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Abstract
In this paper, we extend some known results about complete convergence and
establish the complete convergence and complete moment convergence for
randomly weighted sums of martingale difference sequence. Our results can
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1 Introduction
The complete convergence plays a key role in the development of probability theory, espe-
cially in establishing the rate of convergence. Hsu and Robbins [1] introduced the concept
of complete convergence as follows. A sequence {Xn, n ≥ 1} is said to converge completely
to C if

∞∑

n=1

P
(|Xn – C| ≥ ε

)
< ∞ for all ε > 0, (1.1)

where C is a constant. By the Borel–Cantelli lemma, it follows that Xn → C almost surely
as n → ∞. If {Xn, n ≥ 1} is independent and identically distributed (i.i.d.) random vari-
ables, the converse is true.

Suppose that {Xn, n ≥ 1} is a random variable sequence defined on the fixed probability
space (�,F , P). Denote Sn =

∑n
i=1 Xi, S0 = 0, log x = log(max{e, x}), x+ = xI(x ≥ 0), and F0 =

{�,∅}. Let {Fn, n ≥ 1} be an increasing sequence of σ fields with Fn ⊂F for each n ≥ 1. If
Xn is Fn measurable for each n ≥ 1, then σ fields {Fn, n ≥ 1} are thought to be adapted to
the random variable sequence {Xn, n ≥ 1} and {Xn,Fn, n ≥ 1} is thought to be an adapted
stochastic sequence. The following theorem is a generalization of some known results.

Theorem 1.1 (Hsu–Robbins–Erdös strong law [1, 2]) Let {Xn, n ≥ 1} be a sequence of
independent and identically distributed random variables. Assume that EXn = 0 and set

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-018-1770-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1770-3&domain=pdf
http://orcid.org/0000-0002-6917-0003
mailto:huanhuanma16@126.com


Ma and Sun Journal of Inequalities and Applications  (2018) 2018:173 Page 2 of 16

Sn =
∑n

i=1 Xi, n ≥ 1. Then EX2
n < ∞ is equivalent to the condition that

∞∑

n=1

P
(|Sn| ≥ εn

)
< ∞ for all ε > 0. (1.2)

In probability theory, Hsu–Robbins–Erdös strong law as a basic theorem has been ex-
tended in several directions by some authors. The following theorem is given by Baum
and Katz [3] to establish a rate of convergence.

Theorem 1.2 (Baum and Katz strong law) Let α > 1/2, αp > 1, and let {Xn, n ≥ 1} be a
sequence of independent and identically distributed random variables. Assume that EXn =
0 if α ≤ 1, and set Sn =

∑n
i=1 Xi, n ≥ 1. Then E|Xn|p < ∞ is equivalent to the condition that

∞∑

n=1

nαp–2P
(|Sn| ≥ εnα

)
< ∞ for all ε > 0 (1.3)

and also equivalent to the condition that

∞∑

n=1

nαp–2P
(

max
1≤k≤n

|Sk| ≥ εnα
)

< ∞ for all ε > 0. (1.4)

Motivated by the above results for i.i.d. random variables, many authors have studied
them for dependent cases. The case for weighted sums of extended negatively depen-
dent (END) random variable sequence was investigated by Shen et al. [4]. Miao et al. [5]
improved some known results and studied the Baum–Katz type convergence rate in the
Marcinkiewicz–Zygmund strong law for martingales. Chen et al. [6] also gave some ex-
tended results for the sequence of martingale difference.

The aims of the present paper are to extend the results on complete convergence for the
sequence of martingale difference. The following definitions will be used frequently in this
paper.

Definition 1.1 If {Xn,Fn, n ≥ 1} is an adapted stochastic sequence with

E(Xn|Fn–1) = 0 a.s.

and E|Xn| < ∞ for each n ≥ 1, then the sequence {Xn,Fn, n ≥ 1} is called a martingale
difference sequence.

Definition 1.2 A real-valued function l(x), positive and measurable on (0,∞), is said to
be slowly varying if

lim
x→∞

l(λx)
l(x)

= 1

for each λ > 0.
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Definition 1.3 A sequence {Xn, n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X if there exists a positive constant C, such that

P
(|Xn| > x

) ≤ CP
(|X| > x

)

for all x ≥ 0 and n ≥ 1.

Now let us recall some known results for complete convergence of martingales.

Theorem 1.3 ([7, 8]) Let {Xn,Fn, n ≥ 1} be an Lp-bounded martingale difference sequence.
If 0 < 1/α < 2 < p or 1 < p < 2, 1 ≤ 1/α ≤ p, then

∞∑

n=1

nαp–2P
(|Sn| ≥ εnα

)
< ∞ for all ε > 0. (1.5)

If p = α = 1, the martingale difference sequence satisfies

sup
n≥1

E|Xn| log |Xn| < ∞,

then (1.5) holds.

Wang and Hu [9] further studied the Baum–Katz type theorem for the maximal partial
sum of martingale difference sequence.

Theorem 1.4 [9] Let {Xn,Fn, n ≥ 1} be a sequence of martingale difference, which is
stochastically dominated by a random variable X. Let l(x) > 0 be a slowly varying func-
tion as x → ∞. Let α > 1/2, p ≥ 1 and αp ≥ 1. When p ≥ 2, we further assume that

E
[
sup
i≥1

E
(
X2

i |Fi–1
)]q/2

< ∞

for some q > 2(αp–1)
2α–1 . If

E|X|pl
(|X|1/α)

< ∞, (1.6)

then for any ε > 0,

∞∑

n=1

nαp–2l(n)P
(

max
1≤j≤n

|Sj| ≥ εnα
)

< ∞. (1.7)

Yang et al. [10] generalized the results of Stoica [7, 8] and Wang et al. [11] for the non-
weighted sums of martingale difference sequence to the case of randomly weighted sums.

Theorem 1.5 [10] Let {Xn,Fn, n ≥ 1} be a martingale difference sequence stochastically
dominated by a nonnegative random variable X with EXp < ∞. Assume that {An, n ≥ 1}
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is a random sequence, and it is independent of {Xn, n ≥ 1}. Denote G0 = {∅,�} and Gn =
σ (X1, . . . , Xn), n ≥ 1. Let α > 1/2, 1 < p < 2, and 1 ≤ α < 2. If

n∑

i=1

EA2
i = O(n), (1.8)

then

∞∑

n=1

nαp–2–αE

(
max

1≤k≤n

∣∣∣∣∣

n∑

i=1

AiXi

∣∣∣∣∣ – εnα

)+

< ∞ for any ε > 0. (1.9)

If α > 1/2, p ≥ 2, and for some q > 2(αp–1)
2α–1 , we assume that

E
[
sup
i≥1

E
(
X2

i |Gi–1
)]q/2

< ∞.

Let

n∑

i=1

E|Ai|q = O(n), (1.10)

then (1.9) holds.
If α > 0 and p = 1, the martingale difference sequence is stochastically dominated by a

nonnegative random variable X with E[X log(1 + X)] < ∞, and (1.8) holds, then

∞∑

n=1

n–2E

(
max

1≤k≤n

∣∣∣∣∣

n∑

i=1

AiXi

∣∣∣∣∣ – εnα

)+

< ∞ for any ε > 0. (1.11)

We shall study the complete convergence and complete moment convergence for ran-
domly weighted sums of martingale difference sequence. The paper is organized as fol-
lows. The next section is devoted to the descriptions of our main results, and their proofs
will be given in Sect. 3. Throughout the paper, we use the constant C to denote a universal
real number that is not necessarily the same in each appearance.

2 Main results
Theorem 2.1 Let {Xn,Fn, n ≥ 1} be a sequence of martingale difference, which is stochas-
tically dominated by a random variable X. Let l(x) > 0 be a slowly varying function as
x → ∞. Suppose that {bn, n ≥ 1} and {cn, n ≥ 1} are sequences of positive constants such
that, for p > 1, α > 0, αp ≥ 1, and some q ≥ max{2, p},

m∑

n=1

nbnl(n)
cn

= O
(
cp–1

m l
(
c1/α

m
))

,
∞∑

n=m

nbnl(n)
cq

n
= O

(
cp–q

m l
(
c1/α

m
))

, (2.1)

and

∞∑

n=1

n
q
2 bnl(n)

cq
n

< ∞, E
[
sup
i≥1

E
(
X2

i |Gi–1
)] q

2 < ∞, (2.2)
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where cn → ∞ as n → ∞. Assume that {An, n ≥ 1} is a random sequence independent of
{Xn, n ≥ 1} such that

n∑

i=1

E|Ai|q = O(n). (2.3)

If

E|X|pl
(|X|1/α)

< ∞, (2.4)

then for any ε > 0,

∞∑

n=1

bnl(n)P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ ≥ εcn

)
< ∞. (2.5)

Corollary 2.1 Under the conditions of Theorem 2.1, we take bn = nαp–2, cn = nα for α > 1/2,
p > 1, and αp ≥ 1. If

⎧
⎨

⎩
q > max{p, 2(αp–1)

2α–1 }, p ≥ 2;

q = 2, 1 < p < 2;

then for any ε > 0,

∞∑

n=1

nαp–2l(n)P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ ≥ εnα

)
< ∞. (2.6)

Remark 2.1 Obviously, (2.6) can be checked by Theorem 2.1 and Lemma 3.4. Under the
conditions of Corollary 2.1, if we take Ai ≡ 1, i ≥ 1, then we have (1.7), i.e., the conclusion
of Wang and Hu [9] holds for p > 1. On the other hand, if we take l(x) ≡ 1, then we can get
Remark 2.1 in Yang et al. [10]. So our results can imply these known results.

Example 2.1 Under the conditions of Theorem 2.1, we take bn = nr–2, l(n) = log n, and
cn = nr/p for p > 1 and r > p. If

⎧
⎨

⎩
q > max{p, 2p(1–r)

p–2r }, p ≥ 2;

q = 2, 1 < p < 2;

then for any ε > 0,

∞∑

n=1

nr–2 log nP

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ ≥ εnr/p

)
< ∞.

Example 2.2 Under the conditions of Theorem 2.1, we take bn = log n
n , l(n) = log n, and

cn = (n log n)
1
p for 1 < p ≤ 2. If

⎧
⎨

⎩
q > 6, p = 2;

q = 2, 1 < p < 2;
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then for any ε > 0,

∞∑

n=1

(log n)2

n
P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ ≥ ε(n log n)
1
p

)
< ∞.

Theorem 2.2 Let {Xn,Fn, n ≥ 1} be a sequence of martingale difference, which is stochas-
tically dominated by a random variable X. Let l(x) > 0 be a slowly varying function as
x → ∞. Suppose that {bn, n ≥ 1} and {cn, n ≥ 1} are sequences of positive constants such
that, for p > 1, α > 0, αp ≥ 1, and some q ≥ max{2, p},

m∑

n=1

nbnl(n) = O
(
cp–1

m l
(
c1/α

m
))

,
∞∑

n=m

nbnl(n)
cq–1

n
= O

(
cp–q

m l
(
c1/α

m
))

, (2.7)

and

∞∑

n=1

n
q
2 bnl(n)
cq–1

n
< ∞, E

[
sup
i≥1

E
(
X2

i |Gi–1
)] q

2 < ∞, (2.8)

where cn → ∞ as n → ∞. Assume that {An, n ≥ 1} is a random sequence independent of
{Xn, n ≥ 1} such that

n∑

i=1

E|Ai|q = O(n). (2.9)

If

E|X|pl
(|X|1/α)

< ∞, (2.10)

then for any ε > 0,

∞∑

n=1

bnl(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ – εcn

)+

< ∞. (2.11)

Theorem 2.3 Let {Xn,Fn, n ≥ 1} be a sequence of martingale difference, which is stochas-
tically dominated by a random variable X. Let l(x) > 0 be a slowly varying function as
x → ∞. Suppose that {bn, n ≥ 1} and {cn, n ≥ 1} are sequences of positive constants such
that, for p = 1, α > 0, αp ≥ 1, and some q ≥ 2,

m∑

n=1

nbnl(n) = O
(
(log cm)l

(
c1/α

m
))

,
∞∑

n=m

nbnl(n)
cn

= O
(
c1–q

m l
(
c1/α

m
))

, (2.12)

where cn → ∞ as n → ∞. Assume that {An, n ≥ 1} is a random sequence independent of
{Xn, n ≥ 1} and satisfying (2.9). If

E
[|X|(log |X|)l

(|X|1/α)]
< ∞, (2.13)

then we have formula (2.11).
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Corollary 2.2 Under the conditions of Theorem 2.2 for p > 1, we take bn = nαp–2–α , cn = nα

for α > 1/2 and αp ≥ 1. If

⎧
⎨

⎩
q > max{p, 2(αp–1)

2α–1 }, p ≥ 2;

q = 2, 1 < p < 2;

then for any ε > 0,

∞∑

n=1

nαp–2–αl(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ – εnα

)+

< ∞. (2.14)

Under the conditions of Theorem 2.3 for p = 1, if we take bn = n–2, cn = nα for α > 0. Then,
for any ε > 0, we have

∞∑

n=1

n–2l(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ – εnα

)+

< ∞. (2.15)

Remark 2.2 Obviously, (2.14) and (2.15) can be checked by Theorem 2.2, Theorem 2.3,
and Lemma 3.4. Under the conditions of Corollary 2.2, if we take l(x) ≡ 1, then we have
(1.9) and (1.11), i.e., the results of Yang et al. [10] can be generalized by our conclusions.
On the other hand, if we take Ai ≡ 1, i ≥ 1, then we can get Theorem 3.3 and Theorem 3.4
in Wang and Hu [9]. Hence, our conclusions can extend these known results.

Example 2.3 Under the conditions of Theorem 2.2, we take bn = nr–2–r/p, l(n) = log n, and
cn = nr/p for p > 1 and r > p. If

⎧
⎨

⎩
q > max{p, 2p(1–r)

p–2r }, p ≥ 2;

q = 2, 1 < p < 2;

then for any ε > 0,

∞∑

n=1

nr–2–r/p log nE

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ – εnr/p

)+

< ∞.

Example 2.4 Under the conditions of Theorem 2.2, we take bn = (log n)1–1/p

n1+1/p , l(n) =

(log n)1–1/p and cn = (n log n)
1
p for 1 < p ≤ 2. If

⎧
⎨

⎩
q > 5, p = 2;

q = 2, 1 < p < 2;

then for any ε > 0,

∞∑

n=1

(log n)2–2/p

n1+1/p E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ – ε(n log n)
1
p

)+

< ∞.
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Remark 2.3 If the conditions of Theorem 2.2 or Theorem 2.3 hold, then for any ε > 0, we
can get

∞∑

n=1

bncnl(n)P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ ≥ εcn

)
< ∞.

In fact, it can be checked that for any ε > 0,

∞∑

n=1

bnl(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ – εcn

)+

=
∞∑

n=1

bnl(n)
∫ ∞

0
P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ – εcn > t

)
dt

≥
∞∑

n=1

bnl(n)
∫ εcn

0
P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ – εcn > t

)
dt

≥ ε

∞∑

n=1

bncnl(n)P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ ≥ 2εcn

)
.

Remark 2.4 If An = an, n ≥ 1 is non-random (the case of constant weighted), then we
can get the results of Theorems 2.1–2.3 for the non-random weighted sums of martingale
difference sequence.

3 Proofs for the main results
Throughout this section, we use the constant C to denote a generic real number that is
not necessarily the same in each appearance.

3.1 Several lemmas
To prove the main results of the paper, we need to recall the following lemmas.

Lemma 3.1 ([12]) If {Xi,Fi, 1 ≤ i ≤ n} is a sequence of martingale difference and q > 0,
then there exists a constant C depending only on p such that

E

(
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣

q)
≤ C

{
E

( n∑

i=1

E
(
X2

i |Fi–1
)
)q/2

+ E
(

max
1≤i≤n

|Xi|q
)}

.

Lemma 3.2 ([13–15]) Let {Xn, n ≥ 1} be a sequence of random variables, which is stochas-
tically dominated by a random variable X. Then, for any a > 0 and b > 0, the following two
statements hold:

E
[|Xn|aI

(|Xn| ≤ b
)] ≤ CE

[|X|aI
(|X| ≤ b

)]
+ baP

(|X| > b
)

and

E
[|Xn|aI

(|Xn| > b
)] ≤ CE

[|X|aI
(|X| > b

)]
.
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Lemma 3.3 [16] Let {Yn, n ≥ 1} and {Zn, n ≥ 1} be sequences of random variables. Then,
for any q > 1, ε > 0, and a > 0,

E

(
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

(Yi + Zi)

∣∣∣∣∣ – εa

)+

≤
(

1
εq +

1
q – 1

)
1

aq–1 E

(
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

Yi

∣∣∣∣∣

q)

+ E

(
max

1≤k≤n

∣∣∣∣∣

k∑

i=1

Zi

∣∣∣∣∣

)
.

Lemma 3.4 ([17]) If l(x) > 0 is a slowly varying function as x → ∞, then
(1) limx→∞ l(tx)

l(x) = 1 for each t > 0; limx→∞ l(x+u)
l(x) = 1 for each u > 0;

(2) limk→∞ sup2k≤x<2k+1
l(x)

l(2k ) = 1;
(3) limx→∞ xδl(x) = ∞, limx→∞ x–δl(x) = 0 for each δ > 0;
(4) C12krl(ε2k) ≤ ∑k

j=1 2jrl(ε2j) ≤ C22krl(ε2k) for every r > 0, ε > 0, positive integer k,
and some C1 > 0, C2 > 0;

(5) C12krl(ε2k) ≤ ∑∞
j=k 2jrl(ε2j) ≤ C22krl(ε2k) for every r < 0, ε > 0, positive integer k,

and some C1 > 0, C2 > 0.

3.2 Proof of Theorem 2.1
For fixed n ≥ 1, denote

Yni = AiXiI
(|Xi| ≤ cn

)
– E

[
AiXiI

(|Xi| ≤ cn
)|Gi–1

]
, i = 1, 2, . . . .

Since

AiXi = AiXiI
(|Xi| > cn

)
+ Yni + E

[
AiXiI

(|Xi| ≤ cn
)|Gi–1

]
,

we have

∞∑

n=1

bnl(n)P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ ≥ εcn

)

≤
∞∑

n=1

bnl(n)P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXiI
(|Xi| > cn

)
∣∣∣∣∣ ≥ εcn/3

)

+
∞∑

n=1

bnl(n)P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

E
[
AiXiI

(|Xi| ≤ cn
)|Gi–1

]
∣∣∣∣∣ ≥ εcn/3

)

+
∞∑

n=1

bnl(n)P

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Yni

∣∣∣∣∣ ≥ εcn/3

)

=: H + I + J . (3.1)

To prove (2.5), it is enough to show H < ∞, I < ∞, and J < ∞. Obviously, it follows from
Hölder’s inequality, Lyapunov’s inequality, and (2.3) that

n∑

i=1

E|Ai| ≤
( n∑

i=1

E|Ai|q
) 1

q
( n∑

i=1

1

)1– 1
q

= O(n). (3.2)
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By the fact that {An, n ≥ 1} is independent of {Xn, n ≥ 1}, it is easy to check by Markov’s
inequality, Lemma 3.2, (3.2), (2.1), and (2.4) that

H ≤ C
∞∑

n=1

bnl(n)
cn

E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXiI
(|Xi| > cn

)
∣∣∣∣∣

)

≤ C
∞∑

n=1

bnl(n)
cn

n∑

i=1

E|Ai|E
[|Xi|I

(|Xi| > cn
)]

≤ C
∞∑

n=1

nbnl(n)
cn

E
[|X|I(|X| > cn

)]

= C
∞∑

n=1

nbnl(n)
cn

∞∑

m=n
E
[|X|I(cm < |X| ≤ cm+1

)]

= C
∞∑

m=1

E
[|X|I(cm < |X| ≤ cm+1

)] m∑

n=1

nbnl(n)
cn

≤ C
∞∑

m=1

E
[|X|I(cm < |X| ≤ cm+1

)]
cp–1

m l
(
c1/α

m
)

≤ CE|X|pl
(|X|1/α)

< ∞. (3.3)

For I , since {Xn,Fn, n ≥ 1} is a sequence of martingale difference, we can see that
{Xn,Gn, n ≥ 1} is also a sequence of martingale difference. Combining with the fact that
{An, n ≥ 1} is independent of {Xn, n ≥ 1}, we have

E(AnXn|Gn–1) = E
[
E(AnXn|Gn)|Gn–1

]

= E
[
XnE(An|Gn)|Gn–1

]

= EAnE(Xn|Gn–1)

= 0 a.s., n ≥ 1.

Consequently, by Markov’s inequality and the proof of (3.3), we have

I ≤ C
∞∑

n=1

bnl(n)
cn

E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

E
[
AiXiI

(|Xi| ≤ cn
)|Gi–1

]
∣∣∣∣∣

)

≤ C
∞∑

n=1

bnl(n)
cn

E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

E
[
AiXiI

(|Xi| > cn
)|Gi–1

]
∣∣∣∣∣

)

≤ C
∞∑

n=1

bnl(n)
cn

n∑

i=1

E|Ai|E
[|Xi|I

(|Xi| > cn
)]

≤ CE|X|pl
(|X|1/α)

< ∞. (3.4)

Next, we shall show that J < ∞. Let Xni = XiI(|Xi| ≤ cn) and Ŷni = aiXni – E(aiXni|Gi–1). It
can be found that for fixed real numbers a1, . . . , an, {Ŷni,Gi, 1 ≤ i ≤ n} is also a sequence
of martingale difference. Note that {A1, . . . , An} is independent of {Xn1, . . . , Xnn}. So, by
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Markov’s inequality and Lemma 3.1, we have

J ≤ C
∞∑

n=1

bnl(n)
cq

n
E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Yni

∣∣∣∣∣

)q

= C
∞∑

n=1

bnl(n)
cq

n
E

{
E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

[
aiXni – E(aiXni|Gi–1)

]
∣∣∣∣∣

q)∣∣∣A1 = a1, . . . , An = an

}

≤ C
∞∑

n=1

bnl(n)
cq

n
E

{
E

( n∑

i=1

E
(
Ŷ 2

ni|Gi–1
)
)q/2

+
n∑

i=1

E|Ŷni|q
∣∣∣A1 = a1, . . . , An = an

}

= C
∞∑

n=1

bnl(n)
cq

n

n∑

i=1

E|Yni|q + C
∞∑

n=1

bnl(n)
cq

n
E

( n∑

i=1

E
(
Y 2

ni|Gi–1
)
)q/2

=: J1 + J2. (3.5)

For J1, we have by Cr-inequality, Lemma 3.2 with b = cn, and (2.3) that

J1 ≤ C
∞∑

n=1

bnl(n)
cq

n

n∑

i=1

E|Ai|qE
[|Xi|qI

(|Xi| ≤ cn
)]

≤ C
∞∑

n=1

bnl(n)
cq

n

n∑

i=1

E|Ai|qE
[|X|qI

(|X| ≤ cn
)]

+ C
∞∑

n=1

bnl(n)
cq

n

n∑

i=1

cq
nP

(|X| > cn
)

= C
∞∑

n=1

nbnl(n)
cq

n
E
[|X|qI

(|X| ≤ cn
)]

+ C
∞∑

n=1

nbnl(n)P
(|X| > cn

)

≤ C
∞∑

n=1

nbnl(n)
cq

n
E
[|X|qI

(|X| ≤ cn
)]

+ C
∞∑

n=1

nbnl(n)
cn

E
[|X|I(|X| > cn

)]

=: CJ11 + CJ12. (3.6)

For J11, we have by (2.1) and (2.4) that

J11 =
∞∑

n=1

nbnl(n)
cq

n

n∑

m=1

E
[|X|qI

(
cm–1 < |X| ≤ cm

)]

=
∞∑

m=1

E
[|X|qI

(
cm–1 < |X| ≤ cm

)] ∞∑

n=m

nbnl(n)
cq

n

≤ C
∞∑

m=1

E
[|X|qI

(
cm–1 < |X| ≤ cm

)]
cp–q

m l
(
c1/α

m
)

≤ CE|X|pl
(|X|1/α)

< ∞. (3.7)

By the proof of (3.3), it follows

J12 =
∞∑

n=1

nbnl(n)
cn

E
[|X|I(|X| > cn

)]

≤ CE|X|pl
(|X|1/α)

< ∞. (3.8)
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Furthermore, by Hölder’s inequality and (2.3), for any 1 < p ≤ 2, we have

n∑

i=1

E|Ai|p ≤
( n∑

i=1

E|Ai|q
) p

q
( n∑

i=1

1

)1– p
q

= O(n). (3.9)

Obviously, for 1 ≤ i ≤ n, it has

E
(
Y 2

ni|Gi–1
)

= E
[
A2

i X2
i I

(|Xi| ≤ cn
)|Gi–1

]

–
[
E
(
AiXiI

(|Xi| ≤ cn
)|Gi–1

)]2

≤ E
[
A2

i X2
i I

(|Xi| ≤ cn
)|Gi–1

]

≤ EA2
i E

(
X2

i |Gi–1
)
, a.s. (3.10)

Combining (3.9) and (2.2), we obtain that

J2 ≤
∞∑

n=1

bnl(n)
cq

n
E

( n∑

i=1

EA2
i E

(
X2

i |Gi–1
)
)q/2

≤
∞∑

n=1

bnl(n)
cq

n

( n∑

i=1

EA2
i

)q/2

E
(

sup
i≥1

E
(
X2

i |Gi–1
))q/2

≤ C
∞∑

n=1

nq/2bnl(n)
cq

n
< ∞. (3.11)

By (3.1) and (3.3)–(3.11), we can get (2.5). This completes the proof of Theorem 2.1.

3.3 Proof of Theorem 2.2
As the proof of Theorem 2.1,

AiXi = AiXiI
(|Xi| > cn

)
+ Yni + E

[
AiXiI

(|Xi| ≤ cn
)|Gi–1

]
,

where Yni = AiXiI(|Xi| ≤ cn) – E[AiXiI(|Xi| ≤ cn)|Gi–1], i = 1, 2, . . . . By Lemma 3.3 with a =
cn, we have

∞∑

n=1

bnl(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXi

∣∣∣∣∣ – εcn

)+

≤ C
∞∑

n=1

bnl(n)
cq–1

n
E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Yni

∣∣∣∣∣

q)

+
∞∑

n=1

bnl(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

[
AiXiI

(|Xi| > cn
)

+ E
(
AiXiI

(|Xi| ≤ cn
)|Gi–1

)]
∣∣∣∣∣

)

≤
∞∑

n=1

bnl(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXiI
(|Xi| > cn

)
∣∣∣∣∣

)

+
∞∑

n=1

bnl(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

E
[
AiXiI

(|Xi| ≤ cn
)|Gi–1

]
∣∣∣∣∣

)
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+ C
∞∑

n=1

bnl(n)
cq–1

n
E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Yni

∣∣∣∣∣

q)

=: H1 + H2 + H3. (3.12)

To prove (2.11), it is enough to show H1 < ∞, H2 < ∞, and H3 < ∞.
Since {An, n ≥ 1} is independent of {Xn, n ≥ 1}, we have by Lemma 3.2, (3.2), (2.7), and

(2.10) that

H1 ≤
∞∑

n=1

bnl(n)
n∑

i=1

E|Ai|E
[|Xi|I

(|Xi| > cn
)]

≤ C
∞∑

n=1

nbnl(n)E
[|X|I(|X| > cn

)]

= C
∞∑

n=1

nbnl(n)
∞∑

m=n
E
[|X|I(cm < |X| ≤ cm+1

)]

= C
∞∑

m=1

E
[|X|I(cm < |X| ≤ cm+1

)] m∑

n=1

nbnl(n)

≤ C
∞∑

m=1

E
[|X|I(cm < |X| ≤ cm+1

)]
cp–1

m l
(
c1/α

m
)

≤ CE|X|pl
(|X|1/α)

< ∞. (3.13)

For H2, by a similar proof of (3.4), we have E(AnXn|Gn–1) = 0 a.s., n ≥ 1. Combining with
(3.13), we get

H2 =
∞∑

n=1

bnl(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

E
[
AiXiI

(|Xi| ≤ cn
)|Gi–1

]
∣∣∣∣∣

)

=
∞∑

n=1

bnl(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

E
[
AiXiI

(|Xi| > cn
)|Gi–1

]
∣∣∣∣∣

)

≤
∞∑

n=1

bnl(n)
n∑

i=1

E|Ai|E
[|Xi|I

(|Xi| > cn
)]

≤ E|X|pl
(|X|1/α)

< ∞. (3.14)

Next, from a similar proof of Theorem 2.1 (see (3.5)), we turn to prove H3 < ∞.

H3 = C
∞∑

n=1

bnl(n)
cq–1

n
E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Yni

∣∣∣∣∣

)q

≤ C
∞∑

n=1

bnl(n)
cq–1

n

n∑

i=1

E|Yni|q + C
∞∑

n=1

bnl(n)
cq–1

n
E

( n∑

i=1

E
(
Y 2

ni|Gi–1
)
)q/2

=: H31 + H32. (3.15)
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For H31, by Cr-inequality, Lemma 3.2, and (2.9), we have

H31 ≤ C
∞∑

n=1

bnl(n)
cq–1

n

n∑

i=1

E|Ai|qE
[|Xi|qI

(|Xi| ≤ cn
)]

≤ C
∞∑

n=1

bnl(n)
cq–1

n

n∑

i=1

E|Ai|qE
[|X|qI

(|X| ≤ cn
)]

+ C
∞∑

n=1

nbnl(n)cnP
(|X| > cn

)

≤ C
∞∑

n=1

nbnl(n)
cq–1

n
E
[|X|qI

(|X| ≤ cn
)]

+ C
∞∑

n=1

nbnl(n)E
[|X|I(|X| > cn

)]

=: CĤ31 + CĤ32. (3.16)

From the condition q > max{2, p}, (2.7), and (2.10), we get

Ĥ31 =
∞∑

n=1

nbnl(n)
cq–1

n

n∑

m=1

E
[|X|qI

(
cm–1 < |X| ≤ cm

)]

=
∞∑

m=1

E
[|X|qI

(
cm–1 < |X| ≤ cm

)] ∞∑

n=m

nbnl(n)
cq–1

n

≤ C
∞∑

m=1

E
[|X|qI

(
cm–1 < |X| ≤ cm

)]
cp–q

m l
(
c1/α

m
)

≤ CE|X|pl
(|X|1/α)

< ∞. (3.17)

By the proof of (3.13), it follows

Ĥ32 =
∞∑

n=1

nbnl(n)E
[|X|I(|X| > cn

)] ≤ CE|X|pl
(|X|1/α)

< ∞. (3.18)

For H32, from a similar proof of Theorem 2.1 (see (3.9)–(3.11)), combining (3.10), (3.9),
and (2.8), we get

H32 ≤
∞∑

n=1

bnl(n)
cq–1

n
E

( n∑

i=1

EA2
i E

(
X2

i |Gi–1
)
)q/2

≤
∞∑

n=1

bnl(n)
cq–1

n

( n∑

i=1

EA2
i

)q/2

E
(

sup
i≥1

E
(
X2

i |Gi–1
))q/2

≤ C
∞∑

n=1

nq/2bnl(n)
cq–1

n
< ∞. (3.19)

Therefore, we can get (2.11) by (3.12)–(3.19). This completes the proof of Theorem 2.2.
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3.4 Proof of Theorem 2.3
By a similar proof of Theorem 2.2, we take q = 2. It is enough to prove H1 < ∞, H2 < ∞,
and H3 < ∞. Combining (3.13) with conditions (2.12), (2.13), we have

H1 =
∞∑

n=1

bnl(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

AiXiI
(|Xi| > cn

)
∣∣∣∣∣

)

≤
∞∑

n=1

bnl(n)
n∑

i=1

E|Ai|E
[|Xi|I

(|Xi| > cn
)]

≤ C
∞∑

m=1

E
[|X|I(cm < |X| ≤ cm+1

)] m∑

n=1

nbnl(n)

≤ C
∞∑

m=1

E
[|X|I(cm < |X| ≤ cm+1

)]
(log cm)l

(
c1/α

m
)

≤ CE
[|X|(log |X|)l

(|X|1/α)]
< ∞. (3.20)

By the proof of (3.14) and (3.20), we get

H2 =
∞∑

n=1

bnl(n)E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

E
[
AiXiI

(|Xi| ≤ cn
)|Gi–1

]
∣∣∣∣∣

)

≤
∞∑

n=1

bnl(n)
n∑

i=1

E|Ai|E
[|Xi|I

(|Xi| > cn
)]

≤ E
[|X|(log |X|)l

(|X|1/α)]
< ∞. (3.21)

For H3, from a similar proof of Theorem 2.1 (see (3.5) for q = 2), we have

H3 = C
∞∑

n=1

bnl(n)
cn

E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Yni

∣∣∣∣∣

2)

= C
∞∑

n=1

bnl(n)
cn

E

{
E

(
max
1≤j≤n

∣∣∣∣∣

j∑

i=1

[
aiXni – E(aiXni|Gi–1)

]
∣∣∣∣∣

2)∣∣∣A1 = a1, . . . , An = an

}

≤ C
∞∑

n=1

bnl(n)
cn

E

{( n∑

i=1

E|Ŷni|2
)∣∣∣A1 = a1, . . . , An = an

}

= C
∞∑

n=1

bnl(n)
cn

n∑

i=1

E|Yni|2.

Then, according to (2.12) and (3.20), we can get

H3 ≤ C
∞∑

n=1

bnl(n)
cn

n∑

i=1

E|Ai|2E
[|Xi|2I

(|Xi| ≤ cn
)]

≤ C
∞∑

n=1

nbnl(n)
cn

n∑

i=1

E
[|X|2I

(|X| ≤ cn
)]

+ C
∞∑

n=1

nbnl(n)cnP
(|X| > cn

)
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≤ C
∞∑

n=1

nbnl(n)
cn

n∑

m=1

E
[|X|qI

(
cm–1 < |X| ≤ cm

)]

+ C
∞∑

n=1

nbnl(n)E
[|X|I(|X| > cn

)]

=
∞∑

m=1

E
[|X|qI

(
cm–1 < |X| ≤ cm

)] ∞∑

n=m

nbnl(n)
cn

+ CE
[|X|(log |X|)l

(|X|1/α)]

≤ C
∞∑

m=1

E
[|X|qI

(
cm–1 < |X| ≤ cm

)]
c1–q

m l
(
c1/α

m
)

+ C < ∞. (3.22)

Hence, the desired result follows from (3.20)–(3.22). This completes the proof of Theo-
rem 2.3.
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