Rβ
1 g =

1
Rβ

[

(β)
(β – 1)


(2β – 1)

(

1 –
m2∑

i=1

βiξ
2β–2
i

)

Qβ
1 g –

1
β – 1

ξβ–1Qβ
2 g

]

, (2.20)

Rβ
2 g = –

1
Rβ

[
(
(β))2


(2β)

(

1 –
m2∑

i=1

βiξ
2β–1
i

)

Qβ
1 g –

1
β

ξβQα
2 g

]

. (2.21)

Since conditions (1.6)–(1.7) hold, the mappings Qα : Z1 → Z1 and Qβ : Z1 → Z1 defined
by

Qαg =
(
Rα

1 g
)
tα–1 +

(
Rα

2 g
)
tα–2, (2.22)

Qβg =
(
Rβ

1 g
)
tβ–1 +

(
Rβ

2 g
)
tβ–2 (2.23)

are well defined. Thus, we can define the continuous linear mapping Q : Z → Z by

Q(x, y) =
(
Qαx, Qβy

)
. (2.24)

Recall (1.6) and note that

Rα
1
(
Rα

1 gtα–1)

=
1

Rα

[

(α)
(α – 1)


(2α – 1)

(

1 –
m1∑

i=1

αiη
2α–2
i

)

Qα
1
(
Rα

1 gtα–1) –
1

α – 1
ηα–1Qα

2
(
Rα

1 gtα–1)
]

= Rα
1 g

1
Rα

[

(α)
(α – 1)


(2α – 1)

(

1 –
m1∑

i=1

αiη
2α–2
i

)
1
α

ηα

–
1

α – 1
ηα–1 (
(α))2


(2α)

(

1 –
m1∑

i=1

αiη
2α–1
i

)]

= Rα
1 g. (2.25)

Similarly, we can derive that Rα
1 (Rα

2 gtα–2) = 0 and

Rα
2
(
Rα

1 gtα–1) = 0, Rα
2
(
Rα

2 gtα–2) = Rα
2 g, Rβ

1
(
Rβ

1 gtα–1) = Rβ
1 g,

Rβ
1
(
Rβ

2 gtβ–2) = 0, Rβ
2
(
Rβ

1 gtβ–1) = 0, Rβ
2
(
Rβ

2 gtβ–2) = Rβ
2 g.

For (x, y) ∈ Z, it follows from the above relations that

Q2(x, y) =
(
QαQαx, QβQβy

)

=
(
Qα

((
Rα

1 x
)
tα–1 +

(
Rα

2 x
)
tα–2), Qβ

((
Rβ

1 y
)
tβ–1 +

(
Rβ

2 y
)
tβ–2))
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=
((

Rα
1 x

)
tα–1 +

(
Rα

2 x
)
tα–2,

(
Rβ

1 y
)
tβ–1 +

(
Rβ

2 y
)
tβ–2)

=
(
Qαx, Qβy

)
= Q(x, y), (2.26)

that is, the map Q is idempotent. In fact, Q is a continuous linear projector and (x, y) ∈
Im(L) is equivalent to Q(x, y) = (0, 0). In fact, Im(L) = Ker(Q).

Take (x, y) ∈ Z in the form (x, y) = ((x, y) – Q(x, y)) + Q(x, y) so that (x, y) – Q(x, y) ∈
Im(L) = Ker(Q) and Q(x, y) ∈ Im(Q). Thus, Z = Im(L) + Im(Q). For every (x, y) ∈ Im(Q) has
the form (x, y) = (c11tα–1 + c12tα–2, c21tβ–1 + c22tβ–2), cij ∈ R (i, j = 1, 2). If (x, y) = (c11tα–1 +
c12tα–2, c21tβ–1 + c22tβ–2) satisfies (2.9)–(2.10) and (2.11)–(2.12) respectively, then we have
cij = 0 (i, j = 1, 2). Hence, Im(L) ∩ Im(Q) = (0, 0) and, in fact, Z = Im(L) ⊕ Im(Q).

Now, Ind L = dim Ker(L) – codim Im(L) = 0, and so L is a Fredholm operator of index
zero. �

Let the operators P1 : Y1 → Y1, P2 : Y2 → Y2, and P : Y → Y be defined by

P1u(t) =
1


(α)
Dα–1

0+ u(0)tα–1 +
1


(α – 1)
Dα–2

0+ u(0)tα–2, (2.27)

P2υ(t) =
1


(β)
Dβ–1

0+ υ(0)tβ–1 +
1


(β – 1)
Dβ–2

0+ υ(0)tβ–2 (2.28)

and

P(u,υ) = (P1u, P2υ), (2.29)

respectively. Note that P1, P2, and P are continuous linear projectors and

Ker(P) =
(
Ker(P1), Ker(P2)

)
=

{
(u,υ) ∈ Y |Dα–i

0+ u(0) = Dβ–i
0+ υ(0) = 0, i = 1, 2

}
. (2.30)

It is clear that Y = Ker(L) ⊕ Ker(P) and, for every (u,υ) ∈ Y ,

∥
∥P(u,υ)

∥
∥

Y =
∥
∥(P1u, P2υ)

∥
∥

Y = max
{‖P1u‖Y1 ,‖P2υ‖Y2

}

= max

{∥
∥
∥
∥

1

(α)

∣
∣Dα–1

0+ u(0)
∣
∣tα–1 +

1

(α – 1)

∣
∣Dα–2

0+ u(0)
∣
∣tα–2

∥
∥
∥
∥

Y1

,

∥
∥
∥
∥

1

(β)

∣
∣Dβ–1

0+ υ(0)
∣
∣tβ–1 +

1

(β – 1)

∣
∣Dβ–2

0+ υ(0)
∣
∣tβ–2

∥
∥
∥
∥

Y2

}

≤ max

{(

2 +
1


(α)

)
∣
∣Dα–1

0+ u(0)
∣
∣ +

(

1 +
1


(α – 1)

)
∣
∣Dα–2

0+ u(0)
∣
∣,

(

2 +
1


(β)

)
∣
∣Dβ–1

0+ υ(0)
∣
∣ +

(

1 +
1


(β – 1)

)
∣
∣Dβ–2

0+ υ(0)
∣
∣

}

. (2.31)

Define KP : Im(L) → dom(L) ∩ Ker(P) by

KP(x, y) =
(
Iα

0+x, Iβ
0+y

)
. (2.32)

For (x, y) ∈ Im(L), we have

LKP(x, y) = L
(
Iα

0+x, Iβ
0+y

)
=

(
Dα

0+Iα
0+x, Dβ

0+Iβ
0+y

)
= (x, y),
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and for (u,υ) ∈ dom(L) ∩ Ker(P), we have u ∈ dom(L1), Dα–1
0+ u(0) = Dα–2

0+ u(0) = 0 and υ ∈
dom(L2), Dβ–1

0+ υ(0) = Dβ–2
0+ υ(0) = 0, so the coefficients c1, c2, c3, c4, c5, c6 in the expressions

u = Iα
0+Dα

0+u + c1tα–1 + c2tα–2 + c3tα–3 and υ = Iβ
0+Dβ

0+υ + c4tβ–1 + c5tβ–2 + c6tβ–3 are all equal
to zero. Thus, we obtain

KPL(u,υ) = KP(L1u, L2υ) =
(
Iα

0+Dα
0+u, Iβ

0+Dβ
0+υ

)
= (u,υ).

This shows that KP = (L|dom(L)∩Ker(P))–1. Again, since for every (x, y) ∈ Im(L),

∥
∥KP(x, y)

∥
∥

Y =
∥
∥
(
Iα

0+x, Iβ
0+y

)∥
∥

Y = max
{∥
∥Iα

0+x
∥
∥

Y1
,
∥
∥Iβ

0+y
∥
∥

Y2

}

= max
{∥
∥Iα

0+x
∥
∥∞ +

∥
∥Dα–1

0+ Iα
0+x

∥
∥∞ +

∥
∥Dα–2

0+ Iα
0+x

∥
∥∞,

∥
∥Iβ

0+y
∥
∥∞ +

∥
∥Dβ–1

0+ Iβ
0+y

∥
∥∞ +

∥
∥Dβ–2

0+ Iβ
0+y

∥
∥∞

}

= max
{∥
∥Iα

0+x
∥
∥∞ +

∥
∥I1

0+x
∥
∥∞ +

∥
∥I2

0+x
∥
∥∞,

∥
∥Iβ

0+y
∥
∥∞ +

∥
∥I1

0+y
∥
∥∞ +

∥
∥I2

0+y
∥
∥∞

}

≤ max

{(

2 +
1


(α)

)

‖x‖1,
(

2 +
1


(β)

)

‖y‖1

}

. (2.33)

With arguments similar to those in [34], we obtain the following lemma.

Lemma 2.3 KP(I – Q)N : Y → Y is completely continuous.

3 Results and discussion
In this section, we shall prove existence results for the coupled system of fractional bound-
ary value problem (1.2)–(1.3).

For convenience, let us set the following notations:

⎧
⎨

⎩

ρ1 = 3 + 1

(α) + 1


(α–1) , μ1 = 2 + 1

(α) , ε1 = ρ1 + μ1,

ρ2 = 3 + 1

(β) + 1


(β–1) , μ2 = 2 + 1

(β) , ε2 = ρ2 + μ2.

(3.1)

Assume that the following conditions are satisfied:
(H1) There exists a constant A > 0 such that, for (u,υ) ∈ dom(L)\Ker(L), if |Dα–1

0+ u(t)| +
|Dα–2

0+ u(t)| > A for all t ∈ [0, 1], then

Qβ
1 N2u(t) �= 0 or Qβ

2 N2u(t) �= 0,

and if |Dβ–1
0+ υ(t)| + |Dβ–2

0+ υ(t)| > A for all t ∈ [0, 1], then

Qα
1 N1υ(t) �= 0 or Qα

2 N1υ(t) �= 0.

(H2) There exist functions a1, b1, d1, e1, r1 ∈ L1[0, 1] and a constant θ1 ∈ [0, 1) such that,
for all (x, y, z) ∈R

3 and a.e. t ∈ [0, 1], one of the following inequalities is satisfied:

∣
∣f (t, x, y, z)

∣
∣ ≤ a1(t)|x| + b1(t)|y| + d1(t)|z| + e1(t)|z|θ1 + r1(t), (3.2)

∣
∣f (t, x, y, z)

∣
∣ ≤ a1(t)|x| + b1(t)|y| + d1(t)|z| + e1(t)|y|θ1 + r1(t), (3.3)

∣
∣f (t, x, y, z)

∣
∣ ≤ a1(t)|x| + b1(t)|y| + d1(t)|z| + e1(t)|x|θ1 + r1(t). (3.4)



Zhang Journal of Inequalities and Applications  (2018) 2018:198 Page 11 of 17

There exist functions a2, b2, d2, e2, r2 ∈ L1[0, 1] and a constant θ2 ∈ [0, 1) such that,
for all (x, y, z) ∈R

3 and a.e. t ∈ [0, 1], one of the following inequalities is satisfied:

∣
∣g(t, x, y, z)

∣
∣ ≤ a2(t)|x| + b2(t)|y| + d2(t)|z| + e2(t)|z|θ2 + r2(t), (3.5)

∣
∣g(t, x, y, z)

∣
∣ ≤ a2(t)|x| + b2(t)|y| + d2(t)|z| + e2(t)|y|θ2 + r2(t), (3.6)

∣
∣g(t, x, y, z)

∣
∣ ≤ a2(t)|x| + b2(t)|y| + d2(t)|z| + e2(t)|x|θ2 + r2(t). (3.7)

(H3) There exists a constant B > 0 such that, for every c1, c2, c3, c4 ∈R satisfying
∑4

i=1 c2
i >

B, at least one of the following expressions holds:

Rα
1 N1

(
c3tβ–1 + c4tβ–2) �= 0, Rα

2 N1
(
c3tβ–1 + c4tβ–2) �= 0,

Rβ
1 N2

(
c1tα–1 + c2tα–2) �= 0, Rβ

2 N2
(
c1tα–1 + c2tα–2) �= 0.

And for c1, c2, c3, c4 ∈R satisfying
∑4

i=1 c2
i > B,

R .=
[
c1Rα

1 N1
(
c3tβ–1 + c4tβ–2) + c2Rα

2 N1
(
c3tβ–1 + c4tβ–2)]

× [
c3Rβ

1 N2
(
c1tα–1 + c2tα–2) + c4Rβ

2 N2
(
c1tα–1 + c2tα–2)] ≤ 0. (3.8)

Remark 3.1 Rα
i N1(atβ–1 + btβ–2) and Rβ

i N2(atα–1 + btα–2) from (H3) stand for the images
of υ(t) = atβ–1 + btβ–2, u(t) = atα–1 + btα–2 under the maps Rα

i N1 and Rβ

i N2, respectively.

Theorem 3.1 If (H1)–(H3) hold, then the coupled system of fractional multi-point bound-
ary value problem (1.2)–(1.3) has at least one solution provided that

max
{
ε1

(‖a1‖1 + ‖b1‖1 + ‖d1‖1
)
, ε2

(‖a2‖1 + ‖b2‖1 + ‖d2‖1
)
,

ρ1
(‖a1‖1 + ‖b1‖1 + ‖d1‖1

)
+ μ2

(‖a2‖1 + ‖b2‖1 + ‖d2‖1
)
,

ρ2
(‖a1‖1 + ‖b1‖1 + ‖d1‖1

)
+ μ1

(‖a2‖1 + ‖b2‖1 + ‖d2‖1
)}

< 1. (3.9)

Proof Our proof can be divided into four steps.
Step 1: Set

�1 =
{

(u,υ) ∈ dom(L)\Ker(L)|L(u,υ) = λN(u,υ) for some λ ∈ [0, 1]
}

. (3.10)

Then, for (u,υ) ∈ �1, L(u,υ) = λN(u,υ), thus λ �= 0, N(u,υ) ∈ Im(L) = Ker(Q), hence
QN(u,υ) = (QαN1υ, QβN2u) = (0, 0) by the definition of Q. Thus we have Qα

1 N1υ(t) =
Qα

2 N1υ(t) = 0 and Qβ
1 N2u(t) = Qβ

2 N2u(t) = 0 for all t ∈ [0, 1]. It follows from (H1) that there
exist t0, t1 ∈ [0, 1] such that |Dα–1

0+ u(t0)|+ |Dα–2
0+ u(t0)| ≤ A and |Dβ–1

0+ υ(t1)|+ |Dβ–2
0+ υ(t1)| ≤ A.

Now

Dα–1
0+ u(t) = Dα–1

0+ u(t0) +
∫ t

t0

Dα
0+u(s) ds,

Dα–2
0+ u(t) = Dα–2

0+ u(t0) +
∫ t

t0

Dα–1
0+ u(s) ds,
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so that

∣
∣Dα–1

0+ u(0)
∣
∣ ≤ ∥

∥Dα–1
0+ u(t)

∥
∥∞ ≤ ∣

∣Dα–1
0+ u(t0)

∣
∣ +

∥
∥Dα

0+u
∥
∥

1

≤ A + ‖Lu‖1 ≤ A + ‖N1υ‖1, (3.11)
∣
∣Dα–2

0+ u(0)
∣
∣ ≤ ∥

∥Dα–2
0+ u(t)

∥
∥∞ ≤ ∣

∣Dα–2
0+ u(t0)

∣
∣ +

∥
∥Dα–1

0+ u
∥
∥∞

≤ ∣
∣Dα–2

0+ u(t0)
∣
∣ +

∣
∣Dα–1

0+ u(t0)
∣
∣ +

∥
∥Dα

0+u
∥
∥

1

≤ A + ‖L1u‖1 ≤ A + ‖N1υ‖1. (3.12)

Similar to the above argument, we can also obtain

∣
∣Dβ–1

0+ υ(0)
∣
∣ ≤ A + ‖N2u‖1, (3.13)

∣
∣Dβ–2

0+ υ(0)
∣
∣ ≤ A + ‖N2u‖1. (3.14)

Now by (3.11)–(3.14) and (2.31), we have

∥
∥P(u,υ)

∥
∥

Y ≤ max

{(

2 +
1


(α)

)
∣
∣Dα–1

0+ u(0)
∣
∣ +

(

1 +
1


(α – 1)

)
∣
∣Dα–2

0+ u(0)
∣
∣,

(

2 +
1


(β)

)
∣
∣Dβ–1

0+ υ(0)
∣
∣ +

(

1 +
1


(β – 1)

)
∣
∣Dβ–2

0+ υ(0)
∣
∣

}

≤ max

{(

3 +
1


(α)
+

1

(α – 1)

)

‖N1υ‖1 + A
(

3 +
1


(α)
+

1

(α – 1)

)

,

(

3 +
1


(β)
+

1

(β – 1)

)

‖N2u‖1 + A
(

3 +
1


(β)
+

1

(β – 1)

)}

. (3.15)

Note that (I – P)(u,υ) ∈ Im(KP) = dom(L) ∩ Ker(P) for (u,υ) ∈ �1. Then

∥
∥(I – P)(u,υ)

∥
∥

Y =
∥
∥KPL(I – P)(u,υ)

∥
∥

Y

=
∥
∥KP

(
L1u, L2υ

)∥
∥

Y

≤ max

{(

2 +
1


(α)

)

‖L1u‖1,
(

2 +
1


(β)

)

‖L2υ‖1

}

≤ max

{(

2 +
1


(α)

)

‖N1υ‖1,
(

2 +
1


(β)

)

‖N2u‖1

}

. (3.16)

Using (3.15) and (3.16), we obtain

∥
∥(u,υ)

∥
∥

Y =
∥
∥P(u,υ) + (I – P)(u,υ)

∥
∥

Y ≤ ∥
∥P(u,υ)

∥
∥

Y +
∥
∥(I – P)(u,υ)

∥
∥

Y

≤ max

{(

3 +
1


(α)
+

1

(α – 1)

)

‖N1υ‖1 + A
(

3 +
1


(α)
+

1

(α – 1)

)

,

(

3 +
1


(β)
+

1

(β – 1)

)

‖N2u‖1 + A
(

3 +
1


(β)
+

1

(β – 1)

)}

+ max

{(

2 +
1


(α)

)

‖N1υ‖1,
(

2 +
1


(β)

)

‖N2u‖1

}

= max
{
ε1‖N1υ‖1 + ρ1A,ρ1‖N1υ‖1 + μ2‖N2u‖1 + ρ1A,
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ε2‖N2u‖1 + ρ2A,ρ2‖N2u‖1 + μ1‖N1υ‖1 + ρ2A
}

. (3.17)

Without loss of generality, we assume that (3.2) and (3.5) in (H1) hold, then from (3.17),
the proof can be divided into four cases.

Case 1. ‖(u,υ)‖Y ≤ ε1‖N1υ‖1 + ρ1A. From (3.2), we have

∥
∥(u,υ)

∥
∥

Y ≤ ε1
[‖a1‖1‖υ‖∞ + ‖b1‖1

∥
∥Dβ–2

0+ υ
∥
∥∞ + ‖d1‖1

∥
∥Dβ–1

0+ υ
∥
∥∞

+ ‖e1‖1
∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + ‖r1‖1
]

+ ρ1A. (3.18)

Thus, from ‖υ‖∞,‖Dβ–2
0+ υ‖∞,‖Dβ–1

0+ υ‖∞ ≤ ‖(u,υ)‖Y , and (3.17), we obtain

‖υ‖∞ ≤ 1
1 – ε1‖a1‖1

[
ε1‖b1‖1

∥
∥Dβ–2

0+ υ
∥
∥∞ + ε1‖d1‖1

∥
∥Dβ–1

0+ υ
∥
∥∞

+ ε1‖e1‖1
∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + ε1‖r1‖1 + ρ1A
]
. (3.19)

Again from (3.18), (3.19), one has

∥
∥Dβ–2

0+ υ
∥
∥∞ ≤ 1

1 – ε1‖a1‖1 – ε1‖b1‖1

[
ε1‖d1‖1

∥
∥Dβ–1

0+ υ
∥
∥∞

+ ε1‖e1‖1
∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + ε1‖r1‖1 + ρ1A
]
, (3.20)

∥
∥Dβ–1

0+ υ
∥
∥∞ ≤ 1

1 – ε1‖a1‖1 – ε1‖b1‖1 – ε1‖d1‖1

× [
ε1‖e1‖1

∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + ε1‖r1‖1 + ρ1A
]
. (3.21)

Since θ1 ∈ [0, 1), from the above last inequality, there exists M1 > 0 such that ‖Dβ–1
0+ υ‖∞ ≤

M1, thus from (3.20), there exists M2 > 0 such that ‖Dβ–2
0+ υ‖∞ ≤ M2. Again from (3.19),

there exists M3 > 0 such that ‖υ‖∞ ≤ M3. Thus, from (3.18), there exists M4 > 0 such that
‖(u,υ)‖Y ≤ M4. Therefore �1 is bounded.

Case 2. ‖(u,υ)‖Y ≤ ε2‖N2u‖1 + ρ2A. The proof is similar to that of case 1. Here, we omit
it.

Case 3. ‖(u,υ)‖Y ≤ ρ1‖N1υ‖1 + μ2‖N2u‖1 + ρ1A. From (3.2) and (3.5), we have

∥
∥(u,υ)

∥
∥

Y ≤ ρ1
[‖a1‖1‖υ‖∞ + ‖b1‖1

∥
∥Dβ–2

0+ υ
∥
∥∞ + ‖d1‖1

∥
∥Dβ–1

0+ υ
∥
∥∞

+ ‖e1‖1
∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + ‖r‖1
]

+ μ2
[‖a2‖1‖u‖∞ + ‖b2‖1

∥
∥Dα–2

0+ u
∥
∥∞ + ‖d2‖1

∥
∥Dα–1

0+ u
∥
∥∞

+ ‖e2‖1
∥
∥Dα–1

0+ u
∥
∥θ2

∞ + ‖r2‖1
]

+ ρ1A. (3.22)

Thus, from ‖u‖∞,‖Dα–2
0+ u‖∞,‖Dα–1

0+ u‖∞,‖υ‖∞,‖Dβ–2
0+ υ‖∞,‖Dβ–1

0+ υ‖∞ ≤ ‖(u,υ)‖Y , and
(3.22), we obtain

‖υ‖∞ ≤ 1
1 – ρ1‖a1‖1

[
ρ1‖b1‖1

∥
∥Dβ–2

0+ υ
∥
∥∞ + ρ1‖d1‖1

∥
∥Dβ–1

0+ υ
∥
∥∞

+ ρ1‖e1‖1
∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + ρ1‖r‖1
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+ μ2‖a2‖1‖u‖∞ + μ2‖b2‖1
∥
∥Dα–2

0+ u
∥
∥∞ + μ2‖d2‖1

∥
∥Dα–1

0+ u
∥
∥∞

+ μ2‖e2‖1
∥
∥Dα–1

0+ u
∥
∥θ2

∞ + μ2‖r2‖1 + ρ1A
]
. (3.23)

Again, from (3.22), (3.23), we have

‖u‖∞ ≤ 1
1 – ρ1‖a1‖1 – μ2‖a2‖1

[
ρ1‖b1‖1

∥
∥Dβ–2

0+ υ
∥
∥∞ + ρ1‖d1‖1

∥
∥Dβ–1

0+ υ
∥
∥∞

+ ρ1‖e1‖1
∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + ρ1‖r‖1

+ μ2‖b2‖1
∥
∥Dα–2

0+ u
∥
∥∞ + μ2‖d2‖1

∥
∥Dα–1

0+ u
∥
∥∞

+ μ2‖e2‖1
∥
∥Dα–1

0+ u
∥
∥θ2

∞ + μ2‖r2‖1 + ρ1A
]
, (3.24)

∥
∥Dβ–2

0+ υ
∥
∥∞ ≤ 1

1 – ρ1‖a1‖1 – ρ1‖b1‖1 – μ2‖a2‖1

[
ρ1‖d1‖1

∥
∥Dβ–1

0+ υ
∥
∥∞

+ ρ1‖e1‖1
∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + ρ1‖r‖1

+ μ2‖b2‖1
∥
∥Dα–2

0+ u
∥
∥∞ + μ2‖d2‖1

∥
∥Dα–1

0+ u
∥
∥∞

+ μ2‖e2‖1
∥
∥Dα–1

0+ u
∥
∥θ2

∞ + μ2‖r2‖1 + ρ1A
]
, (3.25)

∥
∥Dα–2

0+ u
∥
∥∞ ≤ 1

1 – ρ1‖a1‖1 – ρ1‖b1‖1 – μ2‖a2‖1 – μ2‖b2‖1

[
ρ1‖d1‖1

∥
∥Dβ–1

0+ υ
∥
∥∞

+ ρ1‖e1‖1
∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + ρ1‖r‖1 + μ2‖d2‖1
∥
∥Dα–1

0+ u
∥
∥∞

+ μ2‖e2‖1
∥
∥Dα–1

0+ u
∥
∥θ2

∞ + μ2‖r2‖1 + ρ1A
]

(3.26)

and

∥
∥Dα–1

0+ u
∥
∥∞ ≤ 1

1 – ρ1(‖a1‖1 + ‖b1‖1 + ‖d1‖) – μ2(‖a2‖1 + ‖b2‖1 + ‖d2‖1)

× [
ρ1‖e1‖1

∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + μ2‖e2‖1
∥
∥Dα–1

0+ u
∥
∥θ2

∞

+ μ2‖r2‖1 + ρ1
(
A + ‖r1‖1

)]
, (3.27)

∥
∥Dβ–1

0+ υ
∥
∥∞ ≤ 1

1 – ρ1(‖a1‖1 + ‖b1‖1 + ‖d1‖) – μ2(‖a2‖1 + ‖b2‖1 + ‖d2‖1)

× [
ρ1‖e1‖1

∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + μ2‖e2‖1
∥
∥Dα–1

0+ u
∥
∥θ2

∞

+ μ2‖r2‖1 + ρ1
(
A + ‖r1‖1

)]
. (3.28)

If ρ1‖e1‖1‖Dβ–1
0+ υ‖θ1∞ ≥ μ2‖e2‖1‖Dα–1

0+ u‖θ2∞, then from (3.28) we have

∥
∥Dβ–1

0+ υ
∥
∥∞ ≤ 1

1 – ρ1(‖a1‖1 + ‖b1‖1 + ‖d1‖) – μ2(‖a2‖1 + ‖b2‖1 + ‖d2‖1)

× [
2ρ1‖e1‖1

∥
∥Dβ–1

0+ υ
∥
∥θ1

∞ + μ2‖r2‖1 + ρ1
(
A + ‖r1‖1

)]
. (3.29)

Since θ1 ∈ [0, 1), from the above last inequality, there exists M1 > 0 such that ‖Dβ–1
0+ υ‖∞ ≤

M1, thus from (3.22)–(3.28), there exists M2 > 0 such that ‖u‖∞, ‖υ‖∞, ‖Dα–2
0+ u‖∞,

‖Dβ–2
0+ υ‖∞, and ‖Dα–1

0+ u‖∞ are all less than M2, hence ‖(u,υ)‖Y ≤ 3(M1 + M2). Therefore
�1 is bounded.
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If ρ1‖e1‖1‖Dβ–1
0+ υ‖θ1∞ ≤ μ2‖e2‖1‖Dα–1

0+ u‖θ2∞, then from (3.27), similar to the above argu-
ment, we can also prove that �1 is bounded.

Case 4. ‖(u,υ)‖Y ≤ ρ2‖N2u‖1 + μ1‖N1υ‖1 + ρ2A. The proof is similar to that of case 3.
Here, we omit it.

From the above argument, we have proved that �1 is bounded.
Step 2: Let

�2 =
{

(u,υ) ∈ Ker(L)|N(u,υ) ∈ Im(L)
}

.

For (u,υ) ∈ �2, (u,υ) ∈ Ker(L) = {(u,υ) ∈ dom(L)|u = c11tα–1 + c12tα–2,υ = c21tβ–1 +
c22tβ–2, cij ∈R, i, j = 1, 2, t ∈ [0, 1]}, and QN(c11tα–1 + c12tα–2, c21tβ–1 + c22tβ–2) = (0, 0), thus

Rα
1 N1

(
c21tβ–1 + c22tβ–2) = Rα

2 N1
(
c21tβ–1 + c22tβ–2) = 0,

Rβ
1 N2

(
c11tα–1 + c12tα–2) = Rα

2 N2
(
c11tα–1 + c12tα–2) = 0.

By (H3), c2
11 + c2

12 + c2
21 + c2

22 ≤ B, that is, �2 is bounded.
Step 3: We define the isomorphism J : Im(Q) → Ker(L) by

J
(
c11tα–1 + c12tα–2, c21tβ–1 + c22tβ–2)

=
(
c11tα–1 + c12tα–2, c21tβ–1 + c22tβ–2), cij ∈ R, i, j = 1, 2.

Let

�3 =
{

(u,υ) ∈ Ker(L)| – λJ–1(u,υ) + (1 – λ)QN(u,υ) = (0, 0),λ ∈ [0, 1]
}

.

For every (c11tα–1 + c12tα–2, c21tβ–1 + c22tβ–2) ∈ �3 with c2
11 + c2

12 + c2
21 + c2

22 > 0,

λ
(
c11tα–1 + c12tα–2, c21tβ–1 + c22tβ–2)

= (1 – λ)
(
QαN1υ, QβN2u

)

= (1 – λ)
((

Rα
1 N1

(
c21tβ–1 + c22tβ–2))tα–1 +

(
Rα

2 N1
(
c21tβ–1 + c22tβ–2))tα–2,

(
Rβ

1 N2
(
c11tα–1 + c12tα–2))tβ–1 +

(
Rβ

2 N2
(
c11tα–1 + c12tα–2))tβ–2).

If λ = 1, then cij = 0, i, j = 1, 2. If λ = 0, then by Step 2, c2
11 + c2

12 + c2
21 + c2

22 < B. If 0 < λ < 1
and c2

11 + c2
12 + c2

21 + c2
22 > B, then by (H3),

λ2(c2
11 + c2

12 + c2
21 + c2

22
)

= (1 – λ)2[c11
(
Rα

1 N1
(
c21tβ–1 + c22tβ–2)) + c12

(
Rα

2 N1
(
c21tβ–1 + c22tβ–2))]

× [
c21

(
Rβ

1 N2
(
c11tα–1 + c12tα–2)) + c22

(
Rβ

2 N2
(
c11tα–1 + c12tα–2))] ≤ 0,

which, in either case, is a contradiction, that is, �3 is bounded.
Step 4: Now we prove that the conditions of Theorem 2.1 are all satisfied. Set � to be a

bounded open set of Y such that
⋃3

i=1 �i ⊂ �. By Lemma 2.3, the operator KP(I – Q)N :
� → Y is compact, thus N is L-compact on �. Then, by the above argument, we have
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(i) L(u,υ)) �= λN(u,υ) for every ((u,υ),λ) ∈ [(dom(L)\Ker(L)) ∩ ∂�] × (0, 1);
(ii) N(u,υ) /∈ Im(L) for every (u,υ) ∈ Ker(L) ∩ ∂�.

Let H((u,υ),λ) = λI(u,υ) + (1 – λ)JQN(u,υ), where I is the identical operator. According
to the above argument, we know

H
(
(u,υ),λ

) �= 0, for all (u,υ) ∈ Ker(L) ∩ ∂�,

thus, by the homotopy property of degree

deg
(
JQN |Ker(L),� ∩ Ker(L), (0, 0)

)

= deg
(
H(·, 0),� ∩ Ker(L), (0, 0)

)

= deg
(
H(·, 1),� ∩ Ker(L), (0, 0)

)
= deg

(
I,� ∩ Ker(L), (0, 0)

) �= 0.

Thus (iii) of Theorem 2.1 is satisfied. Then, by Theorem 2.1, L(u,υ) = N(u,υ) has at least
one solution in dom(L)∩�, so that the coupled system (1.2)–(1.3) has at least one solution
in Y . The proof is finished. �

4 Conclusions
The linear operator L = 0 with boundary conditions at resonance with the kernel of four
dimensions was considered and an existence result for a coupled system of nonlinear frac-
tional differential equations with multi-point boundary conditions at resonance was ob-
tained by using the coincidence degree theory.
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