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Abstract
This paper considers wavelet estimation for a multivariate density function based on
mixing and size-biased data. We provide upper bounds for the mean integrated
squared error (MISE) of wavelet estimators. It turns out that our results reduce to the
corresponding theorem of Shirazi and Doosti (Stat. Methodol. 27:12–19, 2015), when
the random sample is independent.
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1 Introduction
Let {Yi, i ∈ Z} be a strictly stationary random process defined on a probability space
(�,F , P) with the common density function

g(y) =
ω(y)f (y)

μ
, y ∈R

d, (1)

where ω denotes a known positive function, f stands for an unknown density func-
tion of the unobserved random variable X and μ = Eω(X) =

∫
Rd ω(y)f (y) dy < +∞. We

want to estimate the unknown density function f from a sequence of strong mixing data
Y1, Y2, . . . , Yn.

When Y1, Y2, . . . , Yn are independent and d = 1, Ramírez and Vidakovic [13] propose
a linear wavelet estimator and show it to be L2 consistent; Chesneau [1] considers the
optimal convergence rates of wavelet block thresholding estimator; Shirazi and Doosti
[16] expand Ramírez and Vidakovic’s [13] work to d ≥ 1. Chesneau et al. [2] extend the
independence to both positively and negatively associated cases. They show a convergence
rate for mean integrated squared error (MISE). An upper bound of wavelet estimation on
Lp (1 ≤ p < +∞) risk in negatively associated case is given by Liu and Xu [9].

This paper deals with the d-dimensional density estimate problem (1), when Y1, Y2, . . . ,
Yn are strong mixing. We give upper bounds for the mean integrated squared error (MISE)
of wavelet estimators. It turns out that our linear result reduces to Shirazi and Doosti’s [16]
theorem, when the random sample is independent.

1.1 Wavelets and Besov spaces
As a central notion in wavelet analysis, Multiresolution Analysis (MRA, Meyer [11]) plays
an important role in constructing a wavelet basis, which means a sequence of closed sub-
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spaces {Vj}j∈Z of the square integrable function space L2(Rd) satisfying the following prop-
erties:

(i) Vj ⊆ Vj+1, j ∈ Z. Here and after, Z denotes the integer set and N := {n ∈ Z, n ≥ 0};
(ii)

⋃
j∈Z Vj = L2(Rd). This means the space

⋃
j∈Z Vj being dense in L2(Rd);

(iii) f (2·) ∈ Vj+1 if and only if f (·) ∈ Vj for each j ∈ Z;
(iv) There exists a scaling function ϕ ∈ L2(Rd) such that {ϕ(· – k), k ∈ Z

d} forms an
orthonormal basis of V0 = span{ϕ(· – k)}.

When d = 1, there is a simple way to define an orthonormal wavelet basis. Examples
include the Daubechies wavelets with compact supports. For d ≥ 2, the tensor product
method gives an MRA {Vj} of L2(Rd) from one-dimensional MRA. In fact, with a scaling
function ϕ of tensor products, we find M = 2d – 1 wavelet functions ψ� (� = 1, 2, . . . , M)
such that, for each f ∈ L2(Rd), the following decomposition

f =
∑

k∈Zd

αj0,kϕj0,k +
∞∑

j=j0

M∑

�=1

∑

k∈Zd

β�
j,kψ

�
j,k

holds in L2(Rd) sense, where αj0,k = 〈f ,ϕj0,k〉, β�
j,k = 〈f ,ψ�

j,k〉 and

ϕj0,k(y) = 2
j0d
2 ϕ
(
2j0 y – k

)
, ψ�

j,k(y) = 2
jd
2 ψ�

(
2jy – k

)
.

Let Pj be the orthogonal projection operator from L2(Rd) onto the space Vj with the
orthonormal basis {ϕj,k(·) = 2jd/2ϕ(2j · –k), k ∈ Z

d}. Then, for f ∈ L2(Rd),

Pjf =
∑

k∈Zd

αj,kϕj,k . (2)

A wavelet basis can be used to characterize Besov spaces. The next lemma provides
equivalent definitions for those spaces, for which we need one more notation: a scaling
function ϕ is called m-regular if ϕ ∈ Cm(Rd) and |Dαϕ(y)| ≤ c(1 + |y|2)–� for each � ∈ Z

and each multi-index α ∈ N
d with |α| ≤ m.

Lemma 1.1 (Meyer [11]) Let ϕ be m-regular, ψ� (� = 1, 2, . . . , M, M = 2d – 1) be the
corresponding wavelets and f ∈ Lp(Rd). If αj,k = 〈f ,ϕj,k〉, β�

j,k = 〈f ,ψ�
j,k〉, p, q ∈ [1,∞], and

0 < s < m, then the following assertions are equivalent:
(1) f ∈ Bs

p,q(Rd);
(2) {2js‖Pj+1f – Pjf ‖p} ∈ lq;
(3) {2j(s– d

p + d
2 )‖βj‖p} ∈ lq.

The Besov norm of f can be defined by

‖f ‖Bs
p,q :=

∥
∥(αj0 )

∥
∥

p +
∥
∥(2j(s– d

p + d
2 )‖βj‖p

)
j≥j0

∥
∥

q with ‖βj‖p
p =

M∑

�=1

∑

k∈Zd

∣
∣β�

j,k
∣
∣p.

1.2 Estimators and result
In this paper, we require supp Yi ⊆ [0, 1]d in model (1). This is similar to Chesneau [1],
Chesneau et al. [2], Liu and Xu [9]. Now we give the definition of strong mixing.
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Definition 1.1 (Rosenblatt [15]) A strictly stationary sequence of random vectors {Yi}i∈Z
is said to be strong mixing if

lim
k→∞

α(k) = lim
k→∞

sup
{∣
∣P(A ∩ B) – P(A)P(B)

∣
∣ : A ∈�

0
–∞, B ∈�

∞
k
}

= 0,

where �
0
–∞ denotes the σ field generated by {Yi}i≤0 and �

∞
k does by {Yi}i≥k .

Obviously, the independent and identically distributed (i.i.d.) data are strong mixing
since P(A ∩ B) = P(A)P(B) and α(k) ≡ 0 in that case. Now, we provide two examples for
strong mixing data.

Example 1 Let Xt =
∑

j∈Z ajεt–j with

{εt , t ∈ Z} i.i.d.∼ N
(
0,σ 2) and ak =

⎧
⎨

⎩

2–k , k ≥ 0,

0, k < 0.

Then it can be proved by Theorem 2 and Corollary 1 of Doukhan [5] on p. 58 that {Xt , t ∈
Z} is a strong mixing sequence.

Example 2 Let {ε(t), t ∈ Z} i.i.d.∼ Nr(�0,�) (r-dimensional normal distribution) and {Y (t), t ∈
Z} satisfy the auto-regression moving average equation

p∑

i=0

B(i)Y (t – i) =
q∑

k=0

A(k)ε(t – k)

with l×r and l× l matrices A(k), B(i) respectively, as well as B(0) being the identity matrix.
If the absolute values of the zeros of the determinant det P(z) := det

∑p
i=0 B(i)zi (z ∈ C) are

strictly greater than 1, then {Y (t), t ∈ Z} is strong mixing (Mokkadem [12]).

It is well known that a Lebesgue measurable function maps i.i.d. data to i.i.d. data. When
dealing with strong mixing data, it seems necessary to require the functions ω in (1) to be
Borel measurable. A Borel measurable function f on R

d means {y ∈ R
d, f (y) > c} being a

Borel set for each c ∈ R. In that case, we can prove easily that {f (Yi)} remains strong mixing
and αf (Y )(k) ≤ αY (k) (k = 1, 2, . . .) if {Yi} has the same property, see Guo [6]. This note is
important for the proofs of the lemmas in the next section.

Before introducing our estimators, we formulate the following assumptions:
A1. The weight function ω has both positive upper and lower bounds, i.e., for y ∈ [0, 1]d ,

0 < c1 ≤ ω(y) ≤ c2 < +∞.

A2. The strong mixing coefficient of {Yi, i = 1, 2, . . . , n} satisfies α(k) = O(γ e–c3k) with
γ > 0, c3 > 0.

A3. The density f(Y1,Yk+1) of (Y1, Yk+1) (k ≥ 1) and the density fY1 of Y1 satisfy that for
(y, y∗) ∈ [0, 1]d × [0, 1]d ,

sup
k≥1

sup
(y,y∗)∈[0,1]d×[0,1]d

∣
∣hk
(
y, y∗)∣∣≤ c4,

where hk(y, y∗) = f(Y1,Yk+1)(y, y∗) – fY1 (y)fYk+1 (y∗) and c4 > 0.
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Assumption A1 is standard for the nonparametric density model with size-biased data,
see Ramírez and Vidakovic [13], Chesneau [1], Liu and Xu [9]. Condition A3 can be viewed
as a ‘Castellana–Leadbetter’ type condition in Masry [10].

We choose a d-dimensional scaling function

ϕ(y) = ϕ(y1, . . . , yd) := D2N (y1) · · · · · D2N (yd)

with D2N (·) being the one-dimensional Daubechies scaling function. Then ϕ is m-regular
(m > 0) when N gets large enough. Note that D2N has compact support [0, 2N – 1] and
the corresponding wavelet has compact support [–N + 1, N]. Then, for f ∈ L2(Rd) with
supp f ⊆ [0, 1]d and M = 2d – 1,

f (y) =
∑

k∈j0

αj0,kϕj0,k(y) +
∞∑

j=j0

M∑

�=1

∑

k∈j

β�
j,kψ

�
j,k(y),

where j0 = {1 – 2N , 2 – 2N , . . . , 2j0}d , j = {–N , –N + 1, . . . , 2j + N – 1}d and

αj0,k =
∫

[0,1]d
f (y)ϕj0,k(y) dy, β�

j,k =
∫

[0,1]d
f (y)ψ�

j,k(y) dy.

We introduce

μ̂n =

[
1
n

n∑

i=1

1
ω(Yi)

]–1

, (3)

α̂j0,k =
μ̂n

n

n∑

i=1

ϕj0,k(Yi)
ω(Yi)

, (4)

and

β̂�
j,k =

μ̂n

n

n∑

i=1

ψ�
j,k(Yi)
ω(Yi)

. (5)

Now, we define our linear wavelet estimator

f̂ lin
n (y) =

∑

k∈j0

α̂j0,kϕj0,k(y) (6)

and the nonlinear wavelet estimator

f̂ non
n (y) = f̂ lin

n (y) +
j1∑

j=j0

M∑

�=1

∑

k∈j

β̂�
j,kI{|β̂�

j,k |≥κtn}ψ
�
j,k(y) (7)

with tn :=
√

ln n
n . The positive integers j0 and j1 are specified in the theorem, while the

constant κ will be chosen in the proof of the theorem.
The following notations are needed to state our theorem: For H > 0,

Bs
p,q(H) :=

{
f ∈ Bs

p,q
(
R

d),‖f ‖Bs
p,q ≤ H

}
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and x+ := max{x, 0}. In addition, A � B denotes A ≤ cB for some constant c > 0; A � B
means B � A; A ∼ B stands for both A � B and B � A.

Main theorem Consider the problem defined by (1) under assumptions A1–A3. Let f ∈
Bs

p,q(H) (p, q ∈ [1,∞), s > d
p ) and supp f ⊆ [0, 1]d . Then the linear wavelet estimator f̂ lin

n

defined in (6) with 2j0 ∼ n
1

2s′+d and s′ = s – d( 1
p – 1

2 )+ satisfies

E
∫

[0,1]d

∣
∣̂f lin

n (y) – f (y)
∣
∣2 dy � n– 2s′

2s′+d ; (8a)

the nonlinear estimator in (7) with 2j0 ∼ n
1

2m+d (m > s), 2j1 ∼ ( n
(ln n)3 )

1
d satisfies

E
∫

[0,1]d

∣
∣̂f non

n (y) – f (y)
∣
∣2 dy � (ln n)3n– 2s

2s+d . (8b)

Remark 1 When d = 1, n– 2s
2s+1 is the optimal convergence rate in the minimax sense for

the standard nonparametric density model, see Donoho et al. [4].

Remark 2 When the strong mixing data Y1, Y2, . . . , Yn reduce to independent and identi-
cally distributed (i.i.d.) data, the convergence rate of our linear estimator is the same as
that of Theorem 3.1 in Shirazi and Doosti [16].

Remark 3 Compared with the linear wavelet estimator f̂ lin
n , the nonlinear estimator f̂ non

n

is adaptive, which means both j0 and j1 do not depend on s, p, and q. On the other hand,
the convergence rate of the nonlinear estimator remains the same as that of the linear one
up to (ln n)3, when p ≥ 2. However, it gets better for 1 ≤ p < 2.

2 Some lemmas
In this section, we provide some lemmas for the proof of the theorem. The following sim-
ple (but important) lemma holds.

Lemma 2.1 For the model defined in (1),

E
(
μ̂–1

n
)

= μ–1, (9a)

E
[
μϕj0,k(Yi)

ω(Yi)

]

= αj0,k , (9b)

E
[
μψ�

j,k(Yi)
ω(Yi)

]

= β�
j,k , (9c)

where αj0,k =
∫

[0,1]d f (y)ϕj0,k(y) dy and β�
j,k =

∫
[0,1]d f (y)ψ�

j,k(y) dy (� = 1, 2, . . . , M).

Proof One includes a simple proof for completeness. By (3),

E
(
μ̂–1

n
)

= E

[
1
n

n∑

i=1

1
ω(Yi)

]

= E
[

1
ω(Yi)

]

.
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This with (1) leads to

E
(
μ̂–1

n
)

=
∫

[0,1]d

g(y)
ω(y)

dy =
1
μ

∫

[0,1]d
f (y) dy =

1
μ

,

which concludes (9a). Using (1), one knows that

E
[
μϕj0,k(Yi)

ω(Yi)

]

=
∫

[0,1]d

μϕj0,k(y)
ω(y)

g(y) dy =
∫

[0,1]d
f (y)ϕj0,k(y) dy = αj0,k .

This completes the proof of (9b). Similar arguments show (9c). �

To estimate E|̂αj0,k –αj0,k|2 and E|β̂�
j,k –β�

j,k|2, we introduce an important inequality, which
can be found in Davydov [3].

Davydov’s inequality Let {Yi}i∈Z be strong mixing with mixing coefficient α(k), f and g
be two measurable functions. If E|f (Y1)|p and E|g(Y1)|q exist for p, q > 0 and 1

p + 1
q < 1, then

there exists a constant c > 0 such that

∣
∣cov

(
f (Y1), g(Yk+1)

)∣∣≤ c
[
α(k)

]1– 1
p – 1

q
[
E
∣
∣f (Y1)

∣
∣p]

1
p
[
E
∣
∣g(Y1)

∣
∣q]

1
q .

Lemma 2.2 Let f ∈ Bs
p,q(H) (p, q ∈ [1,∞), s > d

p ) and α̂j0,k , β̂�
j,k be defined by (4) and (5). If

A1–A3 hold, then

E|̂αj0,k – αj0,k|2 � n–1, E
∣
∣β̂�

j,k – β�
j,k
∣
∣2 � n–1.

Proof One proves the second inequality only, the first one is similar. By the definition of
β̂�

j,k ,

β̂�
j,k – β�

j,k =
μ̂n

μ

[
μ

n

n∑

i=1

ψ�
j,k(Yi)
ω(Yi)

– β�
j,k

]

+ β�
j,k · μ̂n

(
1
μ

–
1
μ̂n

)

and E|β̂�
j,k – β�

j,k|2 � E| μ̂n
μ

[ μ

n
∑n

i=1
ψ�

j,k (Yi)
ω(Yi)

– β�
j,k]|2 + E|β�

j,kμ̂n( 1
μ

– 1
μ̂n

)|2. Note that Bs
p,q(Rd) ⊆

B
s– d

p∞,∞(Rd) with s > d
p . Then f ∈ B

s– d
p∞,∞(Rd) and ‖f ‖∞ � 1. Moreover, |β�

j,k| := | ∫[0,1]d f (y) ×
ψ�

j,k(y) dy| � 1 thanks to Hölder’s inequality and orthonormality of {ψ�
j,k}. On the other

hand, | μ̂n
μ

|� 1 and |μ̂n| � 1 because of A1. Hence,

E
∣
∣β̂�

j,k – β�
j,k
∣
∣2 � E

∣
∣
∣
∣
∣
μ

n

n∑

i=1

ψ�
j,k(Yi)
ω(Yi)

– β�
j,k

∣
∣
∣
∣
∣

2

+ E
∣
∣
∣
∣

1
μ

–
1
μ̂n

∣
∣
∣
∣

2

. (10)

It follows from Lemma 2.1 and the definition of variance that

E
∣
∣β̂�

j,k – β�
j,k
∣
∣2 � var

[
1
n

n∑

i=1

ψ�
j,k(Xi)
ω(Yi)

]

+ var

[
1
n

n∑

i=1

1
ω(Xi, Yi)

]

=
1
n2 var

[ n∑

i=1

ψ�
j,k(Xi)
ω(Yi)

]

+
1
n2 var

[ n∑

i=1

1
ω(Xi, Yi)

]

. (11)
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Note that Condition A1 implies var( 1
ω(Yi)

) ≤ E( 1
ω(Yi)

)2 � 1 and

var

[ n∑

i=1

1
ω(Yi)

]

� n var

(
1

ω(Yi)

)

+

∣
∣
∣
∣
∣

n∑

v=2

v–1∑

i=1

cov

(
1

ω(Yv)
,

1
ω(Yi)

)∣∣
∣
∣
∣
.

Then it suffices to show

∣
∣
∣
∣
∣

n∑

v=2

v–1∑

i=1

cov

(
1

ω(Yv)
,

1
ω(Yi)

)∣∣
∣
∣
∣
� n. (12)

By the strict stationarity of Yi,

∣
∣
∣
∣
∣

n∑

v=2

v–1∑

i=1

cov

(
1

ω(Yv)
,

1
ω(Yi)

)∣∣
∣
∣
∣

=

∣
∣
∣
∣
∣

n∑

m=1

(n – m) cov

(
1

ω(Y1)
,

1
ω(Ym+1)

)∣∣
∣
∣
∣

≤ n
n∑

m=1

∣
∣
∣
∣cov

(
1

ω(Y1)
,

1
ω(Ym+1)

)∣∣
∣
∣.

On the other hand, Davydov’s inequality and A1 show that

∣
∣
∣
∣cov

(
1

ω(Y1)
,

1
ω(Ym+1)

)∣
∣
∣
∣�
√

α(m)

√

E
∣
∣
∣
∣

1
ω(Y1)

∣
∣
∣
∣

4

�
√

α(m).

These with A2 give the desired conclusion (12),

∣
∣
∣
∣
∣

n∑

v=2

v–1∑

i=1

cov

(
1

ω(Yv)
,

1
ω(Yi)

)∣∣
∣
∣
∣
� n

n∑

m=1

√
α(m) � n.

Now, the main work is to show

var

[ n∑

i=1

ψ�
j,k(Xi)
ω(Yi)

]

� n. (13)

Clearly,

var

[ n∑

i=1

ψ�
j,k(Yi)
ω(Yi)

]

� n var

(
ψ�

j,k(Yi)
ω(Yi)

)

+

∣
∣
∣
∣
∣

n∑

v=2

v–1∑

i=1

cov

(
ψ�

j,k(Yv)
ω(Yv)

,
ψ�

j,k(Yi)
ω(Yi)

)∣∣
∣
∣
∣
.

By A1–A3 and (1), the first term of the above inequality is bounded by

nE
(

ψ�
j,k(Yi)
ω(Yi)

)2

� n
∫

[0,1]d

[
ψ�

j,k(y)
]2f (y) dy � n.
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It remains to show
∣
∣
∣
∣
∣

n∑

v=2

v–1∑

i=1

cov

(
ψ�

j,k(Yv)
ω(Yv)

,
ψ�

j,k(Yi)
ω(Yi)

)∣∣
∣
∣
∣

≤ n

(2jd–1∑

m=1

+
n∑

m=2jd

)∣
∣
∣
∣cov

[
ψ�

j,k(Y1)
ω(Y1)

,
ψ�

j,k(Ym+1)
ω(Ym+1)

]∣∣
∣
∣� n, (14)

where the assumption 2jd ≤ n is needed.
According to A1 and A3,

∣
∣
∣
∣cov

(
ψ�

j,k(Y1)
ω(Y1)

,
ψ�

j,k(Ym+1)
ω(Ym+1)

)∣∣
∣
∣ ≤
∫

[0,1]d×[0,1]d

∣
∣
∣
∣
ψ�

j,k(y)
ω(y)

· ψ�
j,k(y∗)
ω(y∗)

∣
∣
∣
∣
∣
∣hm
(
y, y∗)∣∣dy dy∗

�
(∫

[0,1]d

∣
∣ψ�

j,k(y)
∣
∣dy
)2

� 2–jd.

Hence,

2jd–1∑

m=1

∣
∣
∣
∣cov

(
ψ�

j,k(Y1)
ω(Y1)

,
ψ�

j,k(Ym+1)
ω(Ym+1)

)∣
∣
∣
∣�

2jd–1∑

m=1

2–jd � 1. (15)

On the other hand, Davydov’s inequality and A1–A3 tell that

∣
∣
∣
∣cov

(
ψ�

j,k(Y1)
ω(Y1)

,
ψ�

j,k(Ym+1)
ω(Ym+1)

)∣∣
∣
∣ �
√

α(m)

√

E
∣
∣
∣
∣
ψ�

j,k(Y1)
ω(Y1)

∣
∣
∣
∣

4

�
√

α(m) sup

∣
∣
∣
∣
ψ�

j,k(Y1)
ω(Y1)

∣
∣
∣
∣

√

E
∣
∣
∣
∣
ψ�

j,k(Y1)
ω(Y1)

∣
∣
∣
∣

2

�
√

α(m)2
jd
2 .

Moreover,
∑n

m=2jd | cov(
ψ�

j,k (Y1)
ω(Y1) ,

ψ�
j,k (Ym+1)
ω(Ym+1) )| �

∑n
m=2jd

√
α(m)2

jd
2 �

∑n
m=1

√
mα(m) ≤

∑+∞
m=1 m 1

2 γ e– cm
2 < +∞. This with (15) shows (14). �

To prove the last lemma in this section, we need the following Bernstein-type inequality
(Liebscher [7, 8], Rio [14]).

Bernstein-type inequality Let (Yi)i∈Z be a strong mixing process with mixing coefficient
α(k), EYi = 0, |Yi| ≤ M < ∞, and Dm = max1≤j≤2m var(

∑j
i=1 Yi). Then, for ε > 0 and n, m ∈N

with 0 < m ≤ n
2 ,

P

(∣∣
∣
∣
∣

n∑

i=1

Yi

∣
∣
∣
∣
∣
≥ ε

)

≤ 4 · exp

{

–
ε2

16

(

nm–1Dm +
1
3
εMm

)–1}

+ 32
M
ε

nα(m).

Lemma 2.3 Let f ∈ Bs
p,q(H) (p, q ∈ [1,∞), s > d

p ), β̂�
j,k be defined in (5) and tn =

√
ln n
n . If

A1–A3 hold and 2jd ≤ n
(ln n)3 , then there exists a constant κ > 1 such that

P
(∣∣β̂�

j,k – β�
j,k
∣
∣≥ κtn

)
� n–4.
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Proof According to the arguments of (10), |β̂�
j,k – β�

j,k| � 1
n |∑n

i=1[ 1
ω(Yi)

– 1
μ

]| + | 1
n ×

∑n
i=1

μψ�
j,k (Yi)

ω(Yi)
– β�

j,k|. Hence, it suffices to prove

P

(
1
n

∣
∣
∣
∣
∣

n∑

i=1

[
1

ω(Yi)
–

1
μ

]∣∣
∣
∣
∣
≥ κ

2
tn

)

� n–4 and

P

(∣∣
∣
∣
∣
1
n

n∑

i=1

[
μψ�

j,k(Yi)
ω(Yi)

– β�
j,k

]∣∣
∣
∣
∣
≥ κ

2
tn

)

� n–4.

(16)

One shows the second inequality only, because the first one is similar and even simpler.

Define ηi :=
μψ�

j,k (Yi)
ω(Yi)

– β�
j,k . Then E(ηi) = 0 thanks to (9c), and η1, . . . ,ηn are strong mixing

with the mixing coefficients α(k) ≤ γ e–ck because of Condition A2. By A1–A3, |μψ�
j,k (Yi)

ω(Yi)
|�

2
jd
2 and

|ηi| ≤
∣
∣
∣
∣
μψ�

j,k(Yi)
ω(Yi)

∣
∣
∣
∣ + E

∣
∣
∣
∣
μψ�

j,k(Yi)
ω(Yi)

∣
∣
∣
∣� 2

jd
2 .

According to the arguments of (13), Dm = max1≤j≤2m var(
∑j

i=1 ηi) � m. Then it follows
from Bernstein-type inequality with m = u ln n (the constant u will be chosen later on)
that

P

(
1
n

∣
∣
∣
∣
∣

n∑

i=1

ηi

∣
∣
∣
∣
∣
≥ κ

2
tn

)

= P

(∣
∣
∣
∣
∣

n∑

i=1

ηi

∣
∣
∣
∣
∣
≥ κ

2
ntn

)

� exp

{

–
(κntn)2

64

(

nm–1Dm +
1
6
κntn2

jd
2 m
)–1}

+ 64
2

jd
2

κntn
nγ e–cm. (17)

Clearly, 64 2
jd
2

κntn
nγ e–cm � ne–cu ln n holds due to tn =

√
ln n
n , 2jd ≤ n

(ln n)3 and m = u ln n. Choose
u such that 1 – cu < –4, then the second term of (17) is bounded by n–4. On the other hand,
the first one of (17) has the following upper bound:

exp

{

–
κ2 ln n

64

(

1 +
1
6
κ

√
ln n
n

(
n

(ln n)3

) 1
2

m
)–1}

� exp

{

–
κ2 ln n

64

(

1 +
1
6
κu
)–1}

thanks to Dm � m, 2jd ≤ n
(ln n)3 and m = u ln n. Obviously, there exists sufficiently large κ > 1

such that exp{– κ2 ln n
64 (1 + 1

6κu)–1} � n–4. Finally, the desired conclusion (16) follows. �

3 Proof of the theorem
This section proves the theorem. The main idea of the proof comes from Donoho et al. [4].

Proof of (8a) Note that

E
∫

[0,1]d

∣
∣̂f lin

n (y) – f (y)
∣
∣2 dy ≤ E

∫

Rd

∣
∣̂f lin

n (y) – f (y)
∣
∣2 dy

= E
∥
∥̂f lin

n – Pj0 f
∥
∥2

2 + ‖Pj0 f – f ‖2
2. (18)
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It is easy to see that

E
∥
∥̂f lin

n – Pj0 f
∥
∥2

2 = E
∥
∥
∥
∥
∑

k∈j0

(̂αj0,k – αj0,k)ϕj0,k

∥
∥
∥
∥

2

2
=
∑

k∈j0

E|̂αj0,k – αj0,k|2.

According to Lemma 2.2, |j0 | ∼ 2j0d and 2j0 ∼ n
1

2s′+d ,

E
∥
∥̂f lin

n – Pj0 f
∥
∥2

2 �
2j0d

n
∼ n– 2s′

2s′+d . (19)

When p ≥ 2, s′ = s. By Hölder’s inequality, f ∈ Bs
p,q(H), and Lemma 1.1,

‖Pj0 f – f ‖2
2 � ‖Pj0 f – f ‖2

p � 2–2j0s ∼ n– 2s
2s+d . (20)

When 1 ≤ p < 2 and s > d
p , Bs

p,q(Rd) ⊆ Bs′
2,∞(Rd). Then it follows from Lemma 1.1 and

2j0 ∼ n
1

2s′+d that

‖Pj0 f – f ‖2
2 �

∞∑

j=j0

2–2js′ � 2–2j0s′ ∼ n– 2s′
2s′+d . (21)

This with (20) shows in both cases

‖Pj0 f – f ‖2
2 � n– 2s′

2s′+d . (22)

By (18), (19), and (22),

E
∫

[0,1]d

∣
∣̂f lin

n (y) – f (y)
∣
∣2 dy � n– 2s′

2s′+d . �

Proof of (8b) By the definitions of f̂ lin
n and f̂ non

n , f̂ non
n (y) – f (y) = [̂f lin

n (y) – Pj0 f (y)] – [f (y) –
Pj1+1f (y)] +

∑j1
j=j0
∑M

�=1
∑

k∈j[β̂�
j,kI{|β̂�

j,k |≥κtn} – β�
j,k]ψ�

j,k(y). Hence,

E
∫

[0,1]d

∣
∣̂f non

n (y) – f (y)
∣
∣2 dy � T1 + T2 + Q, (23)

where T1 := E‖̂f lin
n – Pj0 f ‖2

2, T2 := ‖f – Pj1+1f ‖2
2 and

Q := E

∥
∥
∥
∥
∥

j1∑

j=j0

M∑

�=1

∑

k∈j

[
β̂�

j,kI{|β̂�
j,k |≥κtn} – β�

j,k
]
ψ�

j,k

∥
∥
∥
∥
∥

2

2

.

According to (19) and 2j0 ∼ n
1

2m+d (m > s),

T1 = E
∥
∥̂f lin

n – Pj0 f
∥
∥2

2 �
2j0d

n
∼ n– 2m

2m+d < n– 2s
2s+d .
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When p ≥ 2, the same arguments as (20) shows T2 = ‖f – Pj1+1f ‖2
2 � 2–2j1s. This with

2j1 ∼ ( n
(ln n)3 )

1
d leads to

T2 � 2–2j1s ∼
(

(ln n)3

n

) 2s
d ≤ (ln n)3n– 2s

2s+d . (24)

On the other hand, Bs
p,q(Rd) ⊆ Bs+d/2–d/p

2,∞ (Rd) when 1 ≤ p < 2 and s > d
p . Then

T2 � 2–2j1(s+ d
2 – d

p ) ∼
(

(ln n)3

n

) 2(s+ d
2 – d

p )
d ≤ (ln n)3n– 2s

2s+d .

Hence,

T2 � (ln n)3n– 2s
2s+d

for each 1 ≤ p < +∞.
The main work for the proof of (8b) is to show

Q = E

∥
∥
∥
∥
∥

j1∑

j=j0

M∑

�=1

∑

k∈j

[
β̂�

j,kI{|β̂�
j,k |≥κtn} – β�

j,k
]
ψ�

j,k

∥
∥
∥
∥
∥

2

2

� (ln n)3n– 2s
2s+d . (25)

Note that

Q =
j1∑

j=j0

M∑

�=1

∑

k∈j

E
∣
∣β̂�

j,kI{|β̂�
j,k |≥κtn} – β�

j,k
∣
∣2 � Q1 + Q2 + Q3, (26)

where

Q1 =
j1∑

j=j0

M∑

�=1

∑

k∈j

E
[∣
∣β̂�

j,k – β�
j,k
∣
∣2I{|β̂�

j,k –β�
j,k |> κtn

2 }
]
,

Q2 =
j1∑

j=j0

M∑

�=1

∑

k∈j

E
[∣
∣β̂�

j,k – β�
j,k
∣
∣2I{|β�

j,k |≥ κtn
2 }
]
,

Q3 =
j1∑

j=j0

M∑

�=1

∑

k∈j

∣
∣β�

j,k
∣
∣2I{|β�

j,k |≤2κtn}.

For Q1, one observes that

E
[∣
∣β̂�

j,k – β�
j,k
∣
∣2I{|β̂�

j,k –β�
j,k |> κtn

2 }
]≤ [E∣∣β̂�

j,k – β�
j,k
∣
∣4
] 1

2

[

P

(∣
∣β̂�

j,k – β�
j,k
∣
∣ >

κtn

2

)] 1
2

thanks to Hölder’s inequality. By Lemmas 2.1–2.3 and 2jd ≤ n,

E
[∣
∣β̂�

j,k – β�
j,k
∣
∣2I{|β̂�

j,k –β�
j,k |> κtn

2 }
]
�
[

2jd

n

] 1
2
[

1
n4

] 1
2
� 1

n2 .
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Then Q1 �
∑j1

j=j0
2jd

n2 � 2j1d

n2 � 1
n ≤ n– 2s

2s+d , where one uses the choice 2j1 ∼ ( n
(ln n)3 )

1
d . Hence,

Q1 ≤ n– 2s
2s+d . (27)

To estimate Q2, one defines

2j′ ∼ n
1

2s+d .

It is easy to see that 2j0 ∼ n
1

2m+d ≤ 2j′ ∼ n
1

2s+d ≤ 2j1 ∼ ( n
(ln n)3 )

1
d . Furthermore, one rewrites

Q2 =

( j′∑

j=j0

+
j1∑

j=j′+1

){ M∑

�=1

∑

k∈j

E
[∣∣β̂�

j,k – β�
j,k
∣
∣2I{|β�

j,k |≥ κtn
2 }
]
}

:= Q21 + Q22.

By Lemma 2.2 and 2j′ ∼ n
1

2s+d ,

Q21 :=
j′∑

j=j0

M∑

�=1

∑

k∈j

E
[∣
∣β̂�

j,k – β�
j,k
∣
∣2I{|β�

j,k |≥ κtn
2 }
]

�
j′∑

j=j0

M∑

�=1

∑

k∈j

1
n
�

j′∑

j=j0

2jd

n
� 2j′d

n
∼ n– 2s

2s+d . (28)

On the other hand, it follows from Lemma 2.2 that

Q22 :=
j1∑

j=j′+1

M∑

�=1

∑

k∈j

E
[∣
∣β̂�

j,k – β�
j,k
∣
∣2I{|β�

j,k |≥ κtn
2 }
]

�
j1∑

j=j′+1

M∑

�=1

∑

k∈j

1
n

I{|β�
j,k |≥ κtn

2 }.

When p ≥ 2,

Q22 �
j1∑

j=j′+1

M∑

�=1

∑

k∈j

1
n

I{|β�
j,k |≥ κtn

2 } �
j1∑

j=j′+1

M∑

�=1

∑

k∈j

1
n

(
β�

j,k

κtn/2

)2

�
j1∑

j=j′+1

2–2js � 2–2j′s ∼ n– 2s
2s+d (29)

with f ∈ Bs
p,q(H), Lemma 1.1, Lemma 2.2, and tn =

√
ln n
n . When 1 ≤ p < 2 and s > d

p ,

Bs
p,q(Rd) ⊆ Bs+d/2–d/p

2,∞ (Rd). Then

Q22 �
j1∑

j=j′+1

M∑

�=1

∑

k∈j

1
n

I{|β�
j,k |≥ κtn

2 } �
j1∑

j=j′+1

M∑

�=1

∑

k∈j

1
n

(
β�

j,k

κtn/2

)p

�
j1∑

j=j′+1

n
p
2 –12–j(s+d/2–d/p)p � n

p
2 –12–j′(s+d/2–d/p)p ∼ n– 2s

2s+d . (30)
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Hence, this with (28) and (29) shows

Q2 � n– 2s
2s+d . (31)

Finally, one estimates Q3. Clearly,

Q31 :=
j′∑

j=j0

M∑

�=1

∑

k∈j

∣
∣β�

j,k
∣
∣2I{|β�

j,k |≤2κtn}

≤
j′∑

j=j0

M∑

�=1

∑

k∈j

|2κtn|2 �
j′∑

j=j0

ln n
n

2jd � ln n
n

2j′d.

This with the choice of 2j′ shows

Q31 � (ln n)n– 2s
2s+d . (32)

On the other hand, Q32 :=
∑j1

j=j′+1
∑M

�=1
∑

k∈j
|β�

j,k|2I{|β�
j,k |≤2κtn}. According to the argu-

ments of (29),

Q32 �
j1∑

j=j′+1

M∑

�=1

∑

k∈j

∣
∣β�

j,k
∣
∣2 � n– 2s

2s+d (33)

for p ≥ 2. When 1 ≤ p < 2, |β�
j,k|2I{|β�

j,k |≤2κtn} ≤ |β�
j,k|p|2κtn|2–p. Then similar to the argu-

ments of (30),

Q32 �
j1∑

j=j′+1

M∑

�=1

∑

k∈j

∣
∣β�

j,k
∣
∣p|2κtn|2–p

�
(

ln n
n

) 2–p
2

j1∑

j=j′+1

2–j(s+d/2–d/p)p �
(

ln n
n

) 2–p
2

2–j′(s+d/2–d/p)p

�
(

ln n
n

) 2–p
2
(

1
n

) (s+d/2–d/p)p
2s+d ≤ (ln n)n– 2s

2s+d . (34)

Combining this with (33) and (32), one knows Q3 � (ln n)n– 2s
2s+d in both cases. This with

(26), (27), and (31) shows

Q � (ln n)3n– 2s
2s+d ,

which is the desired conclusion. �
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