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1 Introduction
As a generalization of functions, the differential form can be regarded as a special kind of
vector-valued function. So, if some operators in function spaces are generalized to that in
differential forms, similar properties could be obtained as in the function space. In recent
years, the research on the generalization of operators from functional spaces to differential
forms seems to become a new highlight in the inequalities with differential forms, see [1–
6]. In this paper, we mainly consider the following convolution type fractional integrals
operator acting on differential forms and develop some norm inequalities for the fractional
convolution operator. Given a nonnegative, locally integrable function Kα and �I(y) is a
bounded function with a compactly supported set on R

n, write �I(y) ∈ L∞
c . The fractional

convolution operator Fα is defined by a convolution integral

Fα�(x) =
∑

I

(∫

Rn
Kα(x – y)�I(y) dy

)
dxI , (1.1)

provided this integral exists for almost all Rn, where �(x) =
∑

I �I(y) dxI is a �-form defined
on R

n, the summation is over all ordered �-tuples I . The function Kα is also assumed to
be a wide class of kernels satisfying the following growth condition (see [7]):

(1) Kα ∈ Sα if there exists a constant C > 0 such that

∫

|x|∼s

∣∣Kα(x)
∣∣dx ≤ Csα ; (1.2)
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(2) Kα is said to satisfy the Lα,ϕ-Hörmander condition, and write Kα ∈ Hα,ϕ . If there
exist c ≥ 1 and C > 0 (only dependent on ϕ) such that, for all y ∈R

n and R > c|y|,
∞∑

m=1

(
2mR

)n–α
�

∥∥Kα(· – y) – Kα(·)∥∥
ϕ(|x|∼2mR) ≤ C, (1.3)

where ϕ is a Young function defined on [0, +∞), |x| ∼ s stands for the set
{s < |x| ≤ 2s}, O(0, s) is a ball with the center at the origin and the radius equal to s,
and the ϕ-mean Luxemburg norm of a function f on a cube (or a ball)O in R

n is
given by

�‖f ‖ϕ(O) = inf

{
λ > 0 :

1
|O|

∫

O
ϕ

( |f |
λ

)
dx ≤ 1

}
. (1.4)

Differential forms can be viewed as an extension of functions. When �(x) is a 0-form,
the above-mentioned notations are in accord with those of function spaces, and the frac-
tional convolution operator Fα we study in this paper degenerates into the operator which
Bernardis discussed in [7]. Namely, for any Lebesgue measurable function f ∈ L∞

c , Fα is
given as follows:

Fαf (x) =
∫

Rn
Kα(x – y)f (y) dy. (1.5)

This degenerated fractional convolution operator was also introduced by Riveros in [8],
who presented weighted Coifman type estimates, two weight estimates of strong and weak
type for general fractional operators and gave applications to fractional operators pro-
duced by a homogeneous function and a Fourier multiplier.

Now we introduce some notations and definitions. Let � be an open subset of R
n

(n ≥ 2) and O be a ball in R
n. Let ρO denote the ball with the same center as O and

diam(ρO) = ρ diam(O)(ρ > 0). |�| is used to denote the Lebesgue measure of a set � ⊂R
n.

Let
∧� =

∧�(Rn),� = 0, 1, . . . , n, be the linear space of all �-forms �(x) =
∑

I �I(x) dxI =
∑

I �i1i2···i� (x) dxi1 ∧ dxi2 · · · ∧ dxi� in R
n, where I = (i1, i2, . . . , i�), 1 ≤ i1 < i2 < · · · < i� ≤ n,

are the ordered �-tuples. Moreover, if each of the coefficients �I(x) of �(x) is differential
on �, then we call �(x) a differential �-form on � and use D′(�,

∧�) to denote the space of
all differential �-forms on �. C∞(�,

∧�) denotes the space of smooth �-forms on �. The
exterior derivative d : D′(�,

∧�) → D′(�,
∧�+1), � = 0, 1, . . . , n – 1, is given by

d�(x) =
∑

I

n∑

j=1

∂�i1i2···i� (x)
∂xj

dxj ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxi� (1.6)

for all � ∈ D′(�,
∧�). Lp(�,

∧�)(1 ≤ p < ∞) is a Banach space with the norm ‖�‖p,� =
(
∫
�

|�(x)|p dx)1/p = (
∫
�

(
∑

I |�I(x)|2)p/2 dx)1/p < ∞. Similarly, the notations Lp
loc(�,

∧�) and
W 1,p

loc (�,
∧�) are self-explanatory.

From [9], � is a differential form in a bounded convex domain �, then there is a decom-
position

� = d(T�) + T(d�), (1.7)
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where T is called a homotopy operator. For the homotopy operator T , we know that

‖T�‖p,O ≤ C|O|diam(O)‖�‖p,O (1.8)

holds for any differential form � ∈ Lp
loc(�,

∧�),� = 1, 2, . . . , n, 1 < p < ∞. Furthermore, we
can define the �-form �� ∈ D′(�,

∧�) by

�� =

⎧
⎨

⎩
|�|–1 ∫

�
�(x) dx, � = 0,

dT(�), � = 1, 2, . . . , n,
(1.9)

for all � ∈ Lp(�,
∧�), 1 ≤ p < ∞.

A non-negative function w ∈ L1
loc(dx) is called a weight. We recall the definitions of the

Muckenhoupt weights and the reverse Hölder condition (see [10]). For 1 < p < ∞, we say
that w ∈Ap if there exists a constant C > 0 such that, for every ball O ⊂R

n,

(
1

|O|
∫

O
w dx

)(
1

|O|
∫

O
w– 1

p–1 dx
)p–1

≤ C. (1.10)

For the case p = 1, w ∈A1 if there exists a constant C > 0 such that, for every ball O ⊂R
n,

1
|O|

∫

O
w dx ≤ C ess inf

x∈O
w(x). (1.11)

Also A∞ =
⋃

p≥1 Ap. It is well known that Ap ⊂ Aq for all 1 ≤ p ≤ q ≤ ∞, and also that
for 1 < p ≤ ∞, if w ∈Ap, then there exists ε > 0 such that w ∈Ap–ε .

A function ϕ : [0,∞) → [0,∞) is a Young function if it is continuous, convex, increasing
and satisfies ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. Each Young function ϕ has an associated
complementary Young function ϕ̄ satisfying

t ≤ ϕ–1(t)ϕ̄–1(t) ≤ 2t (1.12)

for all t > 0, where ϕ–1(t) is the inverse function of ϕ(t) (see [11]).
For each locally integrable function f and 0 ≤ α < n, the fractional maximal operator

associated with the Young function ϕ is defined by

Mα,ϕ f (x) = sup
x∈O

|O| α
n �‖f ‖ϕ(O). (1.13)

For α = 0, we write Mϕ instead of M0,ϕ . When ϕ(t) = t, then Mα,ϕ = Mα is the classical
fractional maximal operator. For α = 0 and ϕ(t) = t, we obtain M0,ϕ = M is the Hardy–
Littlewood maximal operator (see [8]).

2 The Coifman type inequalities for the fractional convolution operator
In [7], the inequality for the fractional convolution operator in function with the fractional
maximal operator, that is, the Coifman type inequality, is proved.

Lemma 2.1 Let ϕ be a Young function on [0, +∞) and f be any n-tuple function on R
n with

f ∈ L∞
c . Suppose that the fractional convolution operator Fα = Kα ∗ f and its kernel satisfies
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Kα ∈ Sα ∩ Hα,ϕ , where 0 < α < n. Then there exists a constant C such that

∫

Rn

∣∣Fαf (x)
∣∣pw(x) dx ≤ C

∫

Rn

[
Mα,ϕ̄ f (x)

]pw(x) dx (2.1)

for any 0 < p < ∞ and w ∈ A∞.

Theorem 2.1 Let ϕ be a Young function on [0, +∞) and f , g be two functions defined on
R

n with |f (x)| ≤ |g(x)| for all x ∈R
n. Then for all cubes O and the Young functions ϕ,

�‖f ‖ϕ(O) ≤ �‖g‖ϕ(O). (2.2)

Proof Since ϕ is a Young function, it follows that

1
|O|

∫

O
ϕ

( |f |
�‖g‖ϕ(O)

)
dx ≤ 1

|O|
∫

O
ϕ

( |g|
�‖g‖ϕ(O)

)
dx ≤ 1

⇒ �‖g‖ϕ(O) ∈ E =
{
λ > 0 :

1
|O|

∫

O
ϕ

( |f |
λ

)
dx ≤ 1

}

⇒ �‖f ‖ϕ(O) = inf E ≤ �‖g‖ϕ(O). (2.3)
�

According to Theorem 2.1, we can get a similar conclusion to Lemma 2.1.

Theorem 2.2 Let ϕ be a Young function on [0, +∞), � =
∑

I �I dxI be a differential form on
� ⊂ R

n, and let all the ordered �-tuples I satisfy �I ∈ L∞
c . Suppose that Fα is a fractional

convolution operator applied to differential forms and its kernel function Kα satisfies Kα ∈
Sα ∩ Hα,ϕ , where 0 < α < n. Then there exists a constant C such that

∫

Rn

∣∣Fα�(x)
∣∣pw(x) dx ≤ C

∫

Rn

[
Mα,ϕ̄�(x)

]pw(x) dx (2.4)

for any 0 < p < ∞ and w ∈ A∞.

Proof By Lemma 2.1 and the following basic inequality

n∑

i=1

|ai|s ≤ n

( n∑

i=1

|ai|
)s

≤ ns+1
n∑

i=1

|ai|s, (2.5)

where s > 0 is any constant, it follows that

‖Fα�‖p
p,w,Rn =

∫

Rn

∣∣Fα�(x)
∣∣pw(x) dx

=
∫

Rn

(∑

I

(∫

Rn
Kα(x – y)�I(y) dy

)2)p/2

w(x) dx

≤
∫

Rn
C1

∑

I

(∫

Rn
Kα(x – y)�I(y) dy

)p

w(x) dx

= C1
∑

I

∫

Rn

(∫

Rn
Kα(x – y)�I(y) dy

)p

w(x) dx
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≤ C2
∑

I

∫

Rn

[
Mα,ϕ̄�I(x)

]pw(x) dx

= C2

∫

Rn

∑

I

[
Mα,ϕ̄�I(x)

]pw(x) dx

≤ C3

∫

Rn

(∑

I

Mα,ϕ̄�I(x)
)p

w(x) dx. (2.6)

Then, by the definition of the fractional maximal operator, notice that for any I such that
|�I | ≤ |�|, we obtain that

∑

I

Mα,ϕ̄�I(x)

=
∑

I

sup
x∈O

|O|α/n
�

∥∥�I
∥∥

ϕ̄(O)

≤ C�
n sup

x∈O
|O|α/n

∑

I

�

∥∥�I
∥∥

ϕ̄(O)

≤ C�
n sup

x∈O
|O|α/nC�

n�‖�‖ϕ̄(O)

≤ C4Mα,ϕ̄�(x). (2.7)

Combining (2.6) and (2.7), we have

‖Fα�‖p
p,w,Rn

≤ C3

∫

Rn

(∑

I

Mα,ϕ̄�I(x)
)p

w(x) dx

≤ C3

∫

Rn

(
C4Mα,ϕ̄�(x)

)pw(x) dx

≤ C5

∫

Rn

(
Mα,ϕ̄�(x)

)pw(x) dx. (2.8)
�

Theorem 2.3 Let ϕ be a Young function on [0, +∞), � =
∑

I �I dxI be a differential form on
� ⊂R

n, and for all the ordered �-tuples,let I satisfy �I ∈ L∞
c . Suppose that Fα is a fractional

convolution operator on differential forms and its kernel function Kα satisfies Kα ∈ Sα ∩
Hα,ϕ , where 0 < α < n. Then there exists a constant C such that

∫

O

∣∣Fα�(x)
∣∣p dx ≤ C

∫

O

[
Mα,ϕ̄�(x)

]p dx (2.9)

for any 0 < p < ∞ and all the balls O ⊂R
n.

Proof By the definition of the A∞-weight, there exist r0 ≥ 1 and a constant C < ∞ such
that, for all the balls O ⊂R

n, it follows that

(
1

|O|
∫

O
w(x) dx

)(
1

|O|
∫

O
w(x)– 1

r0–1 dx
)r0–1

≤ C. (2.10)
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With the arbitrariness of the condition w ∈A∞ of Theorem 2.2, now get any ball O0 ⊂R
n

and let

w(x) = χO0 (x) =

⎧
⎨

⎩
1, x ∈ O0;

0, x /∈ O0.

It is easy to check that w(x) = χO0 (x) satisfies (2.10). In fact, we have

(
1

|O|
∫

O
χO0 (x) dx

)(
1

|O|
∫

O
χO0 (x)– 1

r0–1 dx
)r0–1

=
(

1
|O| |O ∩ O0|

)(
1

|O| |O ∩ O0|
)r0–1

=
(

1
|O| |O ∩ O0|

)r0

≤ 1. (2.11)

Thus
∫

O0

∣∣Fα�(x)
∣∣p dx

=
∫

Rn

∣∣Fα�(x)
∣∣p

χO0 (x) dx

≤ C
∫

Rn

[
Mα,ϕ̄�(x)

]p
χO0 (x) dx

≤ C
∫

O0

[
Mα,ϕ̄�(x)

]p dx. (2.12)
�

If the kernel function Kα and the coefficient functions �I of differential forms are subject
to some conditions, the following more important conclusion will be obtained.

Theorem 2.4 Let ϕ be a Young function on [0, +∞), � =
∑

I �I dxI be a differential form on
� ⊂ R

n, and let all the ordered �-tuples I satisfy �I ∈ L∞
c . Suppose that Fα is a fractional

convolution operator on differential forms and its kernel function Kα satisfies Kα ∈ Sα ∩Hα,ϕ

and Kα ∈ C∞
0 (�), where C∞

0 (�) stands for all the C∞ functions with compactly supported
sets in � and 0 < α < n. Then there exists a constant C such that

∥∥Fα� – (Fα�)O
∥∥

p,O ≤ C diam(O)|O|∥∥Mα,ϕ̄(d�)
∥∥

p,O (2.13)

for any 1 < p < ∞ and all the balls with O ⊂ R
n.

Proof By the exterior derivative operator d and the fractional convolution operator Fα , we
obtain that

d� =
∑

I

n∑

k=1

∂�I(x)
∂xk

dxk ∧ dxI ,

Fα(d�) =
∑

I

n∑

k=1

(∫

Rn
Kα(x – y)

∂�I(y)
∂yk

dy
)

dxk ∧ dxI (2.14)
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and

dFα(�) =
∑

I

n∑

k=1

∂hI(x)
∂xk

dxk ∧ dxI , (2.15)

where

hI(x) =
∫

Rn
Kα(x – y)�I(y) dy. (2.16)

According to (1.7)–(1.9), it follows that

∥∥Fα� – (Fα�)O
∥∥

p,O =
∥∥T

(
d(Fα�)

)∥∥
p,O ≤ C1 diam(O)|O|∥∥d(Fα�)

∥∥
p,O. (2.17)

Now we will give the Lp-norm estimation of d(Fα�). With Kα ∈ C∞
0 (�) and considering

the definition of the general partial derivative (see [12]), we obtain

∥∥d(Fα�)
∥∥p

p,O

=
∫

O

(
∑

I

n∑

k=1

∣∣∣∣
∂hI(x)
∂xk

∣∣∣∣
2
)p/2

dx

=
∫

O

(
∑

I

n∑

k=1

∣∣∣∣
∂

∫
Rn Kα(x – y)�I(y) dy

∂xk

∣∣∣∣
2
)p/2

dx

=
∫

O

(
∑

I

n∑

k=1

∣∣∣∣
∫

Rn

∂Kα(x – y)
∂xk

�I(y) dy
∣∣∣∣
2
)p/2

dx

=
∫

O

(
∑

I

n∑

k=1

∣∣∣∣–
∫

Rn

∂Kα(x – y)
∂yk

�I(y) dy
∣∣∣∣
2
)p/2

dx

=
∫

O

(
∑

I

n∑

k=1

∣∣∣∣
∫

Rn

∂�I(y)
∂yk

Kα(x – y) dy
∣∣∣∣
2
)p/2

dx

=
∥∥Fα(d�)

∥∥p
p,O, (2.18)

that is

∥∥d(Fα�)
∥∥

p,O =
∥∥Fα(d�)

∥∥
p,O. (2.19)

Combining (2.17) and (2.19), we obtain that

∥∥Fα� – (Fα�)O
∥∥

p,O

≤ C1 diam(O)|O|∥∥d(Fα�)
∥∥

p,O

= C1 diam(O)|O|∥∥Fα(d�)
∥∥

p,O

≤ C1 diam(O)|O|∥∥Mα,ϕ̄(d�)
∥∥

p,O. (2.20)
�
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Since a new function is obtained when the differential form is taken as a model, we can
get a global inequality in the Lp(m) domain with Theorem 2.4. Now recall the definition
of the Lp(m) domain introduced by Staples (see [13]).

Definition 2.1 Let � be a real subdomain in R
n. If, for all the functions f ∈ Lp

loc(�), there
exists a constant C such that

|�|–1/p‖f – fO0‖p,� ≤ C sup
O⊂�

|O|–1/p‖f – fO‖p,O, (2.21)

then � is called an Lp(m)-average domain, where O0 is a fixed ball of � and p ≥ 1.

Theorem 2.5 Let ϕ be a Young function on [0, +∞), � =
∑

I �I dxI be a differential form on
� ⊂ R

n, and let all the ordered �-tuples I satisfy �I ∈ L∞
c . Suppose that Fα is a fractional

convolution operator on differential forms and its kernel function Kα satisfies Kα ∈ Sα ∩Hα,ϕ

and Kα ∈ C∞
0 (�), where 0 < α < n. Then there exists a constant C such that

∥∥Fα� – (Fα�)O0

∥∥
p,� ≤ C|�|diam(�)

∥∥Mα,ϕ̄d�(x)
∥∥

p,� (2.22)

for any 1 < p < ∞ and O0 is a fixed ball in �.

Proof By the definition of the Lp(m)-average domain and noticing that 1 – 1/p ≥ 0, we
have

∥∥Fα� – (Fα�)O0

∥∥
p,�

≤ C1|�|1/p sup
O⊂�

|O|–1/p∥∥Fα� – (Fα�)O
∥∥

p,O

≤ C1|�|1/p sup
O⊂�

|O|–1/pC2 diam(O)|O|∥∥Mα,ϕ̄(d�)
∥∥

p,O

≤ C3|�|1/p sup
O⊂�

|O|1–1/p diam(O)
∥∥Mα,ϕ̄(d�)

∥∥
p,O

≤ C3|�|1/p sup
O⊂�

|�|1–1/p diam(�)
∥∥Mα,ϕ̄(d�)

∥∥
p,�

= C3�|diam(�)
∥∥Mα,ϕ̄(d�)

∥∥
p,�. (2.23)

�

3 The Lipschitz and BMO norm inequalities for the fractional convolution
operator

It is well known that Lipschitz and BMO norms are two kinds of important norms in
differential forms, which can be found in [14]. Now we recall these definitions as follows.
Let � ∈ L1

loc(�,
∧�),� = 0, 1, . . . , n. We write � ∈ locLipk(�,

∧�), 0 ≤ k ≤ 1, if

‖�‖locLipk ,� = sup
ρO⊂�

|O|–(n+k)/n‖� – �O‖1,O < ∞ (3.1)

for some ρ ≥ 1.
Further, we write Lipk(�,

∧�) for those forms whose coefficients are in the usual
Lipschitz space with exponent k and write ‖�‖Lipk ,� for this norm. Similarly, for � ∈
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L1
loc(�,

∧�),� = 0, 1, . . . , n, we write � ∈ BMO(�,
∧�) if

‖�‖�,� = sup
ρO⊂�

|O|–1‖� – �O‖1,O < ∞ (3.2)

for some ρ ≥ 1.
When � is a 0-form, Eq. (3.2) reduces to the classical definition of BMO(�).

Lemma 3.1 (see [10]) Let 0 < p, q < ∞ and 1/s = 1/p + 1/q. If f and g are two measurable
functions on R

n, then

‖fg‖s,� ≤ ‖f ‖p,�‖g‖q,� (3.3)

for any � ⊂R
n.

Theorem 3.1 Let ϕ be a Young function on [0, +∞), � =
∑

I �I dxI be a differential form on
� ⊂ R

n, and let all the ordered �-tuples I satisfy �I ∈ L∞
c . Suppose that Fα is a fractional

convolution operator on differential forms and its kernel function Kα satisfies Kα ∈ Sα ∩Hα,ϕ

and Kα ∈ C∞
0 (�), where 0 < α < n. Then, for any 1 < p < ∞, there exists a constant C such

that

‖Fα�‖locLipk ,� ≤ C
∥∥Mα,ϕ̄(d�)

∥∥
p,�, (3.4)

where k is a constant with 0 ≤ k ≤ 1.

Proof By Theorem 2.4, we obtain

∥∥Fα� – (Fα�)O
∥∥

p,O ≤ C|O|diam(O)
∥∥Mα,ϕ̄d�(x)

∥∥
p,O. (3.5)

By Lemma 3.1 with 1 = 1/p + (p – 1)/p, for any ball with O(O ⊂ �), we have

∥∥Fα� – (Fα�)O
∥∥

1,O

=
∫

O

∣∣Fα� – (Fα�)O
∣∣dx

≤
(∫

O

∣∣Fα� – (Fα�)O
∣∣p dx

)1/p(∫

O
1

p
p–1 dx

)(p–1)/p

= |O|(p–1)/p∥∥Fα� – (Fα�)O
∥∥

p,O

= |O|1–1/p∥∥Fα� – (Fα�)O
∥∥

p,O

≤ |O|1–1/pC1|O|diam(O)
∥∥Mα,ϕ̄d�(x)

∥∥
p,O

≤ C2|O|2–1/p+1/n∥∥Mα,ϕ̄d�(x)
∥∥

p,O. (3.6)

By the definition of the Lipschitz norm and 2 – 1/p + 1/n – 1 – k/n = 1 – 1/p + 1/n – k/n > 0,
we obtain

‖Fα�‖locLipk ,�
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= sup
ρO⊂�

|O|–(n+k)/n∥∥Fα� – (Fα�)O
∥∥

1,O

= sup
ρO⊂�

|O|–1–k/n∥∥Fα� – (Fα�)O
∥∥

1,O

≤ sup
ρO⊂�

|O|–1–k/nC2|O|2–1/p+1/n∥∥Mα,ϕ̄d�(x)
∥∥

p,O

= sup
ρO⊂�

C2|O|1–1/p+1/n–k/n∥∥Mα,ϕ̄d�(x)
∥∥

p,O

≤ sup
ρO⊂�

C2|�|1–1/p+1/n–k/n∥∥Mα,ϕ̄d�(x)
∥∥

p,O

≤ C3 sup
ρO⊂�

∥∥Mα,ϕ̄d�(x)
∥∥

p,O

≤ C3
∥∥Mα,ϕ̄d�(x)

∥∥
p,�. (3.7)

�

Lemma 3.2 (see [14]) If the differential form � ∈ locLipk(�,��), � = 0, 1, . . . , n, 0 ≤ k ≤ 1,
is defined in a bounded convex domain �, then � ∈ BMO(�,��) and there exists a constant
C such that

‖�‖�,� ≤ C‖�‖locLipk ,�. (3.8)

By Theorem 3.1 and Lemma 3.2, we get the following conclusion.

Theorem 3.2 Let ϕ be a Young function on [0, +∞), � =
∑

I �I dxI be a differential form on
� ⊂ R

n, and let all the ordered �-tuples I satisfy �I ∈ L∞
c . Suppose that Fα is a fractional

convolution operator on differential forms and its kernel function Kα satisfies Kα ∈ Sα ∩Hα,ϕ

and Kα ∈ C∞
0 (�), where 0 < α < n. Then, for any 1 < p < ∞, there exists a constant C such

that

‖Fα�‖�,� ≤ C
∥∥Mα,ϕ̄(d�)

∥∥
p,�. (3.9)

4 Applications
With regard to the applications of the fractional convolution operator, we will point out
that Theorem 2.2 has different expression forms.

Definition 4.1 (see [7]) Let Kα(x) be a function defined on R
n, if there exist two constants

c ≥ 1 and C > 0 such that

∣∣Kα(x – y) – Kα(x)
∣∣ ≤ C

|y|
|x|n+1–α

, |x| > c|y|, (4.1)

then the kernel function Kα is said to satisfy the H∗
α,∞-condition.

Lemma 4.1 (see [7]) Let ϕ be any Young function defined on [0, +∞), then H∗
α,∞ ⊂ Hα,ϕ .

Theorem 4.1 Let Kα(x) = 1
|x|n–α and 0 ≤ α < n, then Kα ∈ Sα ∩ Hα,ϕ .
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Proof Firstly prove that Kα ∈ Sα . By the definition of Kα , we have
∫

|x|∼s

∣∣Kα(x)
∣∣dx ≤

∫

O(0,2s)

1
|x|n–α

dx ≤ σn(2s)n · (s)α–n = 2nσnsα , (4.2)

where σn is the volume of a unit sphere n in R
n. Thus Kα ∈ Sα .

Secondly prove that Kα ∈ Hα,ϕ . According to Lemma 4.1, we only need to prove that
Kα ∈ H∗

α,∞. If we choose |x| > 2|y|(c = 2 ≥ 1) and y �= O = (0, . . . , 0) (for y = O, it is clearly
established), it follows that

|x – y|/|x| ∈
⎧
⎨

⎩
( 1

2 , 1), x, y each component has the same sign;

(1, 3
2 ), x, y each component has the different sign,

where x = (x1, . . . , xn), y = (y1, . . . , yn). Considering that each component of x, y is greater
than zero, other cases may be considered similarly. By Lagrange’s mean value theorem

∣∣Kα(x – y) – Kα(x)
∣∣

=
∣∣|x – y|α–n – |x|α–n∣∣

= |x|α–n
∣∣∣∣

( |x – y|
|x|

)α–n

– 1
∣∣∣∣

≤ (n – α)|x|α–n
( |y|

|x|
)(|ξ |)α–n–1

≤ 2n+1–α(n – α)
|y|

|x|n+1–α
, (4.3)

where

|x| =

√√√√
n∑

i=1

x2
i , ξ = (ξ1, . . . , ξn),

1
2

< min

{ |x – y|
|x| , 1

}
< |ξ | < max

{ |x – y|
|x| , 1

}
<

3
2

.

Thus Kα ∈ H∗
α,∞.

�

Theorems 2.2 and 4.1 yield the following.

Theorem 4.2 Let ϕ be any Young function defined on [0, +∞) and Kα(x) = 1
|x|n–α , then the

fractional convolution operator Fα in (1.1) becomes the classical Riesz potential operator

Iα�(x) =
∑

I

(∫

Rn

1
|x – y|n–α

�I(y) dy
)

dxI , (4.4)

where � =
∑

I �I dxI is a differential form in R
n and such that �I ∈ L∞

c for all the ordered
�-tuples I . Then there exists a constant C such that

∫

Rn

∣∣Iα�(x)
∣∣pw(x) dx ≤ C

∫

Rn

[
Mα,ϕ̄�(x)

]pw(x) dx (4.5)

for any 0 < p < ∞ and w ∈ A∞.
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Lemma 4.2 (see [7]) Denote by Sn–1 the unit sphere of Rn, � is a homogeneous function
defined on Sn–1 with �(x) = �(x′) and the kernel function Kα(x) = �(x)/|x|n–α(x �= 0), where
x′ = x/|x|(x �= 0). Given a Young function ϕ, we define the Łϕ-modulus of continuity of � as

�ϕ(t) = sup
|y|≤t

�

∥∥�(· + y) – �(·)∥∥
ϕ(Sn–1) (4.6)

and write � ∈ Łϕ(Sn–1). If

∫ 1

0
�ϕ(t)

dt
t

< ∞, (4.7)

then Kα ∈ Sα ∩ Hα,ϕ .

By Theorem 2.2 and Lemma 4.2, we have the following.

Theorem 4.3 Let ϕ be a Young function, � be a homogeneous function in Sn–1 with �(x) =
�(x′) and � ∈ Łϕ(Sn–1). Suppose that Fα is the fractional convolution operator with its
kernel function Kα(x) = �(x)/|x|n–α . Let � =

∑
I �I dxI be a differential form in R

n with
�I ∈ L∞

c for all the ordered �-tuples I . If
∫ 1

0 �ϕ(t) dt
t < ∞, then there exists a constant C

such that
∫

Rn

∣∣Fα�(x)
∣∣pw(x) dx ≤ C

∫

Rn

[
Mα,ϕ̄�(x)

]pw(x) dx (4.8)

for any 0 < p < ∞ and w ∈ A∞.
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