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Abstract
This work is devoted to discuss some spectral properties and the scattering function
of the impulsive operator generated by the Sturm–Liouville equation. We present a
different method to investigate the spectral singularities and eigenvalues of the
mentioned operator. We also obtain the finiteness of eigenvalues and spectral
singularities with finite multiplicities under some certain conditions. Finally, we
illustrate our results by a detailed example.
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1 Introduction
In this paper, we consider the Sturm–Liouville equation on the semi axis

–y′′ + q(x)y = λ2ρ(x)y, x ∈ [0,∞), (1.1)

with boundary condition

y(0) = 0, (1.2)

where λ is a spectral parameter, and ρ is the density function. There is a comprehensive
literature on the spectral theory of boundary value problem (1.1)–(1.2) for ρ = 1. In par-
ticular, the spectral analysis of the problem having discrete and continuous spectrum was
begun by Naimark [1] for ρ = 1. He proved that some poles of the resolvent kernel are not
the eigenvalues of the operator. He also showed that those poles, which are called spectral
singularities by Schwartz [2], are a mathematical obstruction for the completeness of the
eigenvectors and are embedded in the continuous spectrum. Pavlov [3] established the
dependence of the structure of the spectral singularities of the differential operator on the
behavior of the potential function at infinity. So far, a large number of problems related
to the spectral analysis of differential and some other types of operators with spectral sin-
gularities have been investigated [4–10]. As is well known, the Sturm–Liouville equation
(1.1) has a bounded solution satisfying the condition

lim
x→∞ e(x,λ)e–iλx = 1,
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where

λ ∈C+ := {λ ∈C : Imλ ≥ 0},

and e(x,λ) is the Jost solution of (1.1) and has the integral representation

e(x,λ) = eiλx +
∫ ∞

x
K(x, t)eiλt dt, λ ∈ C+, (1.3)

under the condition
∫ ∞

0
x
∣∣q(x)

∣∣dx < ∞, (1.4)

where K(x, t) is defined by the potential function q [11, 12].
Furthermore, boundary value problems with discontinuities inside an interval have great

interest in mathematical physics and quantum mechanics. To solve interior discontinu-
ities, some extra conditions are imposed on the discontinuous point, which are often called
interface conditions, point interactions, transmission conditions, and impulsive condi-
tions. The theory of impulsive differential equations were studied in applied mathematics
in detail [13, 14]. A great number of authors studied the spectral theory of impulsive dif-
ferential equations [15–18]. Moreover, the physical meaning and potential applications of
spectral singularities of impulsive differential equations have been understood quite re-
cently [19, 20]. Especially in [21], the author provided the physical meanings of eigenval-
ues and spectral singularities of the Schrödinger equation at a single point. Such problems
have been widely studied for impulsive differential operators on the whole axis.

In this work, we are concerned with the impulsive Sturm–Liouville operator on the semi
axis. The density function ρ and impulsive condition make the spectral analysis of op-
erator quite difficult, but by determining a transfer matrix we can obtain some spectral
properties.

2 Statement of the problem
Let us introduce the Sturm–Liouville operator L in L2[0,∞) generated by the equation

–y′′ + q(x)y = λ2ρ(x)y, x ∈ [0, x0) ∪ (x0,∞), (2.1)

with the boundary condition

y(0) = 0 (2.2)

and the impulsive condition

[
y(x+

0 )
y′(x+

0 )

]
= B

[
y(x–

0 )
y′(x–

0 )

]
, B =

[
α1 α2

α3 α4

]
, (2.3)

where α1, α2, α3, α4 are complex numbers such that det B �= 0, λ is a spectral parameter, x0

is a positive real constant, and the real-valued potential function q satisfies the condition

∫ ∞

0
x
∣∣q(x)

∣∣dx < ∞. (2.4)



Bairamov et al. Journal of Inequalities and Applications  (2018) 2018:191 Page 3 of 16

The density function ρ has the form

ρ(x) =

⎧⎨
⎩

β2, 0 ≤ x < x0,

1, x > x0,
(2.5)

where β ∈R\(–1, 1).
Note that x = x0 is the impulsive point of problem (2.1)–(2.3), and the matrix B is used

to continue the solution of (2.1) from [0, x0) to (x0,∞).
Furthermore, we denote the solutions of equation (2.1) by y– and y+, respectively:

⎧⎨
⎩

y–(x) := y(x), 0 ≤ x < x0,

y+(x) := y(x), x > x0.

It is known that S(x,λ2) and C(x,λ2) are the fundamental solutions of (2.1) in the interval
[0, x0) fulfilling the conditions

S
(
0,λ2) = 0, S′(0,λ2) = 1

and

C
(
0,λ2) = 1, C′(0,λ2) = 0,

respectively. The solutions S(x,λ2) and C(x,λ2) can be expressed in the form

S
(
x,λ2) =

sinλβx
λβ

+
∫ x

0
P(x, t)

sinλβt
λβ

dt (2.6)

and

C
(
x,λ2) = cosλβx +

∫ x

0
Q(x, t) cosλβt dt, (2.7)

where the kernel functions P(x, t) and Q(x, t) can be given in terms of the potential function
q [11]. Besides, S(x,λ2) and C(x,λ2) are entire functions of λ, and

W
[
S
(
x,λ2), C

(
x,λ2)] = –1, λ ∈ C,

where W [y1, y2] denotes the Wronskian of the solutions y1 and y2 of equation (2.1).
On the other hand, (2.1) admits another solution

e(x, –λ) = e–iλx +
∫ ∞

x
K(x, t)e–iλt dt, λ ∈ C–, (2.8)

in (x0,∞), fulfilling the asymptotic condition

lim
x→∞ e(x, –λ)eiλx = 1,
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where λ ∈C– := {λ ∈ C : Imλ ≤ 0}. Obviously,

W
[
e(x,λ), e(x, –λ)

]
= –2iλ, λ ∈R\{0}.

Also, K(x, t) satisfies

∣∣K(x, t)
∣∣ ≤ cσ

(
x + t

2

)
, (2.9)

∣∣Kx(x, t)
∣∣ ≤ 1

4

∣∣∣∣q
(

x + t
2

)∣∣∣∣ + cσ
(

x + t
2

)
, (2.10)

where c > 0 is a constant, and

σ (x) =
∫ ∞

0

∣∣q(t)
∣∣dt.

Now, let λ ∈ R\{0}. Using linearly independent solutions of (2.1) in the intervals [0, x0)
and (x0,∞), we can express the general solution of (2.1) by

⎧⎨
⎩

y–(x,λ) = A–C(x,λ2) + B–S(x,λ2), 0 ≤ x < x0,

y+(x,λ) = A+e(x,λ) + B+e(x, –λ), x > x0,

where A± and B± are constant coefficients depending on λ. By (1.3), (2.6), (2.7), and (2.8)
we get y–(x–

0 ,λ), y+(x+
0 ,λ), y′

–(x–
0 ,λ), and y′

+(x+
0 ,λ). Then, from the impulsive condition (2.3)

we have transfer matrix M satisfying

[
A+

B+

]
= M

[
A–

B–

]
, (2.11)

where

M :=

[
M11 M12

M21 M22

]
= N–1BD (2.12)

with

D :=

[
C(x0,λ2) S(x0,λ2)
C′(x0,λ2) S′(x0,λ2)

]
(2.13)

and

N :=

[
N11 N12

N21 N22

]
, (2.14)
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where

N11 = eiλx0 +
∫ ∞

x0

K(x0, t)eiλt dt,

N12 = e–iλx0 +
∫ ∞

x0

K(x0, t)e–iλt dt,

N21 = iλeiλx0 – K(x0, x0)eiλx0 +
∫ ∞

x0

Kx(x0, t)eiλt dt,

N22 = –iλe–iλx0 – K(x0, x0)e–iλx0 +
∫ ∞

x0

Kx(x0, t)e–iλt dt,

and Kx(x, t) := ∂
∂x K(x, t). Since det N = –2iλ, we easily obtain

M22(λ) =
i

2λ

{
–e′(x0,λ)

[
α1S

(
x0,λ2) + α2S′(x0,λ2)]

+ e(x0,λ)
[
α3S

(
x0,λ2) + α4S′(x0,λ2)]}, (2.15)

M12(λ) =
i

2λ

{
e′(x0, –λ)

[
α1S

(
x0,λ2) + α2S′(x0,λ2)]

– e(x0, –λ)
[
α3S

(
x0,λ2) + α4S′(x0,λ2)]}. (2.16)

Let us consider any two solutions of (2.1), denoting the coefficients A± and B± by A±
± and

B±
±, which are expressed as

F(x,λ) =

⎧⎨
⎩

A+
–C(x,λ2) + B+

–S(x,λ2), 0 ≤ x < x0,

A+
+e(x,λ) + B+

+e(x, –λ), x0 < x < ∞,
(2.17)

and

G(x,λ) =

⎧⎨
⎩

A–
–C(x,λ2) + B–

–S(x,λ2), 0 ≤ x < x0,

A–
+e(x,λ) + B–

+e(x, –λ), x0 < x < ∞,
(2.18)

where A±
± and B±

± are complex coefficients. Let F and G be associated with the Jost solution
of the boundary value problem (2.1)–(2.3) and the boundary condition (2.2), respectively.
Then we obtain

B+
+ = 0, A+

+ = 1, A–
– = 0, B–

– = 1. (2.19)

Furthermore, using the impulsive condition (2.3) and (2.11), we get

A+
– =

M22(λ)
det M

, B+
– = –

M21(λ)
det M

, A–
+ = M12(λ), B–

+ = M22(λ) (2.20)

uniquely for the solution F and G. Clearly, inserting these coefficients into (2.17) and
(2.18), we obtain the solutions F and G satisfying the following asymptotic equations,
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respectively,

F(x,λ) =

⎧⎨
⎩

M22(λ)
det M C(x,λ2) – M21(λ)

det M S(x,λ2), x → 0+,

e(x,λ), x → ∞,
(2.21)

and

G(x,λ) =

⎧⎨
⎩

S(x,λ2), x → 0+,

M12(λ)e(x,λ) + M22(λ)e(x, –λ), x → ∞.
(2.22)

Now by (2.21) and (2.22) we can give the following lemma.

Lemma 2.1 The following equations hold for all λ ∈R\{0}:

W [F , G](x,λ) = –2iλM22(λ), x → ∞,

W [F , G](x,λ) =
M22(λ)
det M

, x → 0+.

Note that, the Wronskian of the solutions of (2.1) in the intervals [0, x0) and (x0,∞) are
independent of x, but they are not equal because of the characteristic feature of impulsive
differential equations.

Moreover, from (2.15) we understand that M22 has an analytic continuation from the
real axis to the set C+ := {λ : λ ∈C, Imλ > 0} and continuous up to the real axis because of
analytic properties of solutions e(x,λ), e′(x,λ), S(x,λ2), S′(x,λ2). By Lemma 2.1 and [22],
we have the following.

Corollary 2.2 A necessary and sufficient condition to investigate the eigenvalues and spec-
tral singularities of the impulsive Sturm–Liouville operator L is to investigate the zeros of
the function M22.

By (2.15) we have the following representation for M22:

M22(λ) =
i

2λ

{
eiλx0

[
–

iα1

β
sinλβx0 – iα2λ cosλβx0 + α2K(x0, x0) cosλβx0

+
sinλβx0

λβ

(
α1K(x0, x0) – iα2λP(x0, x0) + α2K(x0, x0)P(x0, x0)

)

+ α3
sinλβx0

λβ
+ α4 cosλβx0 + α4P(x0, x0)

sinλβx0

λβ

]

+
(
α1K(x0, x0)eiλx0 – iα1λeiλx0 + α3eiλx0

)∫ x0

0
P(x0, t)

sinλβt
λβ

dt

+
(
α2K(x0, x0)eiλx0 – iα2λeiλx0 + α4eiλx0

)∫ x0

0
Px(x0, t)

sinλβt
λβ

dt

+
(

α3
sinλβx0

λβ
+ α4 cosλβx0 + α4P(x0, x0)

sinλβx0

λβ

)∫ ∞

x0

K(x0, t)eiλt dt

–
(

α1
sinλβx0

λβ
+ α2 cosλβx0 + α2P(x0, x0)

sinλβx0

λβ

)∫ ∞

x0

Kx(x0, t)eiλt dt
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+
∫ ∞

x0

Kx(x0, t)eiλt dt
[

–α1

∫ x0

0
P(x0, t)

sinλβt
λβ

dt – α2

∫ x0

0
Px(x0, t)

sinλβt
λβ

dt
]

+
∫ ∞

x0

K(x0, t)eiλt dt
[

+α3

∫ x0

0
P(x0, t)

sinλβt
λβ

dt

+ α4

∫ x0

0
Px(x0, t)

sinλβt
λβ

dt
]}

. (2.23)

3 Main results
We introduce the sets of spectral singularities and eigenvalues of impulsive operator L as

σss(L) =
{
μ = λ2 : Imλ = 0,λ �= 0 and M22(λ) = 0

}

and

σd(L) =
{
μ = λ2 : Imλ > 0 and M22(λ) = 0

}
,

respectively. To study numerical properties of the sets σss(L) and σd(L), we investigate the
numerical properties of the zeros of M22 in λ ∈ C+.

Now, we define the sets

S1 =
{
λ : λ ∈ C+, M22(λ) = 0

}
,

S2 =
{
λ : λ ∈R \ {0}, M22(λ) = 0

}
.

Thus we can rewrite the sets

σd(L) =
{
μ : μ = λ2, λ ∈ S1

}
, σss(L) =

{
μ : μ = λ2, λ ∈ S2

}
.

Theorem 3.1 Under condition (2.4), the function M22 satisfies the following asymptotic
equations:

M22 = eiλx0(1–β) α2

4

[
1 + O

(
1
λ

)]
, β ≥ 1, (3.1)

M22 = eiλx0(1+β) α2

4

[
1 + O

(
1
λ

)]
, β ≤ –1, (3.2)

where α2 �= 0, λ ∈ C+, and |λ| → ∞.

Proof The derivative of the Jost solution e(x,λ) satisfies the following asymptotic:

e′(x,λ) = eiλx[iλ + O(1)
]
, x ∈ [0,∞), λ ∈ C+, |λ| → ∞. (3.3)

From (2.15) and (3.3) we can express the function M22 for λ ∈ C+ when β ≥ 1, α2 �= 0, and
|λ| → ∞:

M22(λ) = eiλx0(1–β)
{

–
iα1

2

[
e′(x0,λ)e–iλx0

λ

][
S
(
x0,λ2)eiλβx0

]

–
iα2

2

[
e′(x0,λ)e–iλx0

λ

][
S′(x0,λ2)eiλβx0

]
+

iα3

2λ

[
e(x0,λ)e–iλx0

][
S
(
x0,λ2)eiλβx0

]
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+
iα4

2λ

[
e(x0,λ)e–iλx0

][
S′(x0,λ2)eiλβx0

]}

= eiλxo(1–β)
{

α1

4iβ

[
e2iλβx0

λ
–

1
λ

+
1
λ

∫ x0

0
P(x0, t)

[
eiλβ(x0+t) – eiλβ(x0–t)]dt

]

+
α2

4

[
e2iλβx0 + 1 + P(x0, x0)

e2iλβx0

iλβ
–

P(x0, x0)
iλβ

+
1

iλβ

∫ x0

0
Px(x0, t)

[
eiλβ(x0+t) – eiλβ(x0–t)]dt

]

+
α3

4β

[
e2iλβx0

λ2 –
1
λ2 +

1
λ2

∫ x0

0
P(x0, t)

[
eiλβ(x0+t) – eiλβ(x0–t)]dt

]

+
iα4

4

[
e2iλβx0

λ
+

1
λ

+ P(x0, x0)
e2iλβx0

iβλ2 –
P(x0, x0)

iβλ2

+
1

iβλ2

∫ x0

0
Px(x0, t)

[
eiλβ(x0+t) – eiλβ(x0–t)]dt

]}

= eiλx0(1–β)
{

O
(

1
λ

)
+

α2

4
+ O

(
1
λ

)
+ O

(
1
λ2

)
+ O

(
1
λ

)}

= eiλx0(1–β) α2

4

[
1 + O

(
1
λ

)]
.

This completes the proof of (3.1). Similarly, (3.2) can be proved easily. �

In this section, we assume that β ≥ 1. We give a lemma, which is necessary to discuss
the properties of eigenvalues and spectral singularities of L.

Lemma 3.2 Assume (2.4).
(i) The set S1 is bounded, and no more than a countable number of elements and its

limit points can lie on a bounded subinterval of the real axis.
(ii) The set S2 is compact, and its linear Lebesgue measure is zero.

Proof Asymptotic equation (3.1) shows that M22 cannot equal zero for sufficiently large
λ ∈ C+. Thus the boundedness of the sets S1 and S2 follows from (3.1). Moreover, since M22

is analytic in C+, the set S1 has at most countable number of elements, and its limit points
can lie only on a bounded subinterval of the real axis. Using the uniqueness theorem of
analytic functions [23], we obtain that S2 is a closed set and its linear Lebesgue measure is
zero. �

Now, we can give the following theorem.

Theorem 3.3 Under condition (2.4),
(i) The set of eigenvalues of L is bounded and has at most a countable number of

elements, and its limit points can lie only on a bounded subinterval of the real axis.
(ii) The set of spectral singularities of L is compact, and its linear Lebesgue measure is

zero.

Now, we proceed by assuming an extra condition on q to assure the finiteness of the sets
σd(L) and σss(L).
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Theorem 3.4 If

∫ ∞

0
exp(εx)

∣∣q(x)
∣∣dx < ∞ (3.4)

for every ε > 0, then there are finitely many eigenvalues and spectral singularities of the
operator L, and each of them has finite multiplicity.

Proof Using (2.9), (2.10), and (3.4), we find that

∣∣K(x0, t)
∣∣ ≤ c exp

(
–t

ε

2

)
,

∣∣Kx(x0, t)
∣∣ ≤ c exp

(
–t

ε

2

)
,

that is, the function M22 has an analytic continuation from the real axis to the lower half-
plane Imλ > –ε/2. Hence the sets σd(L) and σss(L) have no limit points on the real line,
and by Theorem 3.3 these sets are bounded and have a finite number of elements. Finally,
using the uniqueness theorem of analytic functions [23], we see that all zeros of M22 in C+

have finite multiplicities. �

Now, let us denote the set of all limit points of S1 by S3 and the set of all zeros of M22

with infinite multiplicity in C+ by S4. By the uniqueness theorem of analytic functions, we
find that

S1 ∩ S4 = ∅, S3 ⊂ S2, S4 ⊂ S2, μ(S3) = 0, μ(S4) = 0. (3.5)

From the continuity of all derivatives of M22 up to the real axis, we obtain that

S3 ⊂ S4. (3.6)

Next, we indicate the same result of Theorem 3.4 by using a weaker condition than (3.4).

Theorem 3.5 If

∫ ∞

0
exp

(
εxδ

)∣∣q(x)
∣∣dx < ∞ (3.7)

for some ε > 0 and 1
2 ≤ δ < 1, then

S4 = ∅. (3.8)

Proof Since M22 cannot be continued analytically from the real line to the lower half-plane
under condition (3.7), it is not possible to prove the finiteness of eigenvalues and spectral
singularities in a way similar to Theorem 3.4.

On the other hand, from (2.15) we have

λM22(λ) =
i
2
[
α4M1(λ)M3(λ) + α3M1(λ)M4(λ)

– α2M2(λ)M3(λ) – α1M2(λ)M4(λ)
]
, (3.9)
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where

M1(λ) = 1 +
∫ ∞

x0

K(x0, t)eiλ(t–x0) dt,

M2(λ) = iλ – K(x0, x0) +
∫ ∞

x0

Kx(x0, t)eiλ(t–x0) dt,

M3(λ) = (cosλβx0)eiλx0 + P(x0, x0)eiλx0
sinλβx0

λβ
+

∫ x0

0
Px(x0, t)eiλx0

sinλβt
λβ

dt,

M4(λ) = eiλx0
sinλβx0

λβ
+

∫ x0

0
P(x0, t)eiλx0

sinλβt
λβ

dt.

Moreover, it follows from (2.9), (2.10), and (2.23) that M22 is analytic in C+ and all of its
derivatives are continuous up to the real axis. Then, using (2.9), (2.10), and (3.7), we obtain

∣∣∣∣ dn

dλn Mi(λ)
∣∣∣∣ ≤ c1

∫ ∞

x0

[
(1 + β)t

]n
exp

(
–ε

(
t
2

)δ)
dt, i = 1, 2, (3.10)

where λ ∈ C+, |λ| < H , and m = 0, 1, 2, . . . . From the continuity of the functions P and Px

we get

∣∣∣∣ dn

dλn Mi(λ)
∣∣∣∣ ≤ c2

[
(1 + β)x0

]n, i = 3, 4, (3.11)

where λ ∈C+, |λ| < H , and m = 0, 1, 2, . . . . Thus, from (3.9)–(3.11) we have

∣∣∣∣ dn

dλn (λM22)
∣∣∣∣ ≤

n∑
s=0

(
n
s

)∣∣∣∣ dn–s

dλn–s M1(λ)
∣∣∣∣
[
|α4|

∣∣∣∣ ds

dλs M3(λ)
∣∣∣∣ + |α3|

∣∣∣∣ ds

dλs M4(λ)
∣∣∣∣
]

+
n∑

s=0

(
n
s

)∣∣∣∣ dn–s

dλn–s M2(λ)
∣∣∣∣
[
|α2|

∣∣∣∣ ds

dλs M3(λ)
∣∣∣∣ + |α1|

∣∣∣∣ ds

dλs M4(λ)
∣∣∣∣
]

≤ c3α

n∑
s=0

(
n
s

)∫ ∞

x0

[
(1 + β)x0

]s[(1 + β)t
]n–s

exp

(
–ε

(
t
2

)δ)
dt

≤ c3α2n(1 + β)n
∫ ∞

0
tn exp

(
–ε

(
t
2

)δ)
dt (3.12)

for α := (|α1| + |α2| + |α3| + |α4|) and n = 1, 2, . . . . Now we can write

∣∣∣∣ dn

dλn (λM22)
∣∣∣∣ ≤ An

for n = 1, 2, . . . and λ ∈ C+, |λ| < H , where

An = c3α2n(1 + β)n
∫ ∞

0
tn exp

(
–ε

(
t
2

)δ)
dt.

Since M22 is cannot be zero, it follows from Pavlov’s theorem [24] that

∫ h

0
ln T(s) dμ(S4, s) > –∞, (3.13)
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where T(s) = inf{Ansn

n! : n = 0, 1, 2, . . .}, and μ(S4, s) is the linear Lebesgue measure of the
s-neighborhood of S4. Also, for An, using the gamma function, we can write

An ≤ Kαbnnn(1–δ)/δn!, (3.14)

where K and b are constants depending on c3, ε, β , and δ. Therefore it is obvious that

T(s) ≤ Kα exp

{
–

1 – δ

δ
e–1b–δ/(1–δ)s–δ/(1–δ)

}
. (3.15)

From (3.13) and (3.15) we get

∫ h

0
s–δ/(1–δ) dμ(S4, s) < ∞. (3.16)

Since δ/(1 – δ) ≥ 1, it follows from (3.16) that μ(S4, s) = 0, that is, S4 = ∅. �

Theorem 3.6 Assume (3.7). Then the operator L has a finite number of eigenvalues and
spectral singularities, and each of them is of finite multiplicity.

Proof Using Lemma 3.2, (3.6), and (3.8), we obtain that S3 = ∅ and the sets S1 and S2 are
countable and bounded. Then it follows from (3.8) that the spectral singularities and eigen-
values of L have finite multiplicities. �

We remark that, by the help of asymptotic equation (3.2), similar results can be given
for β ≤ –1.

4 Scattering function of the impulsive operator
In this section, we determine the scattering function of the impulsive Sturm–Liouville
operator L.

Theorem 4.1 Let α1,α2,α3,α4 ∈R, β ∈R\(–1, 1), and λ ∈R\{0}. Then M22(λ) �= 0.

Proof Let us consider the solutions F and G of (2.1)–(2.3) defined by expressions (2.17)
and (2.18) for α1,α2,α3,α4 ∈R and β ∈R\(–1, 1), respectively. Then it follows from (2.15),
(2.16), and (2.20) that

B–
+ = M22(λ) = M12(λ) = A–

+, λ ∈R\{0}. (4.1)

Assume that, for any real nonzero λ0 such that M22(λ0) = 0. This gives that
A–

+(λ0) = B–
+(λ0) = 0 by (4.1). In this case, G(x,λ0) turns into a trivial solution of (2.1)–(2.3),

which gives a contradiction with our assumption, that is, M22(λ) �= 0 for all λ ∈ R\{0},
β ∈R\(–1, 1), and α1,α2,α3,α4 ∈R. �

Corollary 4.2 Let α1,α2,α3,α4 ∈R and β ∈R\(–1, 1). The operator L has no spectral sin-
gularities.
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Definition 4.3 Let α1,α2,α3,α4 ∈ R and β ∈ R\(–1, 1). Then the scattering function of
the operator L is defined by

S(λ) =
F(0, –λ)
F(0,λ)

.

Since q is a real-valued potential function, it is evident from (2.17) and (2.20) that

F(x,λ) = F(x, –λ)

for all λ ∈R\{0}. Then the definition of the function S turns into

S(λ) =
F(0,λ)
F(0,λ)

=
M22(λ)
M22(λ)

=
M12(λ)
M22(λ)

, λ ∈R\{0}. (4.2)

From (2.15), (2.16), and (4.2), it is clear that, for all λ ∈R\{0},

S(λ) =
e′(x0, –λ)(α1S(x0,λ2) + α2S′(x0,λ2)) – e(x0, –λ)(α3S(x0,λ2) + α4S′(x0,λ2))
–e′(x0,λ)(α1S(x0,λ2) + α2S′(x0,λ2)) + e(x0,λ)(α3S(x0,λ2) + α4S′(x0,λ2))

.

Theorem 4.4 Let α1,α2,α3,α4 ∈ R and β ∈ R\(–1, 1). For all λ ∈ R\{0}, the scattering
function yields

S(–λ) = S–1(λ) = S(λ).

Proof By (4.2) we obtain

S(–λ) =
M12(–λ)
M22(–λ)

. (4.3)

Since M22(–λ) = M22(λ) and M12(–λ) = M12(λ) for all λ ∈ R\{0}, β ∈ R\(–1, 1), and
α1,α2,α3,α4 ∈R, we get

S(–λ) = S–1(λ) = S(λ).

The proof is completed. �

5 An example
Let us consider the Sturm–Liouville operator L0 in L2[0,∞) created by the following im-
pulsive problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

–y′′ = λ2ρ(x)y, x ∈ [0, x0) ∪ (x0,∞),

y(0) = 0,[ y(x+
0 )

y′(x+
0 )

]
= B

[ y(x–
0 )

y′(x–
0 )

]
, B =

[ α1 0
0 α4

]
,

(5.1)

where ρ is the density function given by

ρ(x) =

⎧⎨
⎩

β2, 0 ≤ x < x0,

1, x > x0,
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such that β ∈ C\{0}, α1,α4 ∈ C, α1.α4 �= 0, and x0 ∈ R
+. Using q = 0 in (2.23), we directly

obtain

M22(λ) =
i

2λ
eiλx0

[
–

iα1

β
sinλβx0 + α4 cosλβx0

]
. (5.2)

To investigate the eigenvalues and spectral singularities of L0, we examine the zeros of
M22. For this purpose, we see that

e2iλβx0 =
α1 + βα4

α1 – βα4

by (5.2). Using the last equation, we find

λk = –
i

2βx0
ln

∣∣∣∣1 + A
1 – A

∣∣∣∣ +
1

2βx0

[
Arg

(
1 + A
1 – A

)
+ 2kπ

]
, k ∈ Z, (5.3)

where A = βα4
α1

.
Let β = a + ib. Then we can write real and imaginary parts of λk by

Reλk =
1

2x0|β|2
{

a
[

Arg

(
1 + A
1 – A

)
+ 2kπ

]
– b ln

∣∣∣∣1 + A
1 – A

∣∣∣∣
}

(5.4)

and

Imλk = –
1

2x0|β|2
{

a ln

∣∣∣∣1 + A
1 – A

∣∣∣∣ + b
[

Arg

(
1 + A
1 – A

)
+ 2kπ

]}
, (5.5)

respectively. It is easy to see that if

[
a ln

∣∣∣∣1 + A
1 – A

∣∣∣∣ + b
(

Arg

(
1 + A
1 – A

)
+ 2kπ

)]
= 0,

then the problem has spectral singularities, and if

[
a ln

∣∣∣∣1 + A
1 – A

∣∣∣∣ + b
(

Arg

(
1 + A
1 – A

)
+ 2kπ

)]
< 0, (5.6)

then the problem has eigenvalues. Now, we investigate some particular cases.
Case1: Let A = eiθ –1

eiθ +1 for θ ∈R. In this case, since Arg( 1+A
1–A ) = θ , we get

λk =
θ + 2kπ

2βx0
, k ∈ Z.

1a: Let β ∈ R. Thus λk ∈ R, and then the numbers μk = λ2
k , k ∈ Z, are the spectral sin-

gularities of the impulsive boundary value problem (5.1).
1b: Let β ∈C. We get

Imλk = –
1

2x0|β|2
[
b(θ + 2kπ )

]
, k ∈ Z,
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by (5.5). If b(θ + 2kπ ) < 0, then the operator L0 has eigenvalues. Otherwise, the problem
has no eigenvalues and spectral singularities.

Case2: Let Im A �= 0. We investigate some subcases.
2a: Let A be purely imaginary, that is, Re A = 0. In this case, since | 1+A

1–A | = 1, from (5.3)
we get

λk =
arg(1 + A)

βx0
, k ∈ Z.

which means that the numbers μk = λ2
k , k ∈ Z, are the spectral singularities of (5.1) for

β ∈R.
Let β ∈C. We find

Imλk = –
b

2x0|β|2
[
arg(1 + A)

]
, k ∈ Z.

If b[arg(1 + A)] < 0, then the operator L0 has eigenvalues. Otherwise, the operator has no
eigenvalues and spectral singularities.

2b: Let Re A < 0. For β ∈R, that is, b = 0, we have

Imλk = –
1

2x0a

(
ln

∣∣∣∣1 + A
1 – A

∣∣∣∣
)

, k ∈ Z.

If a > 0, then the numbers μk = λ2
k , k ∈ Z, are the eigenvalues of impulsive problem (5.1);

otherwise, the operator L0 has no eigenvalues.
Let β ∈ C. If a > 0 and b(Arg( 1+A

1–A ) + 2kπ ) < 0, then there exist eigenvalues, and if a < 0
and b(Arg( 1+A

1–A ) + 2kπ ) > 0, then the problem has no eigenvalues by (5.6).
2c: Let Re A > 0. In this case, since | 1+A

1–A | > 1, for β ∈R, we obtain

Imλk = –
1

2x0a

(
ln

∣∣∣∣1 + A
1 – A

∣∣∣∣
)

, k ∈ Z.

If a < 0, then the numbers μk = λ2
k , k ∈ Z, are the eigenvalues of L0; otherwise, the problem

has no eigenvalues.
For β ∈ C, if a < 0 and b(Arg( 1+A

1–A ) + 2kπ ) < 0, then there exist eigenvalues, and if a > 0
and b(Arg( 1+A

1–A ) + 2kπ ) > 0, then the problem has no eigenvalues.
Case3: Let A be a real number.
3a: Let 0 < A < 1. In this case, we get

λk = –
i

2βx0
ln

(
1 + A
1 – A

)
+

kπ

βx0
, k ∈ Z.

Let β ∈R. If a < 0, then the numbers μk = λ2
k , k ∈ Z, are the eigenvalues of (5.1). Otherwise,

the problem has no eigenvalues. For β ∈C, we obtain

Imλk = –
1

2x0|β|2
[

a ln

(
1 + A
1 – A

)
+ b(2kπ )

]
, k ∈ Z.

If a < 0 and b(2kπ ) < 0, then we have eigenvalues of L0, and if a > 0 and b(2kπ ) > 0, then
the problem has no eigenvalues.
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3b: Let 1 < A < ∞. We find

λk = –
i

2βx0
ln

∣∣∣∣1 + A
1 – A

∣∣∣∣ +
1

2βx0

[
π (2k + 1)

]
, k ∈ Z.

For β ∈ R, if a < 0, then the numbers μk = λ2
k , k ∈ Z, are the eigenvalues of impulsive

problem (5.1). Otherwise, the problem has no eigenvalues. For β ∈C, if a < 0 and
b(2k + 1)π < 0, then there exist eigenvalues, and if a > 0 and b(2k + 1)π > 0, then there are
no eigenvalues.

3c: Let –1 < A < 0. In this case, for β ∈ R, if a > 0, then the numbers μk = λ2
k , k ∈ Z, are

the eigenvalues of L0. Otherwise, the problem has no eigenvalues. Let β ∈ C. If a > 0 and
b(2kπ ) < 0, then the problem has eigenvalues. If a < 0 and b(2kπ ) > 0, then the problem
has no eigenvalues.

3d: Let –∞ < A < –1. In this case, for β ∈R, if a > 0, then the numbers μk = λ2
k , k ∈ Z, are

the eigenvalues of (5.1); otherwise, the problem has no eigenvalues. For β ∈C, if a > 0 and
b(2k + 1)π < 0, then there exist eigenvalues. If a < 0 and b(2k + 1)π > 0, then the problem
has no eigenvalues.

Case 4: Let β be purely imaginary, that is, a = 0. In this case, we find

Imλk = –
1

2bx0

[
Arg

(
1 + A
1 – A

)
+ 2kπ

]
, k ∈ Z.

If Arg( 1+A
1–A ) + 2kπ = 0, then there exist spectral singularities of L0.

If b[Arg( 1+A
1–A ) + 2kπ ] < 0, then the numbers μk = λ2

k , k ∈ Z, are the eigenvalues of L0;
otherwise, the problem has no eigenvalues.

6 Conclusions
In this study, we discuss some spectral and scattering problems of an impulsive Sturm–
Liouville boundary value problem on the semi axis. Although there are various studies
about the spectral analysis of these problems, much of them are on the whole axis. More-
over, the method we use to investigate the eigenvalues and spectral singularities is quite
different from other papers. By using a transfer matrix we introduce the sets of eigenvalues
and spectral singularities, and under sufficient conditions, we guarantee the finiteness of
these sets.
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